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1. Introduction

Nowadays the current state of global networking is on 
a verge of its drastic refinement. The questions of networks 
management convenience, control, monitoring, reconfigur-
ing and scaling are topical here. The answer can be in mod-
ern approaches and concepts usage. Possible solution can be 
found in Software Defined Networking (SDN) principles 
following. There are some of them: differentiation between 
control and data planes, lightweight switches utilization, 
“controller” concept adoption – to coordinate switches in a 
centralized manner [1].

The SDN abbreviation will also be associated with Soft-
ware Defined Network itself.

One of the main goals of SDN technology adoption is to 
foster the existing opportunities to effectively utilize avail-
able network resources in order to operatively meet the ad-

hoc requirements of certain business-process (processes). To 
do that properly, the significant work yet has to be done. A 
plethora of different approaches and techniques have already 
been proposed to date though, e. g., to divert important traf-
fic on a backup path to prevent packets loss and reduce jitter 
[2]. Appropriate solutions can be generalized as follows: it 
can be painful to get on with, the majority of solutions are 
aimed at emulation. This is not always acceptable in terms of 
corresponding time costs.

The development and deployment of systems on a basis of 
SDN principles is a non-trivial task, because of technology 
novelty and complexity. The validation of resulting solutions 
can be conducted by way of simulation or by way of testing. 
The simulation herein is a significantly less resource-inten-
sive process, especially in the context of iterative develop-
ment [3]. That’s why the creation of an approach to such 
systems simulation is a topical task.
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2. Literature review and problem statement

SDN technology is tightly bound with other ones, e. g., 
Cloud Computing [4], Neural Networks [5–7], Big Data 
[8], Artificial Intelligence [9], Internet of Things [10]. For 
instance, the synergy of SDN and Neural Networks technol-
ogies can be expedient in the context of parallel computing 
systems’ resources allocation [11, 12]. Moreover, SDN is 
considered as a solution for Wireless Sensor Networks chal-
lenges [13]. The opportunities for SDN technology integra-
tion with existing 4G/5G mobile networks have also been 
discussed [14].

Different approaches to SDN simulation and emulation/
prototyping are aimed at different aspects. Let us previously 
try to cover comparably well-known solutions.

The Mininet emulator is considered to be one of the 
most accessible platforms for SDN experimentations [15]. 
The background for that – easiness to get started with and 
use. The significant drawback – impossibility to conduct 
simulation (model time can’t outpace the real time). Net-
work creation and testing are time-consuming. Time costs 
grow exponentially with respect to hosts number growth 
(tree-like topology) [16]. Nevertheless, Mininet frequently 
appears in scientific publications as an exemplar to compete 
with and to validate own solutions [15]. To check the pro-
posed approach, the same way of acting will be utilized. For 
instance, the CloudSimSDN framework is aimed directly at 
data centers virtualization scenarios [17]. The main accent 
here is put on cost-effectiveness and scalability aspects, with 
cloud computing scenarios under consideration. To validate 
the framework, the Mininet has been used as an exemplar.

It should also be noted that Mininet is a Linux-based 
solution, and can be installed as a virtual machine or as an 
installation for Linux platform. Not to mention that Win-
dows platforms are significantly more widespread [18].

A good alternative to Mininet in terms of performance 
and scalability looks to be an EstiNet [19]. More in-depth 
comparison, encompassing also the ns-3 emulator, has been 
conducted in [20]. The mentioned ns-3 emulator can be 
considered a complementation to Mininet, or vice versa. A 
similar approach has been utilized to develop an OpenNet 
emulator, which combines the advantages of both mentioned 
solutions – the compatibility of Mininet and wireless net-
working support of ns-3 [21]. 

In an attempt to blur the boundaries between simula-
tion and deployment, the framework on a basis of ns-3 has 
been proposed to allow running the controller software 
within the simulation environment [22]. With an accent 
on rapid standards refinement, an attempt has also been 
made to adopt the support of relatively novel OpenFlow 1.3 
standard features, e. g., the support of multiple auxiliary 
TCP/UDP connections (to decrease jittering, packet loss), 
in a simulation environment within the OFSWITCH13 
framework [23].

