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1. Introduction modeling of unilateral constraints, various physical models

are used. The research on the stress-strain state of the model

The phenomenon of separation of interlayer bonds is  and the state of the contact zone (presence of a friction zone

observed in the operation of highways, airfield pavements, and a separation zone) can be defined as the solution of a
foundations of high-rise buildings with supports or isolation  direct problem.

joints. The contact between the building sole and the base Studies of contact problems of mechanics of deformable
often leads to emergency situations. Such phenomena are  media are conducted in two directions. Within the frame-
modeled by contact problems with unilateral constraints. work of the first direction, problems of conjugation of media

A detailed research of the fundamental laws of contact ~ with sharply differing mechanical properties (layer-inhomo-
interaction requires a comprehensive consideration of the  geneous elastic and elastoplastic bodies, conjugation of sol-
geometric features and imperfections of the conjugate sur- ids to liquid or gaseous media, etc.) are considered. In such
faces, physical and mechanical phenomena in the areas of  problems, the boundaries of the contact area are, as a rule,
their direct attachment (friction, slippage, adhesion, etc.).  specified and not changed in the course of deformation. To
The numerical solution of contact problems is usually car-  solve these problems, the methods of the function theory of
ried out on the basis of the finite element method. For the  a complex variable and the theory of potentials with integral




transforms and paired integral equations, paired trigono-
metric series, integral and integral-differential equations
and systems of equations and so forth are used. The second
direction of the study of contact problems of mechanics
includes contact problems with the unknown in advance
boundaries of the contact area. When modeling such con-
tact problems, the conditions imposed on displacements and
forces in the contact zone are often presented as inequalities.
Problems of this kind are called problems with unilateral
constraints. They are characterized by significant changes in
system properties when the state of the contact changes and
are essentially nonlinear even for linearly elastic media. The
configuration of contact or separation zones (and also slip-
page-adhesion regions when friction is taken into account)
is unknown in advance and shall be determined only in the
process of problem solving.

Proceeding from this, the research of the problem shall
include two main problems — construction of a physical mod-
el of unilateral constraint taking into account friction and
separation, its algorithmic implementation, and determina-
tion of the parameters of exposure needed to prevent separa-
tion. Determination of this exposure will allow ensuring the
reliability of the corresponding structures using the results
obtained, which determines the relevance of the problem.
The peculiarity of the statement and solution methodology
of the problem, along with the possibilities of wide practical
application, can stimulate further development of this direc-
tion of solid mechanics.

2. Literature review and problem statement

The development of a physical model is the subject of the
research [1-5]. In [1], two types of contact zone models are
considered — bilinear and exponential, which describe the
damaged bonds leading to stratification (separation). Here,
the model parameters are investigated from the point of view
of the possibility of separation. The authors of [2] proposed a
contact model, which is implemented in two stages — in the
first, layers press against each other, and in the second they
interact by means of tangential stresses, responsible for con-
tact with friction. The contact zone with separation in [3] is
modeled by varying-rigidity rods, and the separation zone —
directly by the finite element method. In [4], a synergy
approach is used that allows modeling on the basis of finite
elements in order to study wear mechanisms for two groups
of doped carbide inserts (coated and uncoated). The au-
thors of [5] consider a quasistatic and velocity-independent
evolution in small stresses and the concept of the so-called
energy solution. This concept is applied to cohesive contact
problems and stratification in various regimes.

The algorithms used for numerical analysis are very di-
verse. Thus, in [6], in the study of a constructively nonlinear
problem with unilateral constraints and friction with an
unknown contact zone, an iterative approach was applied
to model the bonds using special contact elements in a thin
friction layer in combination with a finite element model of a
plane problem. In [7], on the basis of the domain decomposi-
tion method, contact interaction was studied by the method
of penalty functions, which are the conditions for kinemat-
ic admissibility of displacements. In the case when large
deformations are observed [8, 9], a hierarchical algorithm
for constructing a binary tree for the current state of the
contact surface geometry is proposed. Two procedures are

used — global, defining all pairs of candidates, and then local,
defining elements with a weakened connection. The paper
[10] is based on the application of finite element software to
simulate the behavior of laminated composite plates at a low
impact speed, and it examines exposure, post-exposure and
destruction of these structures.

