
Information and controlling systems

67

 V. Shkarupylo, S. Skrupsky, A. Oliinyk, T. Kolpakova, 2017

1. Introduction

Nowadays the current state of global networking is on
a verge of its drastic refinement. The questions of networks
management convenience, control, monitoring, reconfigur-
ing and scaling are topical here. The answer can be in mod-
ern approaches and concepts usage. Possible solution can be
found in Software Defined Networking (SDN) principles
following. There are some of them: differentiation between
control and data planes, lightweight switches utilization,
“controller” concept adoption – to coordinate switches in a
centralized manner [1].

The SDN abbreviation will also be associated with Soft-
ware Defined Network itself.

One of the main goals of SDN technology adoption is to
foster the existing opportunities to effectively utilize avail-
able network resources in order to operatively meet the ad-

hoc requirements of certain business-process (processes). To
do that properly, the significant work yet has to be done. A
plethora of different approaches and techniques have already
been proposed to date though, e. g., to divert important traf-
fic on a backup path to prevent packets loss and reduce jitter
[2]. Appropriate solutions can be generalized as follows: it
can be painful to get on with, the majority of solutions are
aimed at emulation. This is not always acceptable in terms of
corresponding time costs.

The development and deployment of systems on a basis of
SDN principles is a non-trivial task, because of technology
novelty and complexity. The validation of resulting solutions
can be conducted by way of simulation or by way of testing.
The simulation herein is a significantly less resource-inten-
sive process, especially in the context of iterative develop-
ment [3]. That’s why the creation of an approach to such
systems simulation is a topical task.

13.	 Shevchuk, V. P. Metrologiya intellektual’nyh izmeritel’nyh sistem [Text]: monografiya / V. P. Shevchuk, V. I. Kaplya, A. P. Zhelto-

nogov, D. N. Lyasin. – Volgograd, 2005. – 210 p.

14.	 Cherepanska, I. Yu. Planuvannia, modeliuvannia ta veryfikatsiya protsesiv u hnuchkykh vyrobnychykh systemakh. Praktykum

[Text] / I. Yu. Cherepanska, V. A. Kyryllovych, A. Yu. Sazonov, B. B. Samotokin. – Zhytomyr: ZhDTU, 2015. – 285 p.

15.	 Kolker, Ya. D. Matematicheskiy analiz tochnosti mekhanicheskoy obrabotki detaley [Text] / Ya. D. Kolker. – Kyiv: Tekhnika,

1976. – 200 p.

16.	 Tomashevs’kiy, V. M. Modelyuvannya sistem [Text] / V. M. Tomashevs’kiy. – Kyiv: Vidavnicha grupa BHV, 2005. – 352 p.

DEVELOPMENT OF
STRATIFIED APPROACH

TO SOFTWARE
DEFINED NETWORKS

SIMULATION
V . S h k a r u p y l o

PhD, Associate Professor*
E-mail: shkarupylo.vadym@gmail.com

S . S k r u p s k y
PhD, Associate Professor*

E-mail: sskrupsky@gmail.com
A . O l i i n y k

PhD, Associate Professor**
E-mail: olejnikaa@gmail.com

T . K o l p a k o v a
PhD, Senior Lecturer**

E-mail: t.o.kolpakova@gmail.com
*Department of

Computer Systems and Networks***
Department of Software Tools*

***Zaporizhzhya National Technical University
Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

Запропоновано стратифікований підхід до
імітаційного моделювання програмно-конфі-
гурованих мереж. Запропоновано імітаційні
моделі мережі, активних і пасивних компо-
нентів – контролера, комутатора, хоста та
комунікаційних каналів. Придатність підхо-
ду до цільового використання підтверджено
шляхом співставлення одержаних результа-
тів імітаційного моделювання із результата-
ми емуляції мережі у середовищі Mininet

Ключові слова: програмно-конфігурована
мережа, імітаційне моделювання, дискрет-
но-подійна специфікація системи, великі дані

Предложен стратифицированный подход к
имитационному моделированию программно-
конфигурируемых сетей. Предложены ими-
тационные модели сети, активных и пассив-
ных компонентов – контроллера, коммута-
тора, хоста и коммуникационных каналов.
Пригодность подхода к целевому использо-
ванию подтверждена путем сопоставления
полученных результатов имитационного мо-
делирования с результатами эмулирования
сети в среде Mininet

Ключевые слова: программно-конфигури-
руемая сеть, имитационное моделирование,
дискретно-событийная спецификация систе-
мы, большие данные

UDC 004.75 : 004.94
DOI: 10.15587/1729-4061.2017.110142

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (89) 2017

68

2. Literature review and problem statement

SDN technology is tightly bound with other ones, e. g.,
Cloud Computing [4], Neural Networks [5–7], Big Data
[8], Artificial Intelligence [9], Internet of Things [10]. For
instance, the synergy of SDN and Neural Networks technol-
ogies can be expedient in the context of parallel computing
systems’ resources allocation [11, 12]. Moreover, SDN is
considered as a solution for Wireless Sensor Networks chal-
lenges [13]. The opportunities for SDN technology integra-
tion with existing 4G/5G mobile networks have also been
discussed [14].