To generalize, it should be noted that the main trend of 
the reviewed approaches can be characterized as an attempt 
to combine both the simulation and emulation aspects 
within the proposed solutions’ feature sets. This peculiarity 
inevitably implies certain drawbacks, e. g. the complication 
of these solutions practical usage, combined with overheads, 
stipulated by the necessity to accomplish a bunch of required 
preliminary steps, e. g., install and configure a virtual ma-
chine, etc. The necessity to deploy a virtual machine also 
typically stipulates the substantial requirements to hard-

ware, which inevitably induces certain obstacles on these 
solutions practical usage. The proposed approach is devoted 
exceptionally to simulation. The main aspects: orientation 
on Windows-environment, easiness of reconfiguration, sim-
ulation-related overhead decrease. 

To build the formalization for the described context 
and to formulate the problem, the DEVS (Discrete Event 
System Specification) formalism has been chosen [24]. It 
has been successfully proven to be a good solution for the 
purpose of validation by way of discrete event simulation, 
especially in the context of composite web services usage 
scenarios [25, 26].

To formulate a problem, let us consider the SDN 
network as a system, and the components of the latter – 
as system components. Let us distinguish the following 
groups of components: the active and passive ones. Let us 
represent the components of both groups with the following 
structure:

{ }, , , , , ,controller Switches Hosts Links cs sh 		  (1)

where { }controller  – the one-element set representing the 
Controller component of the system – a single entity pro-
viding the centralized coordination of switches, represented 
with the elements of the Switches  set; Hosts  – a set of hosts 
to be connected to switches; Links CSLinks SHLinks= ∪  –  
a set of elements representing passive network components –  
links between the controller and switches (CSLinks  set) 
and links between switches and hosts (SHLinks  set); 

{ }:cs controller Switches CSLinks× →  – a function to set con-
nections between the elements of { }controller  and Switches 
sets; :sh Switches Hosts SHLinks× →  – a function to set con-
nections between the elements of Switches  and Hosts  sets.

Each set of the proposed structure (1) is intended to rep-
resent the type of the corresponding component.

The group of { },controller  Switches  and Hosts  sets is in-
tended to represent the types of active network components, 
Links  set – the single type of passive ones.

The specificity of structure (1) is depicted in Fig. 1.

Fig. 1. Layers of network topology

In Fig. 1, the proposed stratified approach to SDN sim-
ulation is depicted, where both 1St  and 2St  layers represent 
the southbound elements of SDN architecture, with a slight 
accents shift – with respect to the types of active network 
devices involved. This step has been made to foster more 
transparent and structured transition from the proposed 
system representation to simulation models, grounded solely 
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on DEVS formalism concepts, e. g., “atomic” and “coupled” 
models.

As a reason for stratification, the differentiation between 
control and data planes of SDN architecture has been con-
sidered. The control plane takes place on the upper 1St  lay- 
er – between the elements of { }controller  and Switches sets, 
the data plane occurs on the lower 2St  one – between the 
elements of Switches  and Hosts  sets. Here it should also 
be noted that the elements of the Switches  set can be asso-
ciated with both – upper and lower – layers, because their 
functioning is all about control flows, as well as data flows, 
managing. The switches hence can be considered in our 
case as mediators (boundary components). This peculiarity 
implies certain limitations on their ports sets in particular.

Let us take a look at DEVS formalism concepts in detail, 
with respect to the named components types (1).

The atomic DEVS model is devoted to representing a 
certain system component of one of the named types – con-
troller, switch, host, link.

The template of such model is given below to be used as 
the basis:

int, , , , , , ,extatomic IN OUT ST ta= δ δ λ 		  (2)

where atomic  is a structure representing certain component 
in terms of DEVS formalism; IN (OUT ) – a set of events 
taking place on input (output) ports of the same names; 

{ }1 2,ST st st=  – a set of states labels: let 1st STÎ  means that 
the component is passive (not functioning), 2st STÎ  – is ac-
tive (functioning); ( ): , ,ext in st e stδ ¢  – external transition 
function, where in INÎ  – an event prompting the change 
of state label, st STÎ  – current state label, ( )0 e ta st£ £  – 
time, elapsed since the last transition, st STÎ¢  – subsequent 
state label; int : st stδ ¢  – internal transition function; 

: st outλ   – output function, where out OUTÎ  – an event 
on the corresponding output port; 0,:ta ST R+

¥→  – time ad-
vance function.

