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Pozensnymo mamemamuuny nocmanosxy 3aoa-
i NPYIHCHO-NIIACMUUHOZ0 CMANY CUNK020 Mamepia-
Y 3 UKOpUCMAHHAM Kaacuunoi modeni /[pykepa-
Ilpazepa. Buxonano 600CKOHANEHHS MemMOOUKU
YUCTI06020 PO36°A3AHHA 3a0aui MeXAHIMH020 CMany
CUnK020 mamepiany 3 GUKOPUCMAHHAM AT2OPUMMY
360pomHozo idodparcenns. IlIposedeno wucnosi pos-
PaxyHKu Ha npuxaaci Mamepiany, wo Xapaxmepusy-
E€MbCA ACOUIAMUBHUM 3AKOHOM Mmenil, 3a PIZHUX 3HA-
eHb Kyma npupooHozo ykocy

Kniouosi canosa: cunxuii mamepian, xKpumepii
mexywocmi /Ipyxepa-Ilpazepa, aneopumm 3eopom-
HO20 8i000padcens, nracmuuna oepopmauisn

=, u]

Paccmompena mamemamuuecxas nocmanog-
Ka 3a0a1u ynpyzonaacmuueckoz0 COCMOsiHUsL Colny-
ue20 MaAmepuana ¢ UCnOIL306AHUEM KIACCUMECKOU
mooenu Jlpyxepa-Ilpazepa. Boinonneno ycosepuen-
cmeosanue MemoouKu HUCIAeHHO20 peulenus 3a0auu
MEXAHUMECK020 COCMOAHUA CbINYHez0 Mamepuana ¢
UCnoIb306anuem anzopumma oopamuozo omodpa-
acenus. IIposedenvt uucaennoie pacuemot Ha npume-
pe mamepuana, KOmopbvlil Xapaxmepusyemcs acco-
UUAMUBHLIM 3AKOHOM MEHeHUsl, NPU PAa3TUUHBLY
3HAUEHUAX YeIla eCeCMEEHH020 OMKOCa

Knioueevie cnoea: coinyuuii mamepuan, xpu-
mepuii mexyuecmu /Ipyxepa-Ilpazepa, anzopumm
oOpaminozo omoopadcenus, naacmuieckas oeop-
Mauus

1. Introduction

Bulk carbon-graphite materials are widely used as
high-temperature thermal insulators and heating elements
in resistance furnaces of the electrode-manufacturing in-
dustry [1,2]. To account for the dependence of physical
properties of bulk materials on pressure in the course of
numerical analysis of the thermal-electric state of high-tem-
perature furnace equipment of electrode production [3, 4],
it is necessary to know pressure distribution in the layers of
these materials. Failure to take this dependence into account
may lead to significant errors in the results of numerical
analysis during development of new equipment and when
working out the norms of its operation. It is known that the
information on pressure distribution in bulk materials in
the form of the mean hydrostatic pressure can be obtained
from the solution to a nonlinear problem on plasticity by the
Drucker-Prager yield criterion [5, 6]. That is why the task to
improve algorithms for solving the problem on mechanical
behavior of bulk materials is a relevant issue.

2. Literature review and problem statement

An analysis of data from the scientific literature revealed
that the Drucker-Prager model had become wide-spread in
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the numerical studies into elastic-plastic state of loose and
brittle materials:

— examining the strength of concrete with different com-
position [7-9];

— the process of rock destruction [10, 11];

—a mechanism of compaction of pharmaceutical powder
materials [12, 13];

— the process of formation of metal-powder-like products
[14-17].

Paper [7] describes the use of the extended Druck-
er-Prager yield model during numerical simulation of
the behavior of reinforced concrete. Numerical experi-
ments were performed employing the proprietary software
ABAQUS.

Article [8] describes experimental studies into deter-
mining the limits of strength at compression of cylindrical
concrete samples during uniaxial compression. The method
is given for graphical determination of the Drucker-Prager
criteria for concrete during its uniaxial loading.

In order to obtain the yield surface by Drucker-Prager
for samples made of different grades of concrete, paper [9]
experimentally determined coefficients of cohesion and the
angles of inner friction.

Article [10] presented a model of mechanical behavior
of rocks with different porosity, which is based on the
combination of the Drucker-Prager boundary surface




with an elliptical surface. The ratios are given that de-
scribe changes in the surface of boundary state and in the
coefficient of dilatation during an irreversible deforma-
tion of the medium. The authors applied the non-associa-
tive law of currents.