Different approaches to SDN simulation and emulation/
prototyping are aimed at different aspects. Let us previously
try to cover comparably well-known solutions.

The Mininet emulator is considered to be one of the
most accessible platforms for SDN experimentations [15].
The background for that – easiness to get started with and
use. The significant drawback – impossibility to conduct
simulation (model time can’t outpace the real time). Net-
work creation and testing are time-consuming. Time costs
grow exponentially with respect to hosts number growth
(tree-like topology) [16]. Nevertheless, Mininet frequently
appears in scientific publications as an exemplar to compete
with and to validate own solutions [15]. To check the pro-
posed approach, the same way of acting will be utilized. For
instance, the CloudSimSDN framework is aimed directly at
data centers virtualization scenarios [17]. The main accent
here is put on cost-effectiveness and scalability aspects, with
cloud computing scenarios under consideration. To validate
the framework, the Mininet has been used as an exemplar.

It should also be noted that Mininet is a Linux-based
solution, and can be installed as a virtual machine or as an
installation for Linux platform. Not to mention that Win-
dows platforms are significantly more widespread [18].

A good alternative to Mininet in terms of performance
and scalability looks to be an EstiNet [19]. More in-depth
comparison, encompassing also the ns-3 emulator, has been
conducted in [20]. The mentioned ns-3 emulator can be
considered a complementation to Mininet, or vice versa. A
similar approach has been utilized to develop an OpenNet
emulator, which combines the advantages of both mentioned
solutions – the compatibility of Mininet and wireless net-
working support of ns-3 [21].

In an attempt to blur the boundaries between simula-
tion and deployment, the framework on a basis of ns-3 has
been proposed to allow running the controller software
within the simulation environment [22]. With an accent
on rapid standards refinement, an attempt has also been
made to adopt the support of relatively novel OpenFlow 1.3
standard features, e. g., the support of multiple auxiliary
TCP/UDP connections (to decrease jittering, packet loss),
in a simulation environment within the OFSWITCH13
framework [23].

To generalize, it should be noted that the main trend of
the reviewed approaches can be characterized as an attempt
to combine both the simulation and emulation aspects
within the proposed solutions’ feature sets. This peculiarity
inevitably implies certain drawbacks, e. g. the complication
of these solutions practical usage, combined with overheads,
stipulated by the necessity to accomplish a bunch of required
preliminary steps, e. g., install and configure a virtual ma-
chine, etc. The necessity to deploy a virtual machine also
typically stipulates the substantial requirements to hard-

ware, which inevitably induces certain obstacles on these
solutions practical usage. The proposed approach is devoted
exceptionally to simulation. The main aspects: orientation
on Windows-environment, easiness of reconfiguration, sim-
ulation-related overhead decrease.

To build the formalization for the described context
and to formulate the problem, the DEVS (Discrete Event
System Specification) formalism has been chosen [24]. It
has been successfully proven to be a good solution for the
purpose of validation by way of discrete event simulation,
especially in the context of composite web services usage
scenarios [25, 26].

To formulate a problem, let us consider the SDN
network as a system, and the components of the latter –
as system components. Let us distinguish the following
groups of components: the active and passive ones. Let us
represent the components of both groups with the following
structure:

{ }, , , , , ,controller Switches Hosts Links cs sh 		 (1)

where { }controller – the one-element set representing the
Controller component of the system – a single entity pro-
viding the centralized coordination of switches, represented
with the elements of the Switches set; Hosts – a set of hosts
to be connected to switches; Links CSLinks SHLinks= ∪ –
a set of elements representing passive network components –
links between the controller and switches (CSLinks set)
and links between switches and hosts (SHLinks set);

{ }:cs controller Switches CSLinks× → – a function to set con-
nections between the elements of { }controller and Switches
sets; :sh Switches Hosts SHLinks× → – a function to set con-
nections between the elements of Switches and Hosts sets.

Each set of the proposed structure (1) is intended to rep-
resent the type of the corresponding component.

The group of { },controller Switches and Hosts sets is in-
tended to represent the types of active network components,
Links set – the single type of passive ones.

The specificity of structure (1) is depicted in Fig. 1.