Thus, the presented sources consider only the direct
problem — determination of the stress-strain state of the
two-layered system and evaluation of possible development
of the separation zone. Meanwhile, with combinations of
loads and geometric parameters, it is necessary to ensure the
interaction of layers, which can be achieved by additional
mechanical exposure, rigid inclusions, etc.

3. The aim and objectives of the study

In the paper, the statement of the problem of determining
additional exposure with the aim of eliminating the sepa-
ration zone (identification of the parameters of its location
and magnitude) according to the known characteristics in
the contact zone obtained from the solution of the direct
problem is defined as the statement of the inverse problem.

The aim of the paper is to investigate the possibility of
using the inverse problem method to identify the magnitude
and location of exposure on the upper layer of the two-lay-
ered base that is under the action of a normally distributed
load and its own weight.

To achieve this aim, the following objectives were set:

— to perform parameterization of the system under study
and construct its finite element model;

— to determine the stress-strain state of the system under
consideration on the basis of the finite element method and
the algorithm allowing to take into account the contact zone
variability and the presence of friction at fixed values of
exposure parameters;

—to determine the values and location of exposure,
ensuring the presence of complete contact between the two
infinite layers in question by the inverse problem method;

— to investigate the convergence of the process of elim-
inating the model deformation depending on the friction
force, height and rigidity of the upper layer.

4. A mathematical model of the inverse problem

We consider the problem of determining the value and
location of exposure p (Fig. 1), providing a complete contact
of the two infinite layers considered in the regions

o xk xt = {xf”,xék)}eRz,
/E:
o< <000 < xl" <y —h, <xP <0,

which are under the action of normal pressure g(x,), 0<
<q(x,) < g*, where g* is the limit load value, % is the layer
number.

The resolving system of equations of the plane elasticity
theory in the regions Q, given h,/h,>>1 has the form

(A, +1, ) graddiva’ +p,Au* +Q =0, )

T
where u* = {uf,uﬁ} is the displacement vector of the k-th
layer,
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A, W, are the Lame coefficients, E,, v, is the elastic modulus
and Poisson’s ratio (k=1,2) for the upper layer (k=1) and the
base (k=2), respectively; Q is the load including its own weight.
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Fig. 1. Loading diagram of the two-layered structure
We denote the sections of the boundary B,,, (x,=h,) as
B,={x, -(I+b)<x,<—(I-b),|-b<x,<I+b},

B, ={x1, —-a<x, Sa}.

Then it is necessary that

X, € Bq,

x,€B,

x B, x, B,

—co<x, <00, (2)

where (Sf.f) (u),
displacements.

At the interface between the upper layer and the base
(x,=0), in the contact zone B, there are the boundary

conditions

i, 7=1,2 are the stresses expressed through

oll=0%, ul?<0 or 6¥<0, ul.6¥ =0, k=12, (3)

It is assumed that there are boundaries B,,, B, By, cor-
responding to the adhesion, slippage and separation zone,
respectively, such that B,uBgUB,, =B, B,nByNB;, =O.

ep con? Sep =

In the adhesion zone x,eB,, the conditions are satisfied
u1(1) :ufz), ug) _ uf),

o] <Ko%, 4

where K is the coefficient of friction.
In the slippage zone for all x,eBj

) (x1 + uf”) =u) (x1 +ul? )
o -K|o%|20, = u. (5)

In the separation zone for all x,€Bj,,

o} =0, of) =0. (6)

Here, csgf), ul(k), i, j=1,2 are the components of the stress
and displacement tensor in the k-th layer, k=1, 2.