Paper [11] considered a model of deformation of rocks
that is a generalization of the Hill model of anisotropic
plasticity, on the one hand, and the Drucker-Prager mod-
el, on the other hand. Underlying the model is the non-as-
sociative law of plastic current with strengthening for an
anisotropic body, which takes into account the impact of
volumetric stresses. The authors considered a rather gen-
eral case of the combination of isotropic and translational
strengthening.

Article [12] reports results of numerical research into
mechanism of compaction of powder material into tablets.
By using the commercial software ABAQUS, the authors
performed numerical study in an axisymmetric statement.
Solving an elastic-plastic problem employing the Drucker-
Prager model made it possible to determine pressure distri-
bution in the material in the form of the mean hydrostatic
pressure, which is necessary for determining physical prop-
erties of the resulting material.

Paper [13] describes numerical and experimental studies
into the pressing process of pharmaceutical powder materi-
als. Numerical studies were performed using the Drucker-
Prager model. The ABAQUS software was employed.

In [14], numerical studies are reported for the pressing
process of aluminum oxide powder applying a modified
Drucker-Prager model. Numerical experiment was per-
formed using the ABAQUS software application.

The authors of [15], by employing the method of finite
elements, carried out research into processes of plastic de-
formation of metallic powder materials. It is shown that the
ABAQUS software package enables obtaining more accu-
rate results for the Drucker-Prager model than when using
the software DEFORM and ANSYS/LS-DYNA.

Papers [16, 17] report physical and numerical experi-
ments of the pressing process of a mixture of metallic pow-
ders. Numerical study is represented in an axisymmetric
3D statement using the method of finite elements. The calcu-
lations were carried out applying a modified Drucker-Prager
model implemented in the software ABAQUS.

Certain shortcomings of the considered studies that ad-
dress application of the Drucker-Prager model for loose and
brittle materials include the following:

—a lack of complete mathematical formulation of the
problem and the solving algorithm;

— there are formulae only to determine the yield criteri-
on, equivalent deformations and stresses, results and analy-
sis of numerical studies, etc.;

— the calculations are carried out using the commercial
software ABAQUS, employing which requires purchasing
an appropriate license.

Thus, the studies examined above lack a complete math-
ematical statement of the problem and a solving algorithm,
which makes it more difficult to clearly understand the issue
that is being explored. That is why the promising directions
of research are considered to be:

— improvement of existing algorithms for solving the
problem on plastic behavior of bulk materials;

— development of the appropriate software code and its
verification.

3. The aim and objectives of the study

The aim of present work is to improve algorithmic ap-
proaches to solving a nonlinear problem on the mechanical
behavior of bulk materials by the Drucker-Prager yield cri-
terion. This will make it possible to minimize requirements
for computer resources.

To accomplish the set aim, the following tasks have been
solved:

— to formulate a mathematical model for the elastic-plas-
tic behavior of isotropic bulk material;

— to improve a procedure for solving numerically a prob-
lem on the mechanical state of bulk material based on the
reverse-mapping algorithm;

—to compare data obtained by numerical experiments
with the data acquired employing commercial software
products.

4. Materials and methods for examining
the elastic-plastic state of bulk material

According to the incremental theory of plasticity, a
mathematical model of the elastic-plastic behavior of an
isotropic bulk material includes the equilibrium equa-
tions, a generalized Hooke’s law, and geometrical equa-
tions [5, 6, 18]:
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where 6, are the components of symmetric tensor of stress
gain of the 2nd rank, Pa; p is the density, kg/m? b, are the
components of gain vector of the mass forces, such as gravi-
ty, N/kg; E is the modulus of elasticity during axisymmetric
compression, Pa; v is the Poisson’s ratio; 9, is the Kronecker
symbol; &} are the components of gain tensor of initial
stress, Pa; é;’.’, éi]”.l are the elastic and plastic components of
gain tensor of total deformations, respectively; &;, u; are
the components of displacement gain vector, m.

When employing a criterion of the onset of the Druck-
er-Prager yield, a condition for the yield of bulk material

(plasticity function) is written in the following form [5, 6]
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where Fis a function of the bulk material’ surface yield,;

1
G0 = 30.(0)0,, + 5555
is the equivalent stress by Drucker-Prager, Pa;
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are the components of deviatory stress tensor, Pa;
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Gy(C,(])) is the yield limit of bulk material, Pa; ¢ is the ad-
hesion force between granules of bulk material, Pa; ¢ is the
angle of internal friction, or the angle of native repose of the
bulk material, rad.