Fig. 1. Layers of network topology

In Fig. 1, the proposed stratified approach to SDN sim-
ulation is depicted, where both 1St and 2St layers represent
the southbound elements of SDN architecture, with a slight
accents shift – with respect to the types of active network
devices involved. This step has been made to foster more
transparent and structured transition from the proposed
system representation to simulation models, grounded solely

Information and controlling systems

69

on DEVS formalism concepts, e. g., “atomic” and “coupled”
models.

As a reason for stratification, the differentiation between
control and data planes of SDN architecture has been con-
sidered. The control plane takes place on the upper 1St lay-
er – between the elements of { }controller and Switches sets,
the data plane occurs on the lower 2St one – between the
elements of Switches and Hosts sets. Here it should also
be noted that the elements of the Switches set can be asso-
ciated with both – upper and lower – layers, because their
functioning is all about control flows, as well as data flows,
managing. The switches hence can be considered in our
case as mediators (boundary components). This peculiarity
implies certain limitations on their ports sets in particular.

Let us take a look at DEVS formalism concepts in detail,
with respect to the named components types (1).

The atomic DEVS model is devoted to representing a
certain system component of one of the named types – con-
troller, switch, host, link.

The template of such model is given below to be used as
the basis:

int, , , , , , ,extatomic IN OUT ST ta= δ δ λ 		 (2)

where atomic is a structure representing certain component
in terms of DEVS formalism; IN (OUT) – a set of events
taking place on input (output) ports of the same names;

{ }1 2,ST st st= – a set of states labels: let 1st STÎ means that
the component is passive (not functioning), 2st STÎ – is ac-
tive (functioning); (): , ,ext in st e stδ ¢ – external transition
function, where in INÎ – an event prompting the change
of state label, st STÎ – current state label, ()0 e ta st£ £ –
time, elapsed since the last transition, st STÎ¢ – subsequent
state label; int : st stδ ¢ – internal transition function;

: st outλ  – output function, where out OUTÎ – an event
on the corresponding output port; 0,:ta ST R+

¥→ – time ad-
vance function.

To proceed further, let us put some accent on the “event”
notion. The events are of two types, depending on where
they actually take place: on input ports – the first type; on
output ports – the second one. Both these types can general-
ly be considered in conjunction – the occurrence of the event
of the second type can be characterized as a precondition for
the occurrence of the first type event.

The auxiliary task here is to specify atomic DEVS mod-
els for all of the types of components distinguished, repre-
sented with controller, switches, hosts and links. It should be
noted that, because of solely passive nature of the latter type
representatives, the appropriate atomic models will play the
roles of time delays, determined by the properties of a certain
segment of virtual topology. It should also be mentioned that
an accent has been put on this type distinguishing in order
to simulate also the non-functional properties of a system
(e. g., time delays, costs) with respect to the altering nature
of virtual topology.

Atomic models of all the mentioned types then have to be
grouped within the coupled DEVS model concept:

, , , , ,CIN COUT Atomics set break 		 (3)

where CIN (Coupled Input ports) – total set of input
ports of all atomic models of all types (1), interconnect-
ed within the coupled one; COUT (Coupled Output
ports) – total set of output ports; Atomics – total set

of atomic models involved (e. g., atomic AtomicsÎ (2));
:set COUT Atomics CIN Atomics× → × – a function to set

connections between output and input ports;

: 2Atomicsbreak Atomics→

is a function to decouple the connections between atomic
models.

In comparison with the aforementioned atomic models
(2), in the scope of the resulting coupled DEVS model (3),
an accent is put on ports (not the events) – to set up the
topology.

3. The aim and objectives of the study

The aim is to develop the approach to Software Defined
Networks simulation. This will allow simplifying the vali-
dation of the obtained solutions with respect to the corre-
sponding time costs lowering.

To achieve the formulated aim, the following objectives
have to be accomplished:

– to propose the atomic and coupled simulation
DEVS-models of the components of the named types and
system;

– to check the resulting system coupled model adequacy;
– to evaluate the validity of the proposed approach.

4. Description of stratified approach to simulation and
basic models

4. 1. Atomic models of components
One of the distinctive features of the approach is recon-

figurability – with respect to the altering nature of virtual
topology and non-functional properties.

As a starting point, let us take into consideration the
types of network components, represented with structure
(1). The first step is aimed at the aspects of these components
representation within the scope of the atomic DEVS-model
concept. Let us consider the (2) structure as a template. De-
pending on the type of component (1), structure (2) has to
be modified appropriately.

Let us consider first the one-element { }controller set.
This step has been done to represent the centralization as-
pect of SDN. A single controller as the main point for con-
trol flows centralized orchestration. A certain analogy can
be seen taking a look at the orchestration model, defined
within WS-BPEL (BPEL4WS) specification, describing
the rules of atomic web services centralized coordination
to make the resulting composite web services function as
required [27].