Further, it is assumed that for the loading values 0<¢<q,,,
the layers are in contact through complete adhesion or
slippage, separation zones appear at a load value g=¢,, with
further development of these zones g>¢,, (Fig. 2).
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Fig. 2. Dependence of the relative separation zone on load at
n=0.2: 1 — K=0, x=0.01; 2 — K=0.3, x=0.01;
3— K=0, x=2; 4 — K=0.3, y=2

To determine the value and location of exposure p, en-
suring the absence of separation zones z,<x,<z,, —z,<v,<-z,,
x,=0, where 6,,=0, we formulate the problem of identifica-
tion of the parameters V={/, b, p}" as inverse. Then the value
of the vector Vis defined as

V=argmin J(V), @
where
J=] [(ag)(v)—a;”(tf))2 —sz]dx1, ®)

£<<1is a small value, V is the domain of the vector V, zlgi) is
the value of the function u{(x,,0) forafixed vector Von the
contact line B,,,.

5. Method and algorithms for solving
the identification problem

Let us formulate the method for solving a direct prob-
lem — determination of the stress-strain state of the system
under consideration at a fixed vector V[11].

To describe unknown areas of the boundaries, we intro-
duce the characteristic functions for the points of the bound-

aries B, By, By, in the form

. (x):{i at |0,,|2Klo,,|, x € By,

0 at |o,,|<K]|o,,|, xeB,;

0 at 0, <0,x¢B,,, )
1at 0,,20,xeB

T (x ) = {
Sep*

Taking into account the relation (9), a variational state-

ment of the boundary value problem (1)—(6) will have the form

W:argn}inG(u,u*), 10)
weWw

under the preliminary fulfillment of the condition (4), where

u={uyt, k=1,2, W={u, u'}",
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g, =2 i,j, [, m=1,2, u,, are the variable values of displace-
X

ij
ments én the contact line, GE.;‘), u® are the values of stresses

and displacements from the region Q, on its boundary.

To construct the solution of the problem (10), the tran-
sition to a discrete model is performed using finite element
approximation is carried out. To this end, a grid with nodes
at the points with coordinates X, s=1,N, where X ={x,,, x,}
is introduced in the region Q,, then the unknown functions
u (x), 6, (x), u* (x) are presented as vectors whose components
are the Values of the problem functions at the grid nodes.

u={u} o, ={o, ) w'={ufw ={uy}ue={us.}.
”1 :{u:k}T’u;k :{u;es}vY: {Yk}T? Yk:{Yks}T7

i,j=12 s=1,N, k=12.

(12)

The nodes lying on the boundary B,,, are numbered as
P={p,, Py, Do}, the number M is chosen by a numerical ex-
periment. The elements of the vector P can form the vectors

P ={p{\p}..p}},
Psz ={p151,p25[,...,p5[},
P ={p™ pi,..p"},

ntntrn=M, (13)
which define the grid nodes corresponding to adhesion, slip-
page and separation zones by calculating the values of y,in
accordance with the conditions (9).

After substituting the finite element approximation into
the functional (11), integrating and performing the proce-
dure (10), we obtain a resolving system of the N-th order
linear equations

Au=R, (14)
egulvalent to the condition 9G /au i=1,2, s=1N,
G’ are the values of the functional G after substltutlng the
finite element approximation and performing the integration
procedure, A is the stiffness matrix depending on the values
of the vectors v, R is the vector depending on u*.

When constructing the stiffness matrix, it is taken into
account that

o=Du,

15)
where
o= {Wl] 1,2, s= 1N}

D is the functional matrix of the coefficients obtained from
physical and geometric relationships.

To fulfill the minimum condition G by uu, s=
gradient descent method is used

1,N, the

(u)e], (u)dxdx, + Juz qdx, + _[uz pdx, + J “z pdxl

J{y,Kouc)( Ju “‘)+Yz[ ) (u )(u§k>—u2k)+cf§)( )(ufk)_ul*k)] }}dBm; an

. (16)

—(1-b)
—(I+b)

o=h Here

T
ol ={o; el ), s=1N,
where 7 is the iteration number.

