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1. Introduction

Bulk carbon-graphite materials are widely used as 
high-temperature thermal insulators and heating elements 
in resistance furnaces of the electrode-manufacturing in-
dustry [1, 2]. To account for the dependence of physical 
properties of bulk materials on pressure in the course of 
numerical analysis of the thermal-electric state of high-tem-
perature furnace equipment of electrode production [3, 4], 
it is necessary to know pressure distribution in the layers of 
these materials. Failure to take this dependence into account 
may lead to significant errors in the results of numerical 
analysis during development of new equipment and when 
working out the norms of its operation. It is known that the 
information on pressure distribution in bulk materials in 
the form of the mean hydrostatic pressure can be obtained 
from the solution to a nonlinear problem on plasticity by the 
Drucker-Prager yield criterion [5, 6]. That is why the task to 
improve algorithms for solving the problem on mechanical 
behavior of bulk materials is a relevant issue.

2. Literature review and problem statement

An analysis of data from the scientific literature revealed 
that the Drucker-Prager model had become wide-spread in 

the numerical studies into elastic-plastic state of loose and 
brittle materials:

– examining the strength of concrete with different com-
position [7–9];

– the process of rock destruction [10, 11];
– a mechanism of compaction of pharmaceutical powder 

materials [12, 13];
– the process of formation of metal-powder-like products 

[14–17].
Paper [7] describes the use of the extended Druck-

er-Prager yield model during numerical simulation of 
the behavior of reinforced concrete. Numerical experi-
ments were performed employing the proprietary software 
ABAQUS. 

Article [8] describes experimental studies into deter-
mining the limits of strength at compression of cylindrical 
concrete samples during uniaxial compression. The method 
is given for graphical determination of the Drucker-Prager 
criteria for concrete during its uniaxial loading.

In order to obtain the yield surface by Drucker-Prager 
for samples made of different grades of concrete, paper [9] 
experimentally determined coefficients of cohesion and the 
angles of inner friction.

Article [10] presented a model of mechanical behavior 
of rocks with different porosity, which is based on the 
combination of the Drucker-Prager boundary surface 
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with an elliptical surface. The ratios are given that de-
scribe changes in the surface of boundary state and in the 
coefficient of dilatation during an irreversible deforma-
tion of the medium. The authors applied the non-associa-
tive law of currents.

Paper [11] considered a model of deformation of rocks 
that is a generalization of the Hill model of anisotropic 
plasticity, on the one hand, and the Drucker-Prager mod-
el, on the other hand. Underlying the model is the non-as-
sociative law of plastic current with strengthening for an 
anisotropic body, which takes into account the impact of 
volumetric stresses. The authors considered a rather gen-
eral case of the combination of isotropic and translational 
strengthening.

Article [12] reports results of numerical research into 
mechanism of compaction of powder material into tablets. 
By using the commercial software ABAQUS, the authors 
performed numerical study in an axisymmetric statement. 
Solving an elastic-plastic problem employing the Drucker- 
Prager model made it possible to determine pressure distri-
bution in the material in the form of the mean hydrostatic 
pressure, which is necessary for determining physical prop-
erties of the resulting material. 

Paper [13] describes numerical and experimental studies 
into the pressing process of pharmaceutical powder materi-
als. Numerical studies were performed using the Drucker- 
Prager model. The ABAQUS software was employed.

In [14], numerical studies are reported for the pressing 
process of aluminum oxide powder applying a modified 
Drucker-Prager model. Numerical experiment was per-
formed using the ABAQUS software application. 

The authors of [15], by employing the method of finite 
elements, carried out research into processes of plastic de-
formation of metallic powder materials. It is shown that the 
ABAQUS software package enables obtaining more accu-
rate results for the Drucker-Prager model than when using 
the software DEFORM and ANSYS/LS-DYNA.

Papers [16, 17] report physical and numerical experi-
ments of the pressing process of a mixture of metallic pow-
ders. Numerical study is represented in an axisymmetric 
3D statement using the method of finite elements. The calcu-
lations were carried out applying a modified Drucker-Prager 
model implemented in the software ABAQUS.

Certain shortcomings of the considered studies that ad-
dress application of the Drucker-Prager model for loose and 
brittle materials include the following:

– a lack of complete mathematical formulation of the 
problem and the solving algorithm;

– there are formulae only to determine the yield criteri-
on, equivalent deformations and stresses, results and analy-
sis of numerical studies, etc.;

– the calculations are carried out using the commercial 
software ABAQUS, employing which requires purchasing 
an appropriate license.

