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in the papers of the authors of present work. Results of the 
numerical-analytical variant of the boundary element meth-
od are distinguished by high accuracy and reliability.

The scientific literature typically reports solutions to 
SDS of circular arches, obtained by known methods. It 
is rather difficult, however, to estimate accuracy of the 
obtained results and their reliability. Given this, a task of 
applying BEM to the calculation of SDS of circular arches is 
relevant for the following reasons:

1. There appears a possibility to obtain accurate results 
for SDS of arches at different loads and boundary conditions 
of support, which is problematic when employing the known 
methods of structural mechanics.

2. It is necessary to make sure that BEM actually allows 
obtaining accurate results for the calculation of SDS.

3. It is extremely useful to have resolving equations for 
the boundary value problems of flat deformation of circular 
arches under various supporting conditions.

1. Introduction

Rods in the shape of an arc of a circle (circular arches) are 
widely used in construction and industrial machine-build-
ing, particularly, in crane building when designing special-
ized cranes. Their application is predetermined by advantag-
es in comparison with the structures that consist of straight 
rods, given the higher load-bearing capacity and rigidity [1]. 
In the present study, in order to calculate circular arches, 
we applied a numerical-analytical variant of the boundary 
element method. The use of this method is predetermined 
by advantages over the existing methods of structural me-
chanics. In particular, the methods of force, displacements, 
initial parameters, finite elements and others do not have 
the possibility to accurately account for the concentrated 
moment in the form of external load and exact solution to a 
problem on the planar deformation of a circular arch. These 
shortcomings are missing in the variant of BEM, developed 
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2. Literature review and problem statement

Accurate calculation of SDS of circular arches causes 
certain difficulties because one should take into account 
bending, stretching-compression, and shear deformations at 
the same time [2]. This is especially true for determining dis-
placements in the arches, to which a Vereshchagin formula is 
not applicable since the load and single curves are nonlinear, 
whereby one has to employ the Mohr’s integral, Castiglianos 
theorem, and numerical methods [3].

There are known solutions to different problems on the 
flat deformation of circular arches that consider bending 
deformations only [4]. There is also a solution derived to 
the problem on flat deformation of a circular rod taking 
into account deformations of bending and stretching-com-
pression only for the case of loading ( ) constyq qα = =  [5]. 
The absence of sufficiently accurate analytical solution to 
the problem of flat deformation of arches contributed to the 
fact that authors of a number of papers recommend replacing 
curved rods with a set of straight rods. Article [6] shows that 
the benefit of such an approach is the smaller number of alge-
braic equations to which the resolved problem is reduced. It 
should be noted, however, that the given model yields error 
not exceeding 1 % under condition that the straight rod 
tightens the arc of the curved rod less than 5°. This means 
that the ring can be represented by a regular polygon con-
sisting of 72 rods, arch in 180° ‒ by 36 rods, etc.

The arched elements of construction can also be calcu-
lated using the classical methods of structural mechanics 
(displacements, initial parameters, forces) or numerical 
methods. In the first case, classical methods do not belong 
to computer methods as they possess a complex logic and a 
small number of arithmetic operations. For this reason, they 
do not have professional packages of applied programs [7].

At present, the most common numerical method is a 
finite element method (FEM) [8]. This method corrects 
shortcomings of the classical methods, it has a relatively sim-
ple algorithm logic and a large number of arithmetic opera-
tions. The method is implemented in a variety of professional 
packages of applied programs. It should be noted, however, 
that FEM allows obtaining accurate and reliable results of 
the estimation of arches’ SDS only if there is an exact matrix 
of the rigidity of a circular arch. Regrettably, due to the 
complexity of its formation, no exact rigidity matrix of the 
flat deformation of a circular rod has been built up to now. A 
major problem for FEM is the problem of convergence of the 
obtained solution, error estimation, associated with discret-
ization of the original geometric model, artificial limit for a 
computation area, etc.