If we assume that the surface of fluidity by Drucker-Prag-
er streamlines the surface of fluidity by Mohr-Coulomb [5, 6],
the expressions for 6, (c,0) and o(¢) take the form:
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Initial conditions for (1), (2):
-0 _ L.
6,=0, i,j=123. %)

Boundary conditions for (1), (2):
— displacement vector gain

ui|5u =0, i=1,23, 5)

where S is the surface (or a point of the surface), on which
the displacement is set, m?
— symmetry
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where n; are the components of external normal vector to the
body surface; S,, is the surface of body symmetry, m?.

We shall consider basic theoretical principles of the im-
plicit return-mapping algorithm) [5, 6]. True elastic stresses
in the case of occurrence of elastic-plastic deformations in a
bulk material are determined by relation
o, =Cyu(el 2 (7)

v

where 6; are the components of stress tensor of the 2nd
rank, Pa; C;, are the components of the fourth rank of mate-
rial’s elastic constants, Pa; €}, are the components of tensor
of trial (full) deformations of the 2nd rank, which is deter-

mined in the vicinity of elastic medium;

N
el = (ael))
i=1
are the components of plastic deformation tensor of the
2nd rank; Ae? are the components of gain tensor of plastic
deformation at the i-th step of loading; N is the number of
loading steps.
For the case of non-associative law of plastic flow at o=,
we have

& = Ae! = Ahm,, or & = AR" = AMh, ®)
where
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A potential function of the Drucker-Prager fluidity criterion
is expressed by relation [3]

G=3B(y)o, +1/%sijsy +const . 9)

A scalar associative multiplier AA or plasticity coefficient
(8) in the absence of strengthening is determined from formula
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are the tensors of the 2nd rank, which are derived fram func-
tions (2) and (9) by a stress tensor, respectively; C is the
tensor of elastic constants of the 4th rank, Pa;I is the sin-
gular tensor of the 2nd rank; € is the tensor of trial elastic
deformations at each step of loading.

Considering (8) and (10), formula (7) for the loading
step k+1 can be rewritten in the form
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where 6" =C:&" is the tensor of trial stresses that is deter-

mined in the vicinity of elastic environment, Pa.

Formula (11) yields a mapping of the trial stress tensor 6"
in the direction of the yield surface. That is why this method
of integration, which is built on the inverse Euler method,
acquired the name of the return-mapping algorithm [5, 6].

The system of equations (11) taking into account the sym-
metry of stress tensor has 7 unknowns, in particular, 6 indepen-
dent components 6" and AL. That is why, in order to receive
uniqueness, the systems of equations (11) are to be supplement-
ed with the scalar equation (2) in the form of a requirement that
the condition of yield is satisfied at the end of a loading stage

F(6",A%)=0. 12)

The non-linear system of equations (11), (12) can be
rewritten in the form of discrepancies. In this case, it is re-
quired to pass over to a six-dimensional space considering the
symmetry of stress and deformation tensors. This makes it
possible to replace tensors of the 2nd rank 6*!, 6", f, m
with corresponding vectors 6**' ¢”, n and m with six com-
ponents. Thus, rather than using a tensor of the 4th rank, one
can employ elastic constants tensor of the second rank with
dimensionality 6x6:

rs — Gk+1 _Grr + A}\'kHDel .m(okﬂ) :

rF — F(GkH,A)\.kH) . (13)



In order to solve a system of nonlinear equations (13), a
Newton’s method is typically applied whose iterative proce-
dure is recorded as follows:
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Here, index & refers to the step of loading while index j —
to the number of iteration by the Newton’s method.

At each iteration step by the Newton’s method (14) it is
advisable to not find the inverse matrix but solve a system of
linear algebraic equations (SLAE) using the Gauss exclusion
method. This makes it possible to significantly reduce the
number of arithmetic operations, by about 372, where n is the
dimensionality of SLAE.

For k=1, one solves an ordinary elastic problem relative
to total displacements provided the boundary conditions
(4)—(6) are assigned, which determine the trial stresses.
Next, for the part of the layer of a bulk material that is in
the elastically-plastic state, one determines the gains of
plastic deformation and the tensor of elastic tension from
solution (14) and finds initial stresses from formula

¢"® =YD . m", 15)

The next steps of integration (1), (2) for &>1 are per-
formed only with a load by initial stresses (15), (16), that is,
without taking into account external and gravitational loads
and at boundary conditions (5). In this case, one solves the
elastic problem and determines the gains of displacements
Au* and refines the values of total displacements, which de-
termine the new trial stresses. Then, from solution (14), one
determines a new value for the gain of plastic deformation
and the tensor of elastic stress for the body part that is in the
elastic-plastic state. Next, in order to perform the next step
of loading, one finds the gains of initial stresses from formula

" = AV DY . mt — ") (16)

The criterion for the end of computations can be, for ex-
ample, fulfillment of condition

|Auk| <$, or |qul(k)| <9..