To proceed further, let us put some accent on the “event” 
notion. The events are of two types, depending on where 
they actually take place: on input ports – the first type; on 
output ports – the second one. Both these types can general-
ly be considered in conjunction – the occurrence of the event 
of the second type can be characterized as a precondition for 
the occurrence of the first type event.

The auxiliary task here is to specify atomic DEVS mod-
els for all of the types of components distinguished, repre-
sented with controller, switches, hosts and links. It should be 
noted that, because of solely passive nature of the latter type 
representatives, the appropriate atomic models will play the 
roles of time delays, determined by the properties of a certain 
segment of virtual topology. It should also be mentioned that 
an accent has been put on this type distinguishing in order 
to simulate also the non-functional properties of a system 
(e. g., time delays, costs) with respect to the altering nature 
of virtual topology.

Atomic models of all the mentioned types then have to be 
grouped within the coupled DEVS model concept:

, , , , ,CIN COUT Atomics set break 		  (3)

where CIN  (Coupled Input ports) – total set of input 
ports of all atomic models of all types (1), interconnect-
ed within the coupled one; COUT  (Coupled Output 
ports) – total set of output ports; Atomics  – total set 

of atomic models involved (e. g., atomic AtomicsÎ  (2)); 
:set COUT Atomics CIN Atomics× → ×  – a function to set 

connections between output and input ports; 

: 2Atomicsbreak Atomics→  

is a function to decouple the connections between atomic 
models.

In comparison with the aforementioned atomic models 
(2), in the scope of the resulting coupled DEVS model (3), 
an accent is put on ports (not the events) – to set up the 
topology.

3. The aim and objectives of the study

The aim is to develop the approach to Software Defined 
Networks simulation. This will allow simplifying the vali-
dation of the obtained solutions with respect to the corre-
sponding time costs lowering.

To achieve the formulated aim, the following objectives 
have to be accomplished:

– to propose the atomic and coupled simulation 
DEVS-models of the components of the named types and 
system;

– to check the resulting system coupled model adequacy;
– to evaluate the validity of the proposed approach.

4. Description of stratified approach to simulation and 
basic models

4. 1. Atomic models of components
One of the distinctive features of the approach is recon-

figurability – with respect to the altering nature of virtual 
topology and non-functional properties.

As a starting point, let us take into consideration the 
types of network components, represented with structure 
(1). The first step is aimed at the aspects of these components 
representation within the scope of the atomic DEVS-model 
concept. Let us consider the (2) structure as a template. De-
pending on the type of component (1), structure (2) has to 
be modified appropriately.

Let us consider first the one-element { }controller  set. 
This step has been done to represent the centralization as-
pect of SDN. A single controller as the main point for con-
trol flows centralized orchestration. A certain analogy can 
be seen taking a look at the orchestration model, defined 
within WS-BPEL (BPEL4WS) specification, describing 
the rules of atomic web services centralized coordination 
to make the resulting composite web services function as 
required [27].

To specify the controller  atomic model, the cIN  and 
cOUT  sets should be formed first, where the upper index c 

means the “controller”.

{ } { }1,2,.., ,c c
iIN activate in i m N= ∪ = Î

where activate  – an event on the input port of the same 
name to manually activate the model of the controller  com-
ponent, c

iin  – the i-th event on the input port of the same 
name to maintain the feedback from m atomic models of 

iswitch SwitchesÎ  components. It’s achieved via the atomic 
models of m corresponding ilink CSLinks LinksÎ ⊂  compo-
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nents (1). { }c c
iOUT out=  – a set of m events on output ports 

of the same names to maintain the control flow.
Now let us take a look at states labels set ST and func-

tions. The ST  set has been chosen to be completely the 
same as in (2). Moreover, this statement is valid for all 
atomic models described below. The differences between 
these models are going to be in the IN and OUT sets and  

extδ , λ functions: ( )1 2: , ,c
ext activate st e stδ   – to manually 

shift the model from the state with the 1st STÎ  label to 
the state with the 2st STÎ  label; int 2 1: st stδ   – to make 
the model become passive automatically – when all control 
flow-related computations are finished; 2:c c

ist outλ  . Thus, 
the resulting atomic model of the controller  component will 
be as follows:

int, , , , , , .c c c c
extcontroller IN OUT ST ta= δ δ λ 		  (4)

Now let us consider the Links  set of structure (1) as a 
type of the same name. This type has been introduced with 
a specific intention in mind – to simulate the non-functional 
properties of the system and, at the same time, to foster the 
easiness of topology reconfiguration – with respect to the 
ad-hoc nature of virtual topologies.