The search for alternative approaches resulted in the 
development of BEM [9]. In it, not the entire examined 
region undergoes discretization, as is the case for FEM, but 
its boundary only. BEM qualitatively outperforms FEM. It 
employs exact solution to the flat deformation of a circular 
rod with respect to bending and stretching. A new variant 
of BEM was devised [10], numerical-analytical, which has 
a number of advantages in comparison with the classical 
variants of BEM. The method implies working out a fun-
damental system of solutions (analytically) and the Green’s 
functions (also analytically) for each considered problem. In 
order to account for certain boundary conditions, or condi-
tions of contact between separate modules, a small system 
of linear algebraic equations is constructed, which must be 

solved numerically. The value of the method is predeter-
mined by several reasons. Discretization of only the bound of 
the region occupied by an object drastically reduces an order 
of the system of solving equations; there is a possibility to re-
duce dimensionality of the problem to be solved. In addition, 
as shown in paper [11], this method is strictly substantiated 
mathematically as it employs fundamental solutions to dif-
ferential equations. This means that within a framework of 
the accepted hypotheses it makes it possible to obtain exact 
values for parameters of the problem (efforts, displacements, 
strains, frequencies of native oscillations, critical forces of 
stability loss, etc.) inside the region. At the same time, the 
method possesses simplicity of the algorithm logic, good 
convergence of the solution, high stability, and insignificant 
accumulation of errors in numerical operations.

However, in terms of calculating arch structures for 
specialized cranes, there are no at present solving equations 
of boundary value problems for determining the unknown 
initial parameters of arches under existing conditions for 
bearing the boundary sections.

3. The aim and objectives of the study

The aim of present work is to identify conditions for 
accounting the concentrated moments when solving analyt-
ically a state of arch structures, as well as present a calcula-
tion of kinematic parameters of circular arches, conducting 
of which is based on the exact solution of flat deformation.

To accomplish the set aim, the following tasks have been 
considered in the study:

– to obtain solving equations of boundary value prob-
lems for determining the unknown initial parameters of 
circular arches under existing conditions for bearing the 
boundary sections;

– to develop a procedure for calculating SDS of circular 
arches;

– to perform calculation of a circular arch, taking into 
account the action of distributed and concentrated loads.

4. Development of a mathematical model

We shall represent mathematical modeling of SDS of 
circular arches in the MATLAB programming environment 
in a static statement.

4. 1. Calculation procedure and basic equations
Consider the calculation scheme of a circular arch (Fig. 1) 

with an arbitrary combination of static load.

 

Fig. 1. Calculation scheme of the circular arch
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A system of differential equations for the flat deforma-
tion of a circular rod considering the deformations of bend-
ing and stretching relative to the radial ( )ϑ α  and tangential 

( )u α
 
displacements takes the form:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 4

2 2 4

;

1 ,

IV
y

x

EAR EAR R
u u q

EI EI EI

EAR EAR R
u q

EI EI EI


ϑ α + ϑ α + α − α = α′′′ ′

  + α + ϑ α − ϑ α = − α′′ ′′′ ′  

	 (1)

where EA is the arch cross-section rigidity under stretch-
ing-compression, kN; EI is the arch cross-section rigidity at 
bending, kNm2; R is the arch axis radius, m; α is the angular 
coordinate, rad.; ( )yq α  is the radial load of the arch (along 
a normal to the axis), kN/m; ( )xq α  is the tangential load of 
the arch, kN/m. 

Solution to the Cauchy problem on the flat deformation 
of an arch can be represented in a matrix form as follows [12]:
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where ( )EIφ α  is the rotation angle 
of the arch cross-section, kNm2; 

( )M α  is the bending moment in 
a cross-section, kNm; ( )Q α  is the 
shear force in a cross-section, kN; 

( )N α  is the normal force in a 
cross-section, kN. 