The coefficient o™ is determined from the condition

o =argminG (u*("’i)) a7
using the half division method.

The value of the function vy, is determined in accordance
with the condition (9). The solution of the problem is carried
out using algorithm 1.

Algorithm 1

0.To set_t=1, n=1, ©,,, =g’ for erB (72% p° for
vxeB, r=1m, 6,=0 for szeBmp, w!” )—0 Y =0, k-
=1,2, ¢ is a small number o, ¢* p_.., Ag=q*/n* Ap=

=p../n* n* is the number of steps, ¢"=Aq, pO=Ap.

1. To construct a grid with the nodes X, s=1,N.

2. To form a vector of unknowns u, taking into account
the conditions u{=u®, )=u for the nodes X, such
that XeB,.

3. To form a system of equations (14).

4. To determine the vector 19, ’) G(" 9 by the equations (15).

5.To determine the vector y\"), XeB,, . k=1, 2 in ac-
cordance w1th the conditions (9).

6. If Ely )#0, then go on, otherwise proceed to step 12.

7. To determine u "4 by the formula (16).

8. To determine the numbers of the nodes Psere | psien
P'@0 based on the values of the vector Y\,

9. To create the nodes PSP’J(”), 1 1, 2, with the corre—
sponding displacements ugi)( # u( Kot and the nodes P
i=1, 2, with the corresponding dlsplacements uf ) uf o ),
to form a vector of unknowns w.

10. To determine o™ from the condition (17), t=t+1.

1. If "uls(”) —u"Y<e, then go on, otherwise proceed
to step 3.

12. gW=¢"V+Aq, pO=p"V+Ap, n=n+1.

13. n<n* go to step 3, otherwise the end.

The inverse problem will be solved by the recession vector
method. Let us denote the nodes lying on the boundary B, as

cont?

C= {xﬂ,xﬂ,...,x/_k}
and introduce the vector F = {C’,p}, where
C= {xm,ka..‘,xkp}
is the vector of coordinate values of the points of load ap-

plication.
The functional J after sampling takes the form

J =@ (F)~a (F))" (s (F)~as”(F))~¢’, (18)
and the condition (7) is written in the form
F=argmin J(F). 19)

FeF

Let W be a discrete point space, F — a set of admissible
solutions, F e W, and W —a metric space with a metric
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where [, f,; are the coordinates of the points F,, F, in the
space W.

Let F” be some admissible solution of the inverse prob-
lem (7). We define the vicinity W of the point F’ with the
radius 7, as a set of possible solutions F,, k=1,12, obtained
by addition (removal) of the elements of the vector C to the
left and right from the points s=x,,, s=x,, and change of the
corresponding values of p.

The recession vector of the function J in the vicinity W
of an arbitrary point F’ is defined as a vector with components

Ay=JE)=JE),

where F’, k=112, are possible solutions of the inverse
problem that belong to the vicinity W, and J(F,), J(F’) are
calculated by solving problems using algorithm 1. Obvious-
ly, for all A>0, in the vicinity of the point F’, this point
is a local minimum of the function J(F). If some A,<0, and
A, =minA,, then the point F,” is a point of the speedy re-
cession of the function J(F).

The algorithm that implements the recession method has
the form:

Algorithm 2

1. To select the starting point F,, form the points F,,
k=1,12.

2. To determine the components of the recession vector
for the point F, in the directions F, by calculating J(F)
using algorithm 1. If all A>0, k=112, then J(F,)=min/(F).

3.1f3A,<0 for £=1,12, then choose F,., corresponding to
minA,, which becomes the center of the new vicinity F,=F,.

4. Go to point 2. The process continues as long as 3A, <0,
k=1,12.

6. Numerical analysis of the identification problem

With the help of the proposed algorithm, the analysis
of behavior of the two-layered system having the follow-
ing characteristics is performed: for the first option, the
specific weight p=2.76-10" (kg/cm?), Young’s modulus
E,=7.610" (kg/cm?) and Poisson’s ratio v,=0.4, for the
lower layer — E,=3.8-10% (kg/cm?), v,=0.35, for the sec-
ond option — p=2.72-10 (kg/cm?), E,=7.6-10° (kg/cm?),
v,=0.4, £,=7.6-10° (kg /cm?), v,=0.2.