Thus, the studies examined above lack a complete math-
ematical statement of the problem and a solving algorithm, 
which makes it more difficult to clearly understand the issue 
that is being explored. That is why the promising directions 
of research are considered to be:

– improvement of existing algorithms for solving the 
problem on plastic behavior of bulk materials;

– development of the appropriate software code and its 
verification.

3. The aim and objectives of the study

The aim of present work is to improve algorithmic ap-
proaches to solving a nonlinear problem on the mechanical 
behavior of bulk materials by the Drucker-Prager yield cri-
terion. This will make it possible to minimize requirements 
for computer resources.

To accomplish the set aim, the following tasks have been 
solved:

– to formulate a mathematical model for the elastic-plas-
tic behavior of isotropic bulk material;

– to improve a procedure for solving numerically a prob-
lem on the mechanical state of bulk material based on the 
reverse-mapping algorithm;

– to compare data obtained by numerical experiments 
with the data acquired employing commercial software 
products.

4. Materials and methods for examining  
the elastic-plastic state of bulk material

According to the incremental theory of plasticity, a 
mathematical model of the elastic-plastic behavior of an 
isotropic bulk material includes the equilibrium equa-
tions, a generalized Hooke’s law, and geometrical equa-
tions [5, 6, 18]:
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where ijσ�  are the components of symmetric tensor of stress 
gain of the 2nd rank, Pa; ρ is the density, kg/m3; ib�  are the 
components of gain vector of the mass forces, such as gravi-
ty, N/kg; E is the modulus of elasticity during axisymmetric 
compression, Pa; ν is the Poisson’s ratio; δij is the Kronecker 
symbol; 0

ijσ�  are the components of gain tensor of initial 
stress, Pa; ,el

ijε� pl
ijε�  are the elastic and plastic components of 

gain tensor of total deformations, respectively; ,ijε�  iu�  are 
the components of displacement gain vector, m.

When employing a criterion of the onset of the Druck-
er-Prager yield, a condition for the yield of bulk material 
(plasticity function) is written in the following form [5, 6]

( ) ( ), , , ,ij eqDP yF c cσ φ = σ − σ φ 	 (2)

where F is a function of the bulk material’ surface yield;

( ) 1
3

2eqDP m ij ijs sσ = α φ σ +

is the equivalent stress by Drucker-Prager, Pa;

1
3ij ij ij kks = σ − δ σ  

are the components of deviatory stress tensor, Pa; 

m

1
,

3 ij kkσ = δ σ  Pa; 
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( ),y cσ φ  is the yield limit of bulk material, Pa; c is the ad-
hesion force between granules of bulk material, Pa; ϕ is the 
angle of internal friction, or the angle of native repose of the 
bulk material, rad.

If we assume that the surface of fluidity by Drucker-Prag-
er streamlines the surface of fluidity by Mohr-Coulomb [5, 6], 
the expressions for ( ),y cσ φ  and ( )α φ  take the form:

( ) ( )
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y
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c
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σ φ =

− φ
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Initial conditions for (1), (2):

0 0,ijσ =�
 

, 1, 2, 3.i j = 	 (4)

Boundary conditions for (1), (2):
– displacement vector gain

0,
u

i S
u =�

 
1,2,3,i = 	 (5)

where Su is the surface (or a point of the surface), on which 
the displacement is set, m2;

– symmetry

0,
su

i i S
n u =�

 
1,2,3,i = 	 (6)

where ni are the components of external normal vector to the 
body surface; Ssu is the surface of body symmetry, m2.

We shall consider basic theoretical principles of the im-
plicit return-mapping algorithm) [5, 6]. True elastic stresses 
in the case of occurrence of elastic-plastic deformations in a 
bulk material are determined by relation

( ),tr pl
ij ijkl kl klCσ = ε − ε 	 (7)

where σij are the components of stress tensor of the 2nd 
rank, Pa; Cijkl are the components of the fourth rank of mate-
rial’s elastic constants, Pa; tr

klε  are the components of tensor 
of trial (full) deformations of the 2nd rank, which is deter-
mined in the vicinity of elastic medium; 

( )
1

N
pl pl
kl kl i

i=

ε = Δε∑
are the components of plastic deformation tensor of the 
2nd rank; pl

klΔε  are the components of gain tensor of plastic 
deformation at the i-th step of loading; N is the number of 
loading steps.