Fundamental orthonormalized 
functions and terms from the radial 
load (Fig. 1) after integrating take 
the form [10, 11]:
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4. 2. Accounting for boundary conditions of bearing 
the arches 

In order to determine parameters of the arch SDS, it is 
necessary to construct and solve a boundary value problem, 
taking into account conditions for bearing the boundary 
points. In BEM, this equation takes the form:

,A X B∗ ∗⋅ = − 					      (4)

where A∗  is the matrix of boundary values of fundamental 
functions that takes into consideration boundary conditions 
of the arch; X∗  is the matrix of initial and final parameters 
of bending and stretching of the arch; B is the load matrix at 
a boundary value of variable α. 

We shall consider different conditions for bearing an arch.
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4. 2. 1. Hinged bearing
Calculation scheme of the arch with a hinged bearing is 

shown in Fig. 2.

 

Fig. 2. Hinged fastening of the arch

We shall construct matrices of initial X and final Y 
parameters of the arch, which take into account a hinged 
bearing of two boundary cross-sections
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.	 (5)

Matrix X shows that at hinged bearing, rows 1, 3, 5 
are equal to zero. Since these rows are associated with the 
columns of matrix A with the same numbers, it is necessary 
to reset to zero columns 1, 3, and 5. The zero rows of ma-
trix X can be substituted with non-zero parameters of ma-
trix Y. Such a shift should be compensated for by introduc-
ing nonzero elements to matrix A. According to the theory 
of a numerical-analytical variant of BEM, such elements will 
comprise А (2.1)=–1; А (4.3)=–1; А (6.5)=–1.

Matrix equation for a boundary value problem for the 
arch in Fig. 2 will take the form

( )
( )

( )
( )
( )
( )

( )
( )

( )
( )
( )
( )

12 14 16 11

22 13 26 21

12 36 31

11 46 41

52 54 56 51
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1 0
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   − − φ − π   
 − −   π π

=   − − − π   
   − π π
   − − π    

	
(6)

After solving equation (6), reactions of the arch will 
be equal to 0 (0);H Q=  0 (0);R N=  0 (0);M M=  ( );KH Q π=  

( ),KR N π=  while SDS in the inner points is determined from 
equation (2).

4. 2. 2. Rigid pinching and hinged bearing
By analogy, constructing matrices ,X∗  Y, we proceed 

to the equation of the right problem for this case of bearing 
(Fig. 3).

 

Fig. 3. Rigid pinching and hinged bearing of the arch

( )
( )
( )
( )
( )
( )

( )
( )

( )
( )
( )
( )

13 14 16 11

23 13 26 21

22 12 36 31

11 46 41

53 54 56 51

64 11 61

1

0
,

1 0

1 0

A A A EI B

A A A Q B

A A A M B

A A Q B

A A A N B

A A N B

   − − φ π − π
   − − − π − π   
 −    π

=   − − π   
   − − π π
   − − π    

	 (7)

After solving (7), reactions of the arch will be equal to

0 (0);H Q=  0 (0);R N=  ( );KH Q π=  ( ).KR N π=

4. 2. 3. Rigid pinching of two boundary points
Matrix equation for a boundary value problem of the 

given case of bearing takes the form (Fig. 4).

 

Fig. 4. Rigid pinching of the arch
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( )
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1

0
,
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   − − π π
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	 (8)

The arch reactions will equal

0 (0);H Q=  0 (0);R N=  0 (0);M M=  

( );KH Q π=  ( );KR N π=  ( ).kM M π=

We shall draw an example of applying BEM technology 
to calculate a state of the arch under the action of concen-
trated moments, force, and distributed load.

5. Results of determining the SDS parameters of arches

We shall consider example of determining the SDS pa-
rameters of the arch (Fig. 5) with an arbitrary loading and 
fastening. 

The results will be presented numerically (in a tabular 
form) and visually (in the form of diagrams).

 

Fig. 5. Calculation scheme of the arch

Angular coordinates for the concentrated time and con-
centrated force
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;
4M

π
α =

 

3
.

4Fα = π

Angular coordinates of the uniformly distributed load.