The dimensions of the modeled semi-infinite base were
chosen from the condition of the solution damping in case
of complete adhesion (£,=50 c¢cm, L=150 cm, a=8 cm — the
zone of distributed surface load ¢). The solutions of the prob-
lem (10) were carried out with the help of the Cosmos appli-
cation package with automatic preliminary “merging” and
“disjoining” of the nodes corresponding to adhesion, slippage
and separation zones. The plane finite element was used.

The solutions were carried out sequentially by fragment-
ing the final element size to obtain the specified accuracy.
To describe the solution of the problem, we introduced
dimensionless designations of the parameters — x=E,/E,,
n=h,/h,, g=q/q*, where ¢*=40 (kg/cm) is the maximum
load acting on the upper boundary of the layer, and b*=b/a,
I*=l/a, p*=p/q* are the values of the vector F at which the
function J(F) reaches its minimum.

Fig. 2 shows the values of the relative separation zone at
the corresponding load ¢, depending on the coefficient of
friction K and the ratio of Young’s moduli y.

Fig. 3, 4 (curve 1) show the values of the relative opening
of contact surfaces, from which it follows that the size of the
separation zone depends on the parameters under study only
in the zone of large loads. At the same time, opening degree
changes nonlinearly not only with load variations, but also
depending on the relative thickness of the layers and their
modules over the entire range of loads. Fig.5 illustrates
the stress values depending on the parameters under study
at fixed ¢g=0.25. Note that the effect of friction increases
substantially with increasing relative thickness of the layers.
Fig. 3, 4 (curves 2—5) present the results of the iterative pro-
cess of the recession vector method.
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Fig. 3. Relative displacement of the layer and base points at
the interface given y=2: a — ¢ =0.075, n=0.2; b— g =0.25,
Nn=0.2, c— ¢ =0.525 n=0.1, where 1 — K=0, p=0;

2 — K=0.3, p=0; 3 — K=0, p,, &, by; 4 — K=0.3, py, &, by;
5— p*, I%, b*

The results of solving the identification problem are
shown in Table 1. In the solution of the problem, the initial
approximations are chosen: p,=0.05q, b,=a/4, [,=5a; 10a
depending on ¢ and n.

From the above data (Table 1), it can be seen that the pa-
rameters of additional exposure p*, [*, b* essentially depend
on the loading level, geometric and physical properties of the



system. Note that taking friction into account reduces the
need for additional exposure.

Table 1
Dependence of identification parameters on
system parameters
q K| x | n p* * b* min_J(F)
0.075 |0.0| 20| 02| 0.03 [7.25| 1.75 | 9.13E-11
0.075 10.3] 2.0 | 0.2 10.0225|7.75| 0.5 1.56E-12
025 0.0 20| 0.2 0125 |825]| 2.0 5.33E-09
025 [0.3| 2.0 | 0.2 0.1 9.0 | 1.5 1.02E-10
0.25 [0.0/0.01| 0.1 0.1 |[3.25 1 1.95E-08
0.25 [0.3]0.01| 0.1 [0.0875]3.75| 0.25 | 1.21E-09
0.25 |0.0/0.01]| 0.2 | 0.025 |3.25| 0.75 | 4.23E-09
0.25 [0.3/0.01| 0.2 [0.0188] 3.5 | 0.25 | 1.14E-10
0.525 |0.0| 2.0 | 0.1 |0.0525|5.25| 1.75 | 9.55E-08
0.525 103] 20| 01| 005 [575| 1.5 2.54E-09
1.0 [0.0[0.01| 0.2 0.1 35| 1.0 3.02E-08
1.0 103(0.01] 0.2 ] 0.075 | 3.75| 0.5 1.15E-09
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Fig. 4. Relative displacement of the layer and base points at the
interface given ¥=0.01: a— g =0.25, Nn=0.2; b— g =1, n=0.2;
c— g =0.25, n=0.1, where 1 — K=0, p=0; 2 — K=0.3,
p=0; 3 — K=0, py, &, by; 4 — K=0.3, p,, h, by; 5 — p*, I*, b*
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Fig. 5. Dependence of relative stresses on load given g=0.25:
a — normal; b — tangential: 1 — given K=0, y=2, n=0.2;