For the case of non-associative law of plastic flow at α≠β, 
we have

pl pl
ij ij ijmε = Δε = Δλ�  or ˆ ˆ ˆ ,pl plε = Δε = Δλm� 	 (8)
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A potential function of the Drucker-Prager fluidity criterion 
is expressed by relation [3]

( ) m

1
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A scalar associative multiplier Δλ or plasticity coefficient 
(8) in the absence of strengthening is determined from formula
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are the tensors of the 2nd rank, which are derived from func-
tions (2) and (9) by a stress tensor, respectively; 

4

Ĉ  is the 
tensor of elastic constants of the 4th rank, Pa; Î  is the sin-
gular tensor of the 2nd rank; ˆ trε  is the tensor of trial elastic 
deformations at each step of loading.

Considering (8) and (10), formula (7) for the loading 
step k+1 can be rewritten in the form

( )1 1 1k tr k k
ij ij ijkl ij ijC m+ + +σ = σ − Δλ σ

or

( )
4

1 1 1ˆˆ ˆ ˆˆ: ,k tr k k+ + += − Δλ C mσ σ σ 	 (11)

where 
4

ˆˆ ˆ:tr tr= Cσ ε  is the tensor of trial stresses that is deter-
mined in the vicinity of elastic environment, Pa.

Formula (11) yields a mapping of the trial stress tensor ˆ trσ  
in the direction of the yield surface. That is why this method 
of integration, which is built on the inverse Euler method, 
acquired the name of the return-mapping algorithm [5, 6].

The system of equations (11) taking into account the sym-
metry of stress tensor has 7 unknowns, in particular, 6 indepen-
dent components ˆ trσ  and Δλ. That is why, in order to receive 
uniqueness, the systems of equations (11) are to be supplement-
ed with the scalar equation (2) in the form of a requirement that 
the condition of yield is satisfied at the end of a loading stage

( )1ˆ , 0.kF + Δλ =σ 	 (12)

The non-linear system of equations (11), (12) can be 
rewritten in the form of discrepancies. In this case, it is re-
quired to pass over to a six-dimensional space considering the 
symmetry of stress and deformation tensors. This makes it 
possible to replace tensors of the 2nd rank 1ˆ ,k+σ  ˆ ,trσ  ˆ,n  m̂  
with corresponding vectors 1ˆ k+σ  ,trσ  n and m with six com-
ponents. Thus, rather than using a tensor of the 4th rank, one 
can employ elastic constants tensor of the second rank with 
dimensionality 6´6:

( )
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In order to solve a system of nonlinear equations (13), a 
Newton’s method is typically applied whose iterative proce-
dure is recorded as follows:
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Here, index k refers to the step of loading while index j – 
to the number of iteration by the Newton’s method.

At each iteration step by the Newton’s method (14) it is 
advisable to not find the inverse matrix but solve a system of 
linear algebraic equations (SLAE) using the Gauss exclusion 
method. This makes it possible to significantly reduce the 
number of arithmetic operations, by about 3n2, where n is the 
dimensionality of SLAE.

For k=1, one solves an ordinary elastic problem relative 
to total displacements provided the boundary conditions 
(4)–(6) are assigned, which determine the trial stresses. 
Next, for the part of the layer of a bulk material that is in 
the elastically-plastic state, one determines the gains of 
plastic deformation and the tensor of elastic tension from 
solution (14) and finds initial stresses from formula

( ) ( ) ( )0 .k k kel= Δλ ⋅D mσ 	 (15)

The next steps of integration (1), (2) for k>1 are per-
formed only with a load by initial stresses (15), (16), that is, 
without taking into account external and gravitational loads 
and at boundary conditions (5). In this case, one solves the 
elastic problem and determines the gains of displacements 
Δuk and refines the values of total displacements, which de-
termine the new trial stresses. Then, from solution (14), one 
determines a new value for the gain of plastic deformation 
and the tensor of elastic stress for the body part that is in the 
elastic-plastic state. Next, in order to perform the next step 
of loading, one finds the gains of initial stresses from formula

( ) ( )0 0 1 .k kk el k −= Δλ ⋅ −D mσ σ 	 (16)

The criterion for the end of computations can be, for ex-
ample, fulfillment of condition 

k
uΔ £ δu  or ( ) .pl k

eq εε £ δ

New trial stresses σtr(k) in the algorithm of solving the 
problem can also be determined through the previous values 
of σtr(k-1) and the gains of elastic deformations Δεk, which are 
found via Δuk, from formula

( ) ( ) ( )1 .tr k tr k el k k−= + ⋅ Δ ΔD uσ σ ε 	 (17)

In order to determine Δuk, at each step of integration by 
time, we use a gain of initial stresses in the form

( )0 1 1 1.k k el k− − −= Δλ ⋅D mσ 	 (18)

Total plastic deformations are determined from formula

( ) ( )1 .pl k pl k k k−= + Δλ mε ε 	 (19)

In the case of the associative law of plastic flow, at  
α=β (γ=φ), fluidity functions F (2) and G (9) converge. 
Then m=n, and the direction of gain in plastic deforma-
tion at current becomes normal to the yield surface. In 
this case, it is necessary to replace m with n in formulas 
(6)–(19). In other words, the problem is somewhat simpli-
fied. Further algorithm for solving the problem with the 
associative law of flow is the same as in the case for the 
non-associative one.