To specify the controller atomic model, the cIN and
cOUT sets should be formed first, where the upper index c

means the “controller”.

{ } { }1,2,.., ,c c
iIN activate in i m N= ∪ = Î

where activate – an event on the input port of the same
name to manually activate the model of the controller com-
ponent, c

iin – the i-th event on the input port of the same
name to maintain the feedback from m atomic models of

iswitch SwitchesÎ components. It’s achieved via the atomic
models of m corresponding ilink CSLinks LinksÎ ⊂ compo-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (89) 2017

70

nents (1). { }c c
iOUT out= – a set of m events on output ports

of the same names to maintain the control flow.
Now let us take a look at states labels set ST and func-

tions. The ST set has been chosen to be completely the
same as in (2). Moreover, this statement is valid for all
atomic models described below. The differences between
these models are going to be in the IN and OUT sets and

extδ , λ functions: ()1 2: , ,c
ext activate st e stδ  – to manually

shift the model from the state with the 1st STÎ label to
the state with the 2st STÎ label; int 2 1: st stδ  – to make
the model become passive automatically – when all control
flow-related computations are finished; 2:c c

ist outλ  . Thus,
the resulting atomic model of the controller component will
be as follows:

int, , , , , , .c c c c
extcontroller IN OUT ST ta= δ δ λ 		 (4)

Now let us consider the Links set of structure (1) as a
type of the same name. This type has been introduced with
a specific intention in mind – to simulate the non-functional
properties of the system and, at the same time, to foster the
easiness of topology reconfiguration – with respect to the
ad-hoc nature of virtual topologies.

Each atomic model of Links type is intended to represent
the corresponding path of the route, taking place in some
current virtual topology between the components of different
types. This means that models of components of the same
type can’t be connected via some model of ilink LinksÎ –
because of the specificity of previously defined tree-like
stratified topology (Fig. 1).

Each atomic model of the ilink LinksÎ component is in-
tended to be implemented as two-directional. Considering,
for instance, the upper 1St layer of the stratified topology
(Fig. 1), it can be seen that iswitch Switches∀ Î ilink Links∃ Î ,
which makes it possible to transmit the data (control flow)
from controller to certain iswitch SwitchesÎ , and also main-
tain the feedback.

To demonstrate the way of this assumption implemen-
tation, let us consider the upper layer 1St of the stratified
topology, where the control flow takes place. In the lower
layer, the picture will be pretty the same, despite the fact
that instead of single controller component representation
there will be a set of iswitch SwitchesÎ components repre-
sentations, and instead of the latter – ,jhost HostsÎ and the
data flow representation will take place.

The way of this approach implementation with respect to
the 1St layer is given in Fig. 2.

Fig. 2. Connections between the atomic models of
components

In Fig. 2, the fragment of the upper layer (1St) related to
the topology (Fig. 1), implemented with DEVS formalism,
is represented, with a reduced number of ports – to put an
accent on the specificity of communicational delays imple-
mentation. The sequence of events occurrences on ports of
the same names is represented as a numbered list within the
note boxes. It should be mentioned here that representation
of communicational channels as separate atomic DEVS
models is one of the distinctive features of the approach,
fostering the easiness of topology reconfiguration. This step
will also simplify the simulation of nonfunctional properties,
e. g., communicational delays.

Now let us estimate the total number of models to be syn-
thesized to conduct the validation by way of DEVS-driven
simulation. To this end, let Switches m= and Hosts n=
(1). Then, taking into consideration Fig. 1, Links m n= + :
Links CSLinks SHLinks= ∪ : ,CSLinks SHLinks∩ = ∅ where

{ }1 2, ,..., mCSLinks link link link= – a set of links between the
controller component and the elements of the Switches set,

{ }1 2, ,...,m m m nSHLinks link link link+ + += – a set of links between
the elements of the Switches set and Hosts set. Hence, in-
cluding also the atomic model of controller (4), the number
of atomic models, needed to be synthesized, can be estimated
with the following function:

() ()1 , 2 1.f m n m n= ⋅ + + 				 (5)

It is also necessary to set up a topology itself. That’s
why a coupled model yet needs to be synthesized. Thus,
the total number of DEVS models (atomic and coupled)
to be synthesized can be estimated with the following
function:

() () () ()2 1, , 1 2 2 2 1 .f m n f m n m n m n= + = ⋅ + + = ⋅ + + 	 (6)