New trial stresses 6”® in the algorithm of solving the
problem can also be determined through the previous values
of 6”®Y and the gains of elastic deformations Ag*, which are
found via Au*, from formula

6" =¢"Y+ D Ac*(Au). a7

In order to determine Au*, at each step of integration by
time, we use a gain of initial stresses in the form

"V = ANFTDY . mt

(18)
Total plastic deformations are determined from formula

8pl(le) — 8pl(k—1) +A7\.kmk. (19)

In the case of the associative law of plastic flow, at
o=B (y=0¢), fluidity functions F (2) and G (9) converge.
Then m=n, and the direction of gain in plastic deforma-
tion at current becomes normal to the yield surface. In
this case, it is necessary to replace m with n in formulas
(6)—(19). In other words, the problem is somewhat simpli-
fied. Further algorithm for solving the problem with the
associative law of flow is the same as in the case for the
non-associative one.

In order to numerically implement the proposed algo-
rithm, we used a finite element method (FEM) and the
high-level programming language Fortran employing the
integrated development environment Compaq Visual For-
tran [19]. In this case, a global matrix of SLAE is built in
the ribbon form and SLAE is solved by the Gaussian method
taking into account the ribbon form.

5. Results of numerical studies into elastic-plastic
state of bulk material

Testing of the developed programming code for solv-
ing a problem on the elastic-plasticity of bulk material
was performed on the example of a model material, char-
acterized by the associative law of current at different
values of the angles of native repose. Construction of the
tetrahedron grid was executed in the CAD-system for
grid generation Gmsh [20].

Test. A problem on the elastic-plasticity of a bulk mate-
rial using a classic model of Drucker-Prager. The estimated
area is three-dimensional, ... of a cone with radius

r=yx’+y°=0,34 m

and height z=0.3 m. Physical properties of the bulk ma-
terial: apparent density p=800 kg/m? modulus of elas-
ticity E=4000 Pa, Poisson’s ratio v=0.45, adhesion force
between granules of the bulk material ¢=400 Pa, an-
gle of native repose ¢=15, 10, 5°. Load: gravitation g=
=-9.81 m/s% The associative law of current a=f. Boundary
conditions: fixing on the xOy plane — u__,=0, symmetry
along the xOz and yOz planes. That is, the terms of the prob-
lem, as well as the solution, correspond to a two-dimensional
axisymmetric problem.

Results of solving the problem, as well as their com-
parison with the data obtained using the software ANSYS
Mechanical APDL [21] for an axisymmetric geometry, are
given in Table 1.

Results of numerical simulation of the problem on plas-
ticity of bulk material with the use of the developed software
are shown in Fig. 1.

To visualize the results of calculations, we applied the
open-source graphic package for interactive visualization of
ParaView [22].



Table 1

Comparison of solutions to the problem on plasticity of bulk material, obtained by employing our own programming code,
and using the software ANSYS Mechanical APDL

Type of solution u, m G, P2 G,,pm Pa EZ[qM 8f{§M G,, Pa
0=5° 6,=473.89 Pa
ANSYS 2D
axisymmetric, 0-0.070368 | 27.735—-1000.69 0.0106—0.250173 0-0.370229 —1002.03-259.964
N=630, EI=1148
Fortran 3D,
N=3608, EI~14641 0-0.068858 | 35.234—1001.57 473.89 0.0088-0.250132 0-0.362502 —1006.91-284.346
Difference, % 215 -0.09 0.02 2.09 -0.49
0=10°, 6, = 482.81 Pa
ANSYS 2D
axisymmetric, 0-0.05676 | 7.409-1182.76 0.007733-0.29569 0-0.16233 -939.98—-177.104
N=630, EI=1148
Fortran 3D,
N=3608, EI~14641 0-0.056065 | 47.0435-1188.7 482.81 0.01176-0.296441 0-0.167898 -956.098-199.596
Difference, % 1.22 -0.50 -0.25 -3.43 -1.71
0=15°, cy:488.27 Pa
ANSYS 2D
axisymmetric, 0-0.051986 0.7-1342.2 0.007514-0.335525 0-0.05423 —876.238—-151.593
N=630, EI=1148
Fortran 3D,
N=3608, EI~14641 0-0.051518 | 37.94-1347.83 488.27 0.009485-0.336254 0-0.05709 —886.353-181.923
Difference, % 0.90 —0.42 -0.22 -5.27 -1.23