In order to numerically implement the proposed algo-
rithm, we used a finite element method (FEM) and the 
high-level programming language Fortran employing the 
integrated development environment Compaq Visual For-
tran [19]. In this case, a global matrix of SLAE is built in 
the ribbon form and SLAE is solved by the Gaussian method 
taking into account the ribbon form.

5. Results of numerical studies into elastic-plastic  
state of bulk material

Testing of the developed programming code for solv-
ing a problem on the elastic-plasticity of bulk material 
was performed on the example of a model material, char-
acterized by the associative law of current at different 
values of the angles of native repose. Construction of the 
tetrahedron grid was executed in the CAD-system for 
grid generation Gmsh [20].

Test. A problem on the elastic-plasticity of a bulk mate-
rial using a classic model of Drucker-Prager. The estimated 
area is three-dimensional, ¼ of a cone with radius

2 2 0,34r x y= + =  m

and height z=0.3 m. Physical properties of the bulk ma-
terial: apparent density ρ=800 kg/m3, modulus of elas-
ticity E=4000 Pa, Poisson’s ratio ν=0.45, adhesion force 
between granules of the bulk material c=400 Pa, an-
gle of native repose ϕ=15, 10, 5°. Load: gravitation gz= 
=–9.81 m/s2. The associative law of current α=β. Boundary 
conditions: fixing on the xOy plane – uz=0=0, symmetry 
along the xOz and yOz planes. That is, the terms of the prob-
lem, as well as the solution, correspond to a two-dimensional 
axisymmetric problem.

Results of solving the problem, as well as their com-
parison with the data obtained using the software ANSYS 
Mechanical APDL [21] for an axisymmetric geometry, are 
given in Table 1.

Results of numerical simulation of the problem on plas-
ticity of bulk material with the use of the developed software 
are shown in Fig. 1.

To visualize the results of calculations, we applied the 
open-source graphic package for interactive visualization of 
ParaView [22].
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                          a                                                   b

  
 

  

                         c                                                     d

Fig. 1. Results of numerical simulation of the problem on 
plasticity of bulk material: a – total displacements; 	
b – equivalent plastic deformations by von Mises; 	

c – equivalent stresses by Drucker-Prager; 	
d – hydrostatic pressure

6. Discussion of results of numerical simulation of the 
elastic-plastic state of bulk material

An analysis of comparing the results showed that the 
data from modeling by using the developed software coin-

cide with the numerical solutions, which were obtained by 
employing the commercial software ANSYS Mechanical 
APDL [21]. In this case, the maximal value of error for such 
magnitudes as us, σeqM, el

eqMε
 
and σm is within 0.25–1.71 %, 

for pl
eqMε  is 2.1–5.3 %, which is sufficient enough to perform 

engineering calculations. 
As a result of verification of the modified algorithm for 

solving a problem (1)–(7), it was established that:
– solving a linearized system of equations (14) at each step 

of iterations using the Gauss method instead of determining the 
inverse matrix makes it possible to reduce the number of arith-
metic operations by about 3n2 for each plastic finite element;

– results of solving the problem with initial stresses via 
absolute values of displacements in line with (15), (16) coincide 
with the results obtained through the gains in displacements 
according to (17)–(19) under conditions of the test problem.

We consider the following benefits of present work:
– all the stages are presented in solving the problem, start-

ing with mathematical statement, procedure of solving, all the 
way to numerical implementation and verification, which is a 
substantial methodological advantage compared to [5–17];

– modification of the return-mapping algorithm.
The shortcomings of the work are, probably, the following:
– the study is performed only for a classic model of 

Drucker-Prager with the associative law of current;
– the software is designed only for the application of 

linear tetrahedron finite elements;
– a lack of comparison of the results of numerical simula-

tion with an experiment and the data obtained by using the 
ABAQUS software package.