2 — given K=0.3, y=2, n=0.2; 3 — given K=0, y=0.01,
Nn=0.2; 4 — given K=0.3, y=0.01, n=0.2; 5 — given K=0,
r=2,n=0.1; 6 — given K=0.3, y=2, n=0.1; 7 — given K=0,
¥=0.01,1=0.1; 8 — given K=0.3, x=0.01, n=0.1

7. Discussion of the results of solving
the identification problem

The computational experiments showed that for a cer-
tain ratio of the values of layer thickness and the values of
actual loads, the deformation is possible in the presence of
slippage, normal contact and separation zones. It can be
noted that the existence of the specified behavior depends
on system parameters and can be found in a sequential calcu-
lation with a change in the load value from zero to the limit
value. The analysis of Fig. 5 shows that stress values depend
significantly on the type of model (considering the presence
of friction, the height of the upper layer and the layer stiff-
ness) and may differ several times in the case of both more
rigid and less rigid upper layer.

When determining the effectiveness of the method
for solving the problem of identification of the magnitude
and zone of exposure on the upper layer of the two-layered
structure, as follows from the results obtained (Table 1),
the significant influence of system parameters is natural.
In the presence of friction, relative displacements of the
layer and base points at the interface decrease approxi-
mately two-fold. Obviously, this mechanism of influence
leads to the following results of solving the problem of
eliminating the defect obtained: a decrease in the param-
eter b* and an increase in the parameter [*. It should be
noted that with a thinner upper layer, a decrease in the
parameters of the identification problem /* and b* is ob-
served both for relatively more rigid and relatively softer
coatings. In this case, the minimum of the function J(F) is
reached at a value of the parameter p not exceeding 10 %
of the load q.



The results obtained allow us to conclude that the
problem of identification of the location and magnitude of
the layer pressing to prevent its separation can be solved by
the inverse problem method in combination with the finite
element method and the recession method. The pressing
zone is separated from the loading zone, the parameters of
the zone being dependent on the properties of the layers,
the height of the upper layer, the loading magnitude and the
coefficient of friction.

The main advantage of the proposed method is its algo-
rithmic nature, which determines the possibility of creating
a cost-effective integrated algorithm. This algorithm allows
solving practical problems of designing two-layered systems
with unilateral contacts.

8. Conclusions

1. Parameterization of the model of the system under
consideration has allowed developing an algorithm that im-
plements the conditions of contact or separation, as well as the
presence of friction. Its feature is the combination of the finite

element method and the method of characteristic functions,
determined on the basis of the values of variational inequalities.

2. The stress-strain state of the system is studied at
various values of the model parameters, the dependence of
the presence and size of the separation zone on them is de-
termined. It is a function of the kind of model (considering
the presence of friction, the height of the top layer and the
stiffness of the layers), its values may differ several times in
case of both more rigid and less rigid upper layer.

3.To determine the value and location of exposure,
ensuring a complete contact of the layers, the problem is
formulated as inverse in a variational statement and the al-
gorithm of the recession vector method is applied to solve it.
It is found that the convergence of the identification process
by the recession vector method depends on the loading mag-
nitude and the presence of friction.

4. The influence of physical and geometric properties of
the system on the parameters of additional exposure, ensur-
ing the absence of a separation zone was investigated. It is
shown that taking friction into account has little effect on
exposure parameters, which is determined by the geometric
parameters and the level of the main loading.
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