Each atomic model of Links  type is intended to represent 
the corresponding path of the route, taking place in some 
current virtual topology between the components of different 
types. This means that models of components of the same 
type can’t be connected via some model of ilink LinksÎ  –  
because of the specificity of previously defined tree-like 
stratified topology (Fig. 1).

Each atomic model of the ilink LinksÎ  component is in-
tended to be implemented as two-directional. Considering, 
for instance, the upper 1St  layer of the stratified topology 
(Fig. 1), it can be seen that iswitch Switches∀ Î  ilink Links∃ Î ,  
which makes it possible to transmit the data (control flow) 
from controller  to certain iswitch SwitchesÎ , and also main-
tain the feedback.

To demonstrate the way of this assumption implemen-
tation, let us consider the upper layer 1St  of the stratified 
topology, where the control flow takes place. In the lower 
layer, the picture will be pretty the same, despite the fact 
that instead of single controller  component representation 
there will be a set of iswitch SwitchesÎ  components repre-
sentations, and instead of the latter – ,jhost HostsÎ  and the 
data flow representation will take place.

The way of this approach implementation with respect to 
the 1St  layer is given in Fig. 2.

Fig. 2. Connections between the atomic models of 
components

In Fig. 2, the fragment of the upper layer ( 1St ) related to 
the topology (Fig. 1), implemented with DEVS formalism, 
is represented, with a reduced number of ports – to put an 
accent on the specificity of communicational delays imple-
mentation. The sequence of events occurrences on ports of 
the same names is represented as a numbered list within the 
note boxes. It should be mentioned here that representation 
of communicational channels as separate atomic DEVS 
models is one of the distinctive features of the approach, 
fostering the easiness of topology reconfiguration. This step 
will also simplify the simulation of nonfunctional properties, 
e. g., communicational delays.

Now let us estimate the total number of models to be syn-
thesized to conduct the validation by way of DEVS-driven 
simulation. To this end, let Switches m=  and Hosts n=  
(1). Then, taking into consideration Fig. 1, Links m n= + :  
Links CSLinks SHLinks= ∪ : ,CSLinks SHLinks∩ = ∅  where 

{ }1 2, ,..., mCSLinks link link link=  – a set of links between the 
controller  component and the elements of the Switches  set, 

{ }1 2, ,...,m m m nSHLinks link link link+ + +=  – a set of links between 
the elements of the Switches  set and Hosts  set. Hence, in-
cluding also the atomic model of controller  (4), the number 
of atomic models, needed to be synthesized, can be estimated 
with the following function:

( ) ( )1 , 2 1.f m n m n= ⋅ + + 				    (5)

It is also necessary to set up a topology itself. That’s 
why a coupled model yet needs to be synthesized. Thus, 
the total number of DEVS models (atomic and coupled) 
to be synthesized can be estimated with the following 
function:

( ) ( ) ( ) ( )2 1, , 1 2 2 2 1 .f m n f m n m n m n= + = ⋅ + + = ⋅ + + 	 (6)

In accordance with Fig. 2, structure (1) and template 
structure (2), the atomic model of the 

ilink LinksÎ  ( )1,2,...,i m n= +  

component will be as follows:

int, , , , , , ,l l l l
i i i extlink IN OUT ST ta= δ δ λ 		  (7)

where, depending on a layer ( 1St  or 2,St  Fig. 1), 

{ }1 2,l li li
iIN in in=  

is a set of events for a pair of input ports of the same 
name: 1

li l
iin INÎ  – an event representing the appearance of 

message from controller  ( iswitch SwitchesÎ , 1,2,...,i m= )  
on an input port, 2

li l
iin INÎ  – from iswitch SwitchesÎ   

( ,jhost HostsÎ  1,2,...,j n= ) – if 1St  ( 2St ) is being considered; 
{ }1 2,l li li

iOUT out out=  – a set of events for a pair of output 
ports of the same name: 1

li l
iout OUTÎ  – an event repre-

senting the appearance of message on an output, intended 
to be transmitted to iswitch SwitchesÎ  ( jhost HostsÎ ),  