The research results are useful when running a numeri-
cal analysis of physical fields of electro-thermal equipment, 

Table 1

Comparison of solutions to the problem on plasticity of bulk material, obtained by employing our own programming code, 	
and using the software ANSYS Mechanical APDL

Type of solution us, m σeqM, Pа σeqDP, Pа el
eqMε pl

eqMε σm, Pа

ϕ=5°, σy=473.89 Pа

ANSYS 2D  
axisymmetric,  

N=630, El=1148
0–0.070368 27.735–1000.69 – 0.0106–0.250173 0–0.370229 –1002.03–259.964

Fortran 3D,  
N=3608, El=14641

0–0.068858 35.234–1001.57 473.89 0.0088–0.250132 0–0.362502 –1006.91–284.346

Difference, % 2.15 –0.09 – 0.02 2.09 -0.49

ϕ=10°, σy = 482.81 Pа

ANSYS 2D 
axisymmetric,  

N=630, El=1148
0–0.05676 7.409–1182.76 – 0.007733–0.29569 0–0.16233 –939.98–177.104

Fortran 3D,  
N=3608, El=14641

0–0.056065 47.0435–1188.7 482.81 0.01176–0.296441 0–0.167898 –956.098–199.596

Difference, % 1.22 –0.50 – –0.25 –3.43 –1.71

ϕ=15°, σy=488.27 Pа

ANSYS 2D 
axisymmetric,  

N=630, El=1148
0–0.051986 0.7–1342.2 – 0.007514–0.335525 0–0.05423 –876.238–151.593

Fortran 3D,  
N=3608, El=14641

0–0.051518 37.94–1347.83 488.27 0.009485–0.336254 0–0.05709 –886.353–181.923

Difference, % 0.90 –0.42 – –0.22 –5.27 –1.23
Note: N – number of nodes; El – number of finite triangular or tetrahedron elements; us – resultant displacement, m; σeqM – equivalent stress 
by von Mises, Pa; σeqDP – equivalent stress by Drucker-Prager, Pa; el

eqMε – equivalent elastic deformation by von Mises; pl
eqMε  – equivalent 

plastic deformation by von Mises; σm – hydrostatic pressure, Pa; ϕ – angle of native repose, degrees; σy – yield limit of material, Pa
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Розв’язана задача ідентифікації величини і 
зони впливу на верхній шар двошарової конструк-
ції, що знаходиться під дією нормально розподіле-
ного навантаження і власної ваги, для забезпечен-
ня повного контакту. Досліджено можливість 
застосування методу обернених задач, реалі-
зованого за допомогою методу вектора спаду. 
Зроблено чисельний аналіз збіжності проце-
су усунення деформації моделі в залежності від 
механічних і геометричних параметрів системи

Ключові слова: плоска контактна зада-
ча, односторонні зв’язки, ідентифікація впливу, 
метод обернених задач

Решена задача идентификации величины и 
зоны воздействия на верхний слой двуслойной 
конструкции, находящейся под действием нор-
мально распределенной нагрузки и собствен-
ного веса, для обеспечения полного контакта. 
Исследована возможность применения мето-
да обратных задач, реализованного с помощью 
метода вектора спада. Проведен численный ана-
лиз сходимости процесса устранения деформа-
ции модели в зависимости от механических и гео-
метрических параметров системы

Ключевые слова: плоская контактная зада-
ча, односторонние связи, идентификация воздей-
ствия, метод обратных задач
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1. Introduction

The phenomenon of separation of interlayer bonds is 
observed in the operation of highways, airfield pavements, 
foundations of high-rise buildings with supports or isolation 
joints. The contact between the building sole and the base 
often leads to emergency situations. Such phenomena are 
modeled by contact problems with unilateral constraints.

A detailed research of the fundamental laws of contact 
interaction requires a comprehensive consideration of the 
geometric features and imperfections of the conjugate sur-
faces, physical and mechanical phenomena in the areas of 
their direct attachment (friction, slippage, adhesion, etc.). 
The numerical solution of contact problems is usually car-
ried out on the basis of the finite element method. For the 

modeling of unilateral constraints, various physical models 
are used. The research on the stress-strain state of the model 
and the state of the contact zone (presence of a friction zone 
and a separation zone) can be defined as the solution of a 
direct problem.

Studies of contact problems of mechanics of deformable 
media are conducted in two directions. Within the frame-
work of the first direction, problems of conjugation of media 
with sharply differing mechanical properties (layer-inhomo-
geneous elastic and elastoplastic bodies, conjugation of sol-
ids to liquid or gaseous media, etc.) are considered. In such 
problems, the boundaries of the contact area are, as a rule, 
specified and not changed in the course of deformation. To 
solve these problems, the methods of the function theory of 
a complex variable and the theory of potentials with integral 