0;Hα =  .Kα = π

At the specified initial data, values of the boundary pa-
rameters after solving equation (7) will be equal to (Table 1)

Reactions of the arch supports will equal, respectively, 
Но=20.00 kN, Rо=200.88 kN, Мо=147.14 kNm, Нk=6.96 kN, 
Rk=210.08 kN.

The SDS parameters’ values are summarized in Table 2. 
Data in Table 2 indicate that the obtained results are accurate. 
This conclusion is justified by that the arch SDS was calculat-
ed by equations from the method of initial parameters (2), in 
which initial parameters were taken from Table 1. If the solu-

tion is exact, boundary conditions for bearing must hold at the 
right support, which is confirmed by data in Table 2.

Table 1

Value of boundary parameters of the arch in Fig. 5

No. of entry Parameter Value

1 EIφ(π), kNm2 –958.34

2 Q(π), kN –6.96

3 M(o), kNm 147.14

4 Q(o), kN –20.00

5 N(π), kN –210.08

6 N(o), kN –200.88

Diagrams of the arch SDS parameters in Cartesian coor-
dinates are shown in Fig. 6–11.

Table 2

Results of calculating the arch in a numerical form

Angular coordinate Parameters of the stressed-deformed state

Rad. Degrees EAv∙10–3, kNm2 EAφ∙10–2, kNm2 M, kNm Q, kN Eau∙10–4, kNm N, kN

0.0 0.0 0.0 0.0 147.14 –20.0 0.0 –200.88

0.09 5 0.133 1.86 119.79 –19.15 –0.033 –202.59

0.17 10 0.497 3.35 93.72 –18.16 –0.092 –204.22

0.26 15 1.038 4.48 6915 –17.02 –0.200 –205.76

0.35 20 1.703 5.28 46.24 –15.76 –0.371 –207.19

0.44 25 2.445 5.78 25.19 –14.38 –0.617 –208.50

0.52 30 3.214 6.00 6.15 –12.88 –0.943 –209.69

0.61 35 3.970 5.96 –10.74 –11.29 –1.348 –210.75

0.70 40 4.673 5.71 –25.34 –9.61 –1.831 –211.66

0.79 45 5.289 5.27 –67.55 –7.86 –2.383 –214.30

0.87 50 5.760 4.25 –77.16 –5.89 –2.993 –214.90

0.96 55 6.036 3.12 –83.98 –3.87 –3.643 –215.33

1.05 60 6.100 1.92 –87.96 –1.83 –4.310 –215.57

1.13 65 5.945 0.68 –89.07 0.24 –4.973 –215.64

1.22 70 5.570 –0.54 –87.30 2.30 –5.608 –215.53

1.31 75 4.980 –1.73 –82.67 4.34 –6.192 –214.24

1.40 80 4.189 –2.84 –75.20 6.35 –6.704 –214.78

1.48 85 3.219 –3.82 –64.9 8.31 –7.124 –214.14

1.57 90 2.095 –4.64 –52.03 10.21 –7.433 –213.33

1.66 95 0.853 –5.26 –36.50 12.03 –7.618 –212.36

1.75 100 –0.468 –5.65 –18.48 13.76 –7.668 –211.23

1.83 105 –1.824 –5.77 1.87 15.38 –7.578 –209.96

1.92 110 –3.165 –5.59 24.41 16.89 –7.345 –208.55

2.01 115 –4.435 –5.08 48.96 18.26 –6.975 –207.02

2.09 120 –5.578 –4.21 –75.35 19.50 –6.478 –205.37

2.18 125 –6.534 –2.96 103.36 20.59 –5.871 –203.62

2.27 130 –7.240 –1.32 132.79 21.53 –5.175 –201.78

2.36 135 –7.635 0.74 163.40 22.30 –4.421 –199.86

2.44 140 –7.673 2.85 139.20 –16.95 –3.645 –201.38

2.53 145 –7.383 4.63 116.14 –16.07 –2.882 –202.82

2.62 150 –6.813 6.10 94.39 –15.06 –2.165 –204.18

2.71 155 –6.008 7.28 74.13 –1394 –1.520 –205.44

2.79 160 –2.016 8.18 55.50 –12.72 –0.970 –206.61

2.88 165 –3.879 8.83 38.66 –11.40 –0.532 –207.66

2.97 170 –2.638 9.27 23.72 –9.99 –0.219 –208.59

3.05 175 –1.334 9.51 10.80 –8.50 –0.040 –209.40

3.14 180 0.0 9.58 0.0 –6.96 0.0 –210.08
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Fig. 6. Diagram of transverse forces Q, kN

 
Fig. 7. Diagram of bending moments M, kNm

 

Fig. 8. Diagram of angles of rotation EIϕ, kNm2

 
Fig. 9. Diagram of deflection EIυ, kNm3

 
Fig. 10. Diagram of normal forces N, kN

 