In accordance with Fig. 2, structure (1) and template
structure (2), the atomic model of the

ilink LinksÎ ()1,2,...,i m n= +

component will be as follows:

int, , , , , , ,l l l l
i i i extlink IN OUT ST ta= δ δ λ 		 (7)

where, depending on a layer (1St or 2,St Fig. 1),

{ }1 2,l li li
iIN in in=

is a set of events for a pair of input ports of the same
name: 1

li l
iin INÎ – an event representing the appearance of

message from controller (iswitch SwitchesÎ , 1,2,...,i m=)
on an input port, 2

li l
iin INÎ – from iswitch SwitchesÎ

(,jhost HostsÎ 1,2,...,j n=) – if 1St (2St) is being considered;
{ }1 2,l li li

iOUT out out= – a set of events for a pair of output
ports of the same name: 1

li l
iout OUTÎ – an event repre-

senting the appearance of message on an output, intended
to be transmitted to iswitch SwitchesÎ (jhost HostsÎ),

2
li l

iout OUTÎ – to controller (iswitch SwitchesÎ) – if 1St
(2St) is being considered; ()1 2: , , ,l

ext in st e stδ  where ;l
iin INÎ

2: ,l st outλ  where .l
iout OUTÎ

Now let us take a look at boundary elements, represented
with iswitch SwitchesÎ ()1,2,...,i m= elements – the repre-
sentatives of both layers – 1St and 2St :

Information and controlling systems

71

int, , , , , , ,s s s s
i i i extswitch IN OUT ST ta= δ δ λ 		 (8)

where { }1 2 1, ,...,s si si si
i kIN in in in += – a set of events on input ports

of the same name, where 1
si s

iin INÎ – an event, stipulated by
the input message from controller , 2 1,...,si s si s

i k iin IN in IN+Î Î –
the events, associated with data obtaining from the corre-
sponding hosts, k n£ – the number of hosts, connected to
certain ;iswitch SwitchesÎ { }1 2 1, ,...,s si si si

i kOUT out out out += –
a set of events on output ports of the same name, where

1
si s

iout OUTÎ – an event representing the acknowledgement
of certain control flow part completion,

2 1,...,si s si s
i k iout OUT out OUT+Î Î

is the events representing the appearance of messages
(data) to be sent to the corresponding hosts connected;

()1 1 2: , , ;s si
ext in st e stδ  2: ,s st outλ  where .sout OUTÎ

The atomic model of the jhost HostsÎ component is as
follows:

int, , , , , , ,h h h h
j j j exthost IN OUT ST ta= δ δ λ 		 (9)

where { }1
h hj
jIN in= – the one-element set of events taking

place on a single input port of the same name, prompted by the
message from some ,iswitch SwitchesÎ { }1

h hj
jOUT out= – on a

single output port of the same name, prompted by message
occurrence, ready to be transmitted to

;iswitch SwitchesÎ ()1 1 2: , , ;h hj
ext in st e stδ  2 1: .h hjst outλ 

4. 2. Coupled model of system
To specify the resulting coupled DEVS model, all previ-

ously given atomic models (4), (7)–(9) need to be aggregat-
ed with respect to structure (3). To set up the topology, the
accent here is put on ports – not the events. For this purpose,
the CIN , COUT and Atomics sets should be specified in
particular:

1 1 1

,
m n m n

c l s h
i i j

i i j

CIN IN IN IN IN
+

= = =

    
= ∪ ∪ ∪     

     
  

	 (10)

1 1 1

,
m n m n

c l s h
i i j

i i j

COUT OUT OUT OUT OUT
+

= = =

    
= ∪ ∪ ∪     

     
  

	 (11)

{ } .Atomics controller Switches Hosts Links= ∪ ∪ ∪ 	 (12)

The expressions (10)–(12) will be used to form struc-
ture (3).

5. Experimentation and results analysis

To conduct the experimentation, the following configu-
ration has been successfully used:

– software environment: OS Microsoft Windows 7 Pro,
SP; Java Runtime Environment 1.7; VirtualBox-4.3.10;
mininet-2.2.1-150420-ubuntu-14.04-server-i386 virtual ma-
chine; eclipse-SDK-3.6.1-win32; DEVS Suite 2.0.0 as simu-
lation environment; Xming X Server – to make it possible
to visualize the topology of SDN network from Mininet
in Windows environment; PuTTY utility – to connect to
Linux-based virtual machine (where Mininet emulator is
actually installed) from Windows-environment;

– hardware environment: central processing unit
(CPU) – AMD Athlon 440 X3, 3GHz; random access mem-
ory (RAM) – 2 GB, 1333 MHz, DDR3.

To emulate SDN-network, the following resources
have been allocated for the needs of virtual environment:
1024 MB of RAM, 2 physical cores of CPU, 32 MB of video
memory. The configuration of network interfaces for the
Linux-based virtual environment: the first network adapt-
er has been chosen to be of Intel PRO/1000 MT Desktop
(82540EM) type, the second one – of the same type, config-
ured as VirtualBox Host-Only Ethernet Adapter.