2
li l

iout OUTÎ  – to controller  ( iswitch SwitchesÎ ) – if 1St   
( 2St ) is being considered; ( )1 2: , , ,l

ext in st e stδ   where ;l
iin INÎ  

2: ,l st outλ   where .l
iout OUTÎ

Now let us take a look at boundary elements, represented 
with iswitch SwitchesÎ  ( )1,2,...,i m=  elements – the repre-
sentatives of both layers – 1St  and 2St :
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int, , , , , , ,s s s s
i i i extswitch IN OUT ST ta= δ δ λ 		  (8)

where { }1 2 1, ,...,s si si si
i kIN in in in +=  – a set of events on input ports 

of the same name, where 1
si s

iin INÎ  – an event, stipulated by 
the input message from controller , 2 1,...,si s si s

i k iin IN in IN+Î Î  –  
the events, associated with data obtaining from the corre-
sponding hosts, k n£  – the number of hosts, connected to 
certain ;iswitch SwitchesÎ  { }1 2 1, ,...,s si si si

i kOUT out out out +=  –  
a set of events on output ports of the same name, where 

1
si s

iout OUTÎ  – an event representing the acknowledgement 
of certain control flow part completion,

2 1,...,si s si s
i k iout OUT out OUT+Î Î  

is the events representing the appearance of messages 
(data) to be sent to the corresponding hosts connected; 

( )1 1 2: , , ;s si
ext in st e stδ   2: ,s st outλ   where .sout OUTÎ

The atomic model of the jhost HostsÎ  component is as 
follows:

int, , , , , , ,h h h h
j j j exthost IN OUT ST ta= δ δ λ 		  (9)

where { }1
h hj
jIN in=  – the one-element set of events taking 

place on a single input port of the same name, prompted by the 
message from some ,iswitch SwitchesÎ  { }1

h hj
jOUT out=  – on a 

single output port of the same name, prompted by message 
occurrence, ready to be transmitted to

;iswitch SwitchesÎ  ( )1 1 2: , , ;h hj
ext in st e stδ   2 1: .h hjst outλ 

4. 2. Coupled model of system
To specify the resulting coupled DEVS model, all previ-

ously given atomic models (4), (7)–(9) need to be aggregat-
ed with respect to structure (3). To set up the topology, the 
accent here is put on ports – not the events. For this purpose, 
the CIN , COUT  and Atomics  sets should be specified in 
particular:

1 1 1

,
m n m n

c l s h
i i j

i i j

CIN IN IN IN IN
+

= = =

    
= ∪ ∪ ∪     

     
  

	 (10)

1 1 1

,
m n m n

c l s h
i i j

i i j

COUT OUT OUT OUT OUT
+

= = =

    
= ∪ ∪ ∪     

     
  

	 (11)

{ } .Atomics controller Switches Hosts Links= ∪ ∪ ∪ 	 (12)

The expressions (10)–(12) will be used to form struc-
ture (3).

5. Experimentation and results analysis

To conduct the experimentation, the following configu-
ration has been successfully used:

– software environment: OS Microsoft Windows 7 Pro, 
SP; Java Runtime Environment 1.7; VirtualBox-4.3.10; 
mininet-2.2.1-150420-ubuntu-14.04-server-i386 virtual ma-
chine; eclipse-SDK-3.6.1-win32; DEVS Suite 2.0.0 as simu-
lation environment; Xming X Server – to make it possible 
to visualize the topology of SDN network from Mininet 
in Windows environment; PuTTY utility – to connect to 
Linux-based virtual machine (where Mininet emulator is 
actually installed) from Windows-environment;

– hardware environment: central processing unit  
(CPU) – AMD Athlon 440 X3, 3GHz; random access mem-
ory (RAM) – 2 GB, 1333 MHz, DDR3.

To emulate SDN-network, the following resources 
have been allocated for the needs of virtual environment: 
1024 MB of RAM, 2 physical cores of CPU, 32 MB of video 
memory. The configuration of network interfaces for the 
Linux-based virtual environment: the first network adapt-
er has been chosen to be of Intel PRO/1000 MT Desktop 
(82540EM) type, the second one – of the same type, config-
ured as VirtualBox Host-Only Ethernet Adapter.