Fig. 11. Diagram of tangential displacements EAu, kNm

5. Discussion of results of mathematical modeling of  
the stressed-deformed state of circular arches

It follows from Table 2 and diagrams in Fig. 6–11 that 
SDS of the arch obtained using a calculation technique is 
accurate. The calculation employed initial parameters of 
the arch from Table 1. Boundary conditions for the hinged 
bearing must be fulfilled in the final cross-section, which 
is confirmed by data in Table 2 and diagrams in Fig. 6–11. 
This outcome is explained by the fact that we applied a 
technology for solving boundary value problems for arches 
using a numerical-analytical variant of BEM and exact 
solution to the problem on flat deformation of a circular 
rod considering the deformations of bending and stretch-
ing-compression. This indicates a large advantage of the 
proposed procedure over the methods of forces, displace-
ments, and FEM. Typically, a circular rod is replaced with 
a polygonal model of rectilinear rods; the accuracy of such 
a model does not exceed 1 % if a straight rod tightens the 
arc of 5 degrees. For the considered problem, it is necessary 
to calculate a system of 36 rods. Should FEM be used, it 
would require solving a system of 105 linear algebraic equa-
tions, while in the case of BEM, it will be needed to solve a 
system of 6 equations only. To calculate the ring applying 
FEM, one has to solve 213 equations, when employing 
BEM ‒ only 6 equations again. An even bigger difference 
in the number of equations will emerge when estimating 
the arched systems.

As an improvement of the proposed approach to the 
calculation of arch structures, it is possible to point out the 
applicability of BEM to solving boundary value problems for 
arches with variable parameters (for instance, rigidity and 
radius of curvature). Such arches have differential equations 
with variable coefficients. In this case, a body of the arch is 
split into n parts; all parameters of the arch are considered 
constant within the limits of every part. That is why the 
equation of the stressed-deformed state will hold in each of 
the n parts (2). Next, a BEM technique may be applied to 
the system of n parts. The practice of solving such problems 
demonstrates that at n≥30, results of BEM almost coincide 
with the known precise solutions (error is less than 1 %).

6. Conclusions 

1. We obtained solving equations of the boundary value 
problems for determining the unknown initial parameters 
of circular arches under existing conditions for bearing the 
boundary cross-sections. They represent systems of linear 
algebraic equations that take into account different bound-



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/7 ( 89 ) 2017

10

References 

1.	 De Backer, H. Buckling design of steel tied-arch bridges [Text] / H. De Backer, A. Outtier, P. Van Bogaert // Journal of 

Constructional Steel Research. – 2014. – Vol. 103. – P. 159–167. doi: 10.1016/j.jcsr.2014.09.004 

2.	 Louise, C. N. Performance of lightweight thin-walled steel sections: theoretical and mathematical considerations [Text] / 

C. N. Louise, A. M. Md Othuman, M. Ramli // Advances in Applied Science Research. – 2012. – Vol. 3, Issue 5. – P. 2847–2859.