Note: N — number of nodes; El — number of finite triangular or tetrahedron elements; u, — resultant displacement, m; G, — equivalent stress

by von Mises, Pa; Cupp — equivalent stress by Drucker-Prager, Pa; €

oqu — equivalent elastic deformation by von Mises; ef;M — equivalent

plastic deformation by von Mises; 6,, — hydrostatic pressure, Pa; ¢ — angle of native repose, degrees; 6, — yield limit of material, Pa
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Fig. 1. Results of numerical simulation of the problem on
plasticity of bulk material: @ — total displacements;
b — equivalent plastic deformations by von Mises;
¢ — equivalent stresses by Drucker-Prager;
d — hydrostatic pressure

6. Discussion of results of numerical simulation of the
elastic-plastic state of bulk material

An analysis of comparing the results showed that the
data from modeling by using the developed software coin-

cide with the numerical solutions, which were obtained by
employing the commercial software ANSYS Mechanical
APDL [21]. In this case, the maximal value of error for such
magnitudes as u,, 6,,, €., and o, is within 0.25-1.71 %,
for SZM is 2.1-5.3 %, which is sufficient enough to perform
engineering calculations.

As a result of verification of the modified algorithm for
solving a problem (1)—(7), it was established that:

— solving a linearized system of equations (14) at each step
of iterations using the Gauss method instead of determining the
inverse matrix makes it possible to reduce the number of arith-
metic operations by about 372 for each plastic finite element;

—results of solving the problem with initial stresses via
absolute values of displacements in line with (15), (16) coincide
with the results obtained through the gains in displacements
according to (17)—(19) under conditions of the test problem.

We consider the following benefits of present work:

— all the stages are presented in solving the problem, start-
ing with mathematical statement, procedure of solving, all the
way to numerical implementation and verification, which is a
substantial methodological advantage compared to [5-17];

— modification of the return-mapping algorithm.

The shortcomings of the work are, probably, the following:

—the study is performed only for a classic model of
Drucker-Prager with the associative law of current;

—the software is designed only for the application of
linear tetrahedron finite elements;

—alack of comparison of the results of numerical simula-
tion with an experiment and the data obtained by using the
ABAQUS software package.

The research results are useful when running a numeri-
cal analysis of physical fields of electro-thermal equipment,



which uses bulk materials, and are a continuation of previ-
ous studies [3, 4, 18].

Further research may address the ways of solving the
problems on plastic behavior of bulk materials in the CAP
approximation and extended Drucker-Prager models em-
ploying hexagonal finite elements.

7. Conclusions

1. Based on the classic model of Drucker-Prager, we
formulated a mathematical statement of the problem on elas-
tic-plastic behavior of isotropic bulk material.

2. We have improved the procedure for solving numer-
ically a problem on the mechanical state of bulk material
using the return-mapping algorithm. The modified tech-
nique makes it possible to reduce the number of arithmetic
operations by about 372 (n is the dimensionality of SLAE) at
each iteration step for each plastic finite element.

3. We have tested the programming code on the example
of a model material, characterized by the associative law of
current, at different values of the angle of native repose. It
was found that the maximal value of error for such magni-
tudes as u,, 6,,,, €, and o, is within 0.25-1.71 %, and for
gl 15 2.1-5.3 %.
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1. Introduction modeling of unilateral constraints, various physical models

are used. The research on the stress-strain state of the model

The phenomenon of separation of interlayer bonds is  and the state of the contact zone (presence of a friction zone

observed in the operation of highways, airfield pavements, and a separation zone) can be defined as the solution of a
foundations of high-rise buildings with supports or isolation  direct problem.

joints. The contact between the building sole and the base Studies of contact problems of mechanics of deformable
often leads to emergency situations. Such phenomena are  media are conducted in two directions. Within the frame-
modeled by contact problems with unilateral constraints. work of the first direction, problems of conjugation of media

A detailed research of the fundamental laws of contact ~ with sharply differing mechanical properties (layer-inhomo-
interaction requires a comprehensive consideration of the  geneous elastic and elastoplastic bodies, conjugation of sol-
geometric features and imperfections of the conjugate sur- ids to liquid or gaseous media, etc.) are considered. In such
faces, physical and mechanical phenomena in the areas of  problems, the boundaries of the contact area are, as a rule,
their direct attachment (friction, slippage, adhesion, etc.).  specified and not changed in the course of deformation. To
The numerical solution of contact problems is usually car-  solve these problems, the methods of the function theory of
ried out on the basis of the finite element method. For the  a complex variable and the theory of potentials with integral