To simulate SDN network, the “ping all” scenario has 
been utilized: each host of network pings other hosts. The 
tree topology with parameter depth=2 has been chosen. 
The simulation has been conducted from the non-functional 
properties values aggregation viewpoint (ping delays). For 
these purposes, ping delays have been represented with 
structure (7). The resulting coupled DEVS-model has been 
implemented on a basis of (3), (10)–(12) expressions.

The results are given in Table 1, where the results of 
DEVS-driven simulation on a basis of the proposed strati-
fied approach are compared to the ones, obtained by way of 
emulation in Mininet environment.

Table 1

The results

No.
|Switches|, 

m
|Hosts|,  

n
( )1 , ,m nξ  
sec

( )2 , ,m nξ  
sec

( )3 , ,m nξ  
sec

1 1 2 5.667 5.518 0.228

2 3 4 5.985 5.946 0.411

3 4 9 6.427 6.515 0.735

4 5 16 9.489 9.611 1.213

In Table 1, ( )1 ,m nξ  – time to complete the “pingall” 
command in Mininet environment; ( )2 ,m nξ  – estimated 
values, obtained via DEVS Suite with respect to the pro-
posed approach; ( )3 ,m nξ  – actual time, spent on simulation. 
It can be noted that ( )3 ,m nξ  values are significantly lower 
than ( )1 ,m nξ  values – from 7.8 to 24.9 times.

On a basis of (5) and (6) expressions, the total number 
of all (just atomic) models synthesized is as follows: 8(7), 
16(15), 28(27), 44(43).

6. Discussion of approach checking results

The adequacy of the resulting coupled DEVS-model 
has been proven with t-criterion for degrees of freedom 

8 2 6df = − =  and significance level 0.05a = :

0.992 2.447,emp crt t= < =

where empt  – calculated value, crt  – critical value.
The lowering of time costs, as a result of the proposed ap-

proach to simulation usage, is prompted by the representation 
of non-functional properties – time costs – as estimated values.

The advantages of the proposed approach are condi-
tioned by the fact that it is aimed solely at simulation (not 
taking into consideration the emulation aspects). Here are 
some of these: network visualization-related labor costs low-
ering – no need to deploy Xming X Server and use PuTTY 
utility, working on widespread Windows-platform; easiness 
of system model reconfiguration.
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The drawback of the approach – impossible to test con-
troller software.

The proposed approach is going to be extended further in 
terms of verification aspects adoption – to check the consis-
tency of the resulting coupled model prior to the simulation. 
For this purpose, the model checking method can be success-
fully used [28]. One of the proved solutions to pay attention 
to is TLA+ formalism, based on the appropriate Temporal 
Logic of Actions [29]. It has been successfully used to check 
the Amazon web services design solutions [30]. Some steps 
in the direction of DEVS models TLA verification have also 
been done earlier [31].

7. Conclusions

1. The stratified approach to Software Defined Networks 
simulation, based on DEVS formalism, atomic and coupled 
models concepts usage, has been proposed. Controller-switch-
es and switches-hosts communication layers have been de-
fined. That allowed obtaining structured solutions, covering 
both functional and non-functional properties of a system.

2. Atomic simulation DEVS-models of active (controller, 
switch, host) and passive (link) components of the network 
(system), as well as the resulting DEVS-model of SDN net-
work itself, have been proposed. This allowed conducting the 
validation of the system by way of simulation with an accent 
on visualization and easiness of the coupled model reconfig-
uration to meet ad-hoc requirements prompting the altering 
nature of virtual topologies.

3. The validity of the proposed approach has been prov-
en experimentally. The adequacy of the resulting coupled 

DEVS-model has been proven with t-criterion. The results of 
DEVS-simulation have been compared to the results, obtained 
by way of emulation in Mininet environment. It has been 
shown during the case study on a basis of Mininet network 
testing scenario that the corresponding time costs are sig-
nificantly lower (when talking about the proposed approach 
usage) in comparison with the ones, obtained by way of emu-
lation in Mininet environment: from 7.8 to 24.9 times – on the 
utilized set of experimental data. Approach usage in Windows 
environment implies the following advantages: no need to uti-
lize Xming X Server and PuTTY utility.

Further research is aimed at mathematically strict TLA+ 
formalism adoption to check the consistency of the resulting 
coupled DEVS model prior to the simulation.
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