To simulate SDN network, the “ping all” scenario has
been utilized: each host of network pings other hosts. The
tree topology with parameter depth=2 has been chosen.
The simulation has been conducted from the non-functional
properties values aggregation viewpoint (ping delays). For
these purposes, ping delays have been represented with
structure (7). The resulting coupled DEVS-model has been
implemented on a basis of (3), (10)–(12) expressions.

The results are given in Table 1, where the results of
DEVS-driven simulation on a basis of the proposed strati-
fied approach are compared to the ones, obtained by way of
emulation in Mininet environment.

Table 1

The results

No.
|Switches|,

m
|Hosts|,

n
()1 , ,m nξ
sec

()2 , ,m nξ
sec

()3 , ,m nξ
sec

1 1 2 5.667 5.518 0.228

2 3 4 5.985 5.946 0.411

3 4 9 6.427 6.515 0.735

4 5 16 9.489 9.611 1.213

In Table 1, ()1 ,m nξ – time to complete the “pingall”
command in Mininet environment; ()2 ,m nξ – estimated
values, obtained via DEVS Suite with respect to the pro-
posed approach; ()3 ,m nξ – actual time, spent on simulation.
It can be noted that ()3 ,m nξ values are significantly lower
than ()1 ,m nξ values – from 7.8 to 24.9 times.

On a basis of (5) and (6) expressions, the total number
of all (just atomic) models synthesized is as follows: 8(7),
16(15), 28(27), 44(43).

6. Discussion of approach checking results

The adequacy of the resulting coupled DEVS-model
has been proven with t-criterion for degrees of freedom

8 2 6df = − = and significance level 0.05a = :

0.992 2.447,emp crt t= < =

where empt – calculated value, crt – critical value.
The lowering of time costs, as a result of the proposed ap-

proach to simulation usage, is prompted by the representation
of non-functional properties – time costs – as estimated values.

The advantages of the proposed approach are condi-
tioned by the fact that it is aimed solely at simulation (not
taking into consideration the emulation aspects). Here are
some of these: network visualization-related labor costs low-
ering – no need to deploy Xming X Server and use PuTTY
utility, working on widespread Windows-platform; easiness
of system model reconfiguration.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (89) 2017

72

The drawback of the approach – impossible to test con-
troller software.

The proposed approach is going to be extended further in
terms of verification aspects adoption – to check the consis-
tency of the resulting coupled model prior to the simulation.
For this purpose, the model checking method can be success-
fully used [28]. One of the proved solutions to pay attention
to is TLA+ formalism, based on the appropriate Temporal
Logic of Actions [29]. It has been successfully used to check
the Amazon web services design solutions [30]. Some steps
in the direction of DEVS models TLA verification have also
been done earlier [31].

7. Conclusions

1. The stratified approach to Software Defined Networks
simulation, based on DEVS formalism, atomic and coupled
models concepts usage, has been proposed. Controller-switch-
es and switches-hosts communication layers have been de-
fined. That allowed obtaining structured solutions, covering
both functional and non-functional properties of a system.

2. Atomic simulation DEVS-models of active (controller,
switch, host) and passive (link) components of the network
(system), as well as the resulting DEVS-model of SDN net-
work itself, have been proposed. This allowed conducting the
validation of the system by way of simulation with an accent
on visualization and easiness of the coupled model reconfig-
uration to meet ad-hoc requirements prompting the altering
nature of virtual topologies.

3. The validity of the proposed approach has been prov-
en experimentally. The adequacy of the resulting coupled

DEVS-model has been proven with t-criterion. The results of
DEVS-simulation have been compared to the results, obtained
by way of emulation in Mininet environment. It has been
shown during the case study on a basis of Mininet network
testing scenario that the corresponding time costs are sig-
nificantly lower (when talking about the proposed approach
usage) in comparison with the ones, obtained by way of emu-
lation in Mininet environment: from 7.8 to 24.9 times – on the
utilized set of experimental data. Approach usage in Windows
environment implies the following advantages: no need to uti-
lize Xming X Server and PuTTY utility.

Further research is aimed at mathematically strict TLA+
formalism adoption to check the consistency of the resulting
coupled DEVS model prior to the simulation.

Acknowledgements

The work has been conducted as part of:
– Erasmus+ Internet of Things: Emerging Curriculum

for Industry and Human Applications ALIOT Project (ref-
erence number 573818-EPP-1-2016-1-UK-EPPKA2-CB-
HE-JP), participated by Computer Systems and Networks
(CSN) Dept., Software Tools Dept. of Zaporizhzhya Na-
tional Technical University (Ukraine);

– research work “Methods and means of computational
intelligence and parallel computing for processing large
amounts of data in diagnostic systems” (number of state reg-
istration 0116U007419), the work “Methods and means of
decision-making for data processing in intelligent image rec-
ognition systems” of Software Tools Dept. of Zaporizhzhya
National Technical University (Ukraine).