3.	 Pi, Y.-L. In-plane stability of preloaded shallow arches against dynamic snap-through accounting for rotational end restraints 

[Text]  / Y.-L. Pi, M. A. Bradford // Engineering Structures. – 2013. – Vol. 56. – P. 1496–1510. doi: 10.1016/j.engstruct.2013.07.020 

4.	 Becque, J. The direct strength method for stainless steel compression members [Text] / J. Becque, M. Lecce, K. J. R. Rasmussen // 

Journal of Constructional Steel Research. – 2008. – Vol. 64, Issue 11. – P. 1231–1238. doi: 10.1016/j.jcsr.2008.07.007 

5.	 Andreew, V. I. Energy Method in the Calculation Stability of Compressed Polymer Rods Considering Creep [Text] / V. I. Andreew, 

A. S. Chepurnenko, B. M. Yazyev // Advanced Materials Research. – 2014. – Vol. 1004-1005. – P. 257–260. doi: 10.4028/www.

scientific.net/amr.1004-1005.257 

6.	 Artyukhin, Yu. P. Approximate analytical method for studying deformations of spatial curvilinear bars [Text] / Yu. P. Artyukhin // 

Uchenye zapiski Kazanskogo Universiteta. Physics and mathematics. – 2012. – Vol. 154. – P. 97–111.

7.	 Qiu, W.-L. Stability Analysis of Special-Shape Arch Bridge [Text] / W.-L. Qiu, C.-S. Kao, C.-H. Kou, J.-L. Tsai, G. Yang // Tamkang 

Journal of Science and Engineering. – 2010. – Vol. 13, Issue 4. – P. 365–373.

8.	 Pettit, J. R. Improved detection of rough defects for ultrasonic nondestructive evaluation inspections based on finite element 

modeling of elastic wave scattering [Text] / J. R. Pettit, A. E. Walker, M. J. S. Lowe // IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control. – 2015. – Vol. 62, Issue 10. – P. 1797–1808. doi: 10.1109/tuffc.2015.007140 

9.	 Langer, U. Fast Boundary Element Methods in Engineering and Industrial Applications [Text] / U. Langer, M. Schanz, 

O.  Steinbach, W. L. Wendland. – Springer, 2012. doi: 10.1007/978-3-642-25670-7 

10.	 Orobej, V. Boundary element method in problem of plate elements bending of engineering structures [Text] / V. Orobej, 

L. Kolomiets, A. Lymarenko // Metallurgical and Mining Industry. – 2015. – Issue 4. – Р. 295–302. 

11.	 Kolomiets, L. Method of boundary element in problems of stability of plane bending beams of rectangular cross section. Structures 

[Text] / L. Kolomiets, V. Orobey, A. Lymarenko // Metallurgical and Mining Industry. – 2016. – Issue 3. – P. 59–65.

12.	 Gulyar, O. I. Stiffness matrix and vector nodal reaction of circular finite element numerical integration [Text] / O. I. Gulyar, 

S. O. Piskunov, O. O. Shkril, K. S. Romantsova // Resistance of Materials and Theory of Buildings. – 2015. – Issue 95. – P. 81–89.

ary conditions for bearing and were obtained in accordance 
with the theory of BEM.

2. A procedure for calculating SDS of circular arches 
was devised. Its special feature is in the fact that one applies 
an exact solution to the problem on planar deformation of 
a circular rod considering the deformations of bending and 
stretching-compression. For this reason, it makes it possible, 
in contrast to the existing methods (forces, displacements, 
FEM, initial settings), to obtain exact solutions of SDS at a 
minimum number of solving equations.

3. We performed calculation of a circular arch, taking into 
account the action of distributed and concentrated loads. The 
calculation showed that using BEM can help obtain exact solu-
tions to the problems of flat deformation of arches at a minimal 
number of solving equations. It is also demonstrated that BEM 
makes it relatively simple to take into account the concentrated 
moments in the form of an external load and to have a complete 
solution of SDS in the form of power and kinematic parameters. 
These issues cause difficulties in the existing methods and they 
are typically not reflected in the relevant publications.