Referenсes

1.	 Feamster, N. The road to SDN [Text] / N. Feamster, J. Rexford, E. Zegura // ACM SIGCOMM Computer Communication

Review. – 2014. – Vol. 44, Issue 2. – P. 87–98. doi: 10.1145/2602204.2602219

2.	 Barrett, R. Dynamic Traffic Diversion in SDN: testbed vs Mininet [Text] / R. Barrett, A. Facey, W. Nxumalo, J. Rogers, P. Vatcher,

M. St-Hilaire // 2017 International Conference on Computing, Networking and Communications (ICNC). – 2017. doi: 10.1109/

iccnc.2017.7876121

3.	 Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development

[Text] / C. Larman. – 3rd ed. – New Jersey: Prentice Hall, 2004. – 736 p.

4.	 Govindarajan, K. Realizing the Quality of Service (QoS) in Software-Defined Networking (SDN) based Cloud infrastructure [Text] /

K. Govindarajan, K. C. Meng, Hong Ong, Wong Ming Tat, Sridhar Sivanand, Low Swee Leong // 2014 2nd International Confer-

ence on Information and Communication Technology (ICoICT). – 2014. doi: 10.1109/icoict.2014.6914113

5.	 Kolpakova, T. Tender Participants Selection Based on Artificial Neural Network Model for Alternatives Classification [Text] /

T. Kolpakova, V. Lovkin // Advances in Intelligent Systems and Computing. – 2016. – P. 3–10. doi: 10.1007/978-3-319-48923-0_1

6.	 Oliinyk, A. O. Using parallel random search to train fuzzy neural networks [Text] / A. O. Oliinyk, S. Yu. Skrupsky, S. A. Subbo-

tin // Automatic Control and Computer Sciences. – 2014. – Vol. 48, Issue 6. – P. 313–323. doi: 10.3103/s0146411614060078

7.	 Oliinyk, A. O. Experimental investigation with analyzing the training method complexity of neuro-fuzzy networks based on parallel

random search [Text] / A. O. Oliinyk, S. Yu. Skrupsky, S. A. Subbotin // Automatic Control and Computer Sciences. – 2015. –

Vol. 49, Issue 1. – P. 11–20. doi: 10.3103/s0146411615010071

8.	 Oliinyk, A. A. The model for estimation of computer system used resources while extracting production rules based on parallel

computations [Text] / A. A. Oliinyk, S. Yu. Skrupsky, V. V. Shkarupylo, S. A. Subbotin // Radio Electronics, Computer Science,

Control. – 2017. – Issue 1. – P. 142–152. doi: 10.15588/1607-3274-2017-1-16

9.	 Subbotin, S. Individual prediction of the hypertensive patient condition based on computational intelligence [Text] / S. Subbo-

tin, A. Oliinyk, S. Skrupsky // 2015 International Conference on Information and Digital Technologies. – 2015. doi: 10.1109/

dt.2015.7222996

10.	 Silva, J. S. People-Centric Internet of Things [Text] / J. S. Silva, P. Zhang, T. Pering, F. Boavida, T. Hara, N. C. Liebau //

IEEE Communications Magazine. – 2017. – Vol. 55, Issue 2. – P. 18–19. doi: 10.1109/mcom.2017.7841465

11.	 Oliinyk, A. Parallel Computer System Resource Planning for Synthesis of Neuro-Fuzzy Networks [Text] / A. Oliinyk, S. Skrupsky,

S. A. Subbotin // Advances in Intelligent Systems and Computing. – 2016. – P. 88–96. doi: 10.1007/978-3-319-48923-0_12

Information and controlling systems

73

12.	 Oliinyk, A. A. The decision tree construction based on a stochastic search for the neuro-fuzzy network synthesis [Text] / A. A. Oliinyk,

S. A. Subbotin // Optical Memory and Neural Networks. – 2015. – Vol. 24, Issue 1. – P. 18–27. doi: 10.3103/s1060992x15010038

13.	 Kobo, H. I. A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design Requirements [Text] / H. I. Kobo,

A. M. Abu-Mahfouz, G. P. Hancke // IEEE Access. – 2017. – Vol. 5. – P. 1872–1899. doi: 10.1109/access.2017.2666200

14.	 Sun, S. Integrating network function virtualization with SDR and SDN for 4G/5G networks [Text] / S. Sun, M. Kadoch, L. Gong,

B. Rong // IEEE Network. – 2015. – Vol. 29, Issue 3. – P. 54–59. doi: 10.1109/mnet.2015.7113226

15.	 Gupta, M. Fast, accurate simulation for SDN prototyping [Text] / M. Gupta, J. Sommers, P. Barford // Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking – HotSDN ‘13. – 2013. doi: 10.1145/2491185.2491202

16.	 Keti, F. Emulation of Software Defined Networks Using Mininet in Different Simulation Environments [Text] / F. Keti, S. Askar //

2015 6th International Conference on Intelligent Systems, Modelling and Simulation. – 2015. doi: 10.1109/isms.2015.46

17.	 Son, J. CloudSimSDN: Modeling and Simulation of Software-Defined Cloud Data Centers [Text] / J. Son, A. V. Dastjerdi,

R. N. Calheiros, X. Ji, Y. Yoon, R. Buyya // 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-

ing. – 2015. doi: 10.1109/ccgrid.2015.87

18.	 Ganguli, S. Computer Operating Systems: From every palm to the entire cosmos in the 21st Century Lifestyle [Text] / S. Gangu-

li // Computer Society of India Communications. – 2017. – Vol. 40, Issue 11. – P. 5–8. – Available at: http://www.csi-india.org/

Communications/CSIC_Feb_2017.pdf

19.	 Wang, S.-Y. Comparison of SDN OpenFlow network simulator and emulators: EstiNet vs. Mininet [Text] / S.-Y. Wang //

2014 IEEE Symposium on Computers and Communications (ISCC). – 2014. doi: 10.1109/iscc.2014.6912609

20.	 Wang, S.-Y. EstiNet openflow network simulator and emulator [Text] / S.-Y. Wang, C.-L. Chou, C.-M. Yang // IEEE Communica-

tions Magazine. – 2013. – Vol. 51, Issue 9. – P. 110–117. doi: 10.1109/mcom.2013.6588659

21.	 Chan, M.-C. OpenNet: A simulator for software-defined wireless local area network [Text] / M.-C. Chan, C. Chen, J.-X. Huang,

T. Kuo, L.-H. Yen, C.-C. Tseng // 2014 IEEE Wireless Communications and Networking Conference (WCNC). – 2014.

doi: 10.1109/wcnc.2014.6953088

22.	 Ivey, J. Comparing a Scalable SDN Simulation Framework Built on ns-3 and DCE with Existing SDN Simulators and Emulators

[Text] / J. Ivey, H. Yang, C. Zhang, G. Riley // Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced

Discrete Simulation – SIGSIM-PADS ‘16. doi: 10.1145/2901378.2901391

23.	 Yang, H. Support Multiple Auxiliary TCP/UDP Connections in SDN Simulations Based on ns-3 [Text] / H. Yang, C. Zhang,

G. Riley // Proceedings of the Workshop on ns-3 – 2017 WNS3. – 2017. doi: 10.1145/3067665.3067670

24.	 Discrete-Event Modeling and Simulation: Theory and Applications [Text] / G. A. Wainer, P. J. Mosterman (Eds.). – CRC Press,

2010. – 534 p. doi: 10.1201/b10412

25.	 Shkarupylo, V. A technique of DEVS-driven validation [Text] / V. Shkarupylo // 2016 13th International Conference on Modern

Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). – 2016. doi: 10.1109/tcset.2016.7452097

26.	 Shkarupylo, V. A Simulation-driven Approach for Composite Web Services Validation [Text] / V. Shkarupylo // Proc. 27th Int.

Central European Conference on Information and Intelligent Systems, CECIIS 2016. – 2016. – P. 227–231.

27.	 Papazoglou, M. P. Service-Oriented Computing: State of the Art and Research Challenges [Text] / M. P. Papazoglou, P. Traverso,

S. Dustdar, F. Leymann // Computer. – 2007. – Vol. 40, Issue 11. – P. 38–45. doi: 10.1109/mc.2007.400

28.	 Clarke, E. M. Model Checking [Text] / E. M. Clarke, O. Grumberg, D. Peled. – Cambridge, MA: MIT Press, 1999. – 314 p.

29.	 Lamport, L. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers [Text] / L. Lamport. – Bos-

ton: Addison-Wesley, 2002. – 364 p.

30.	 Newcombe, C. How Amazon web services uses formal methods [Text] / C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker,

M. Deardeuff // Communications of the ACM. – 2015. – Vol. 58, Issue 4. – P. 66–73. doi: 10.1145/2699417

31.	 Cristia, M. A TLA+ Encoding of DEVS Models [Text] / M. Cristia // Proc. Int. Modeling and Simulation Multiconference. – Bue-

nos Aires, 2007. – P. 17–22.

