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defect-free design of human-machine systems [1, 2], for-

malization of such transformations is achieved by the use of

Fuzzy classification knowledge base design is carried
out according to the criteria of accuracy, complexity, and
interpretability. The design criteria are provided by grad-
ual transformations of the initial model. In the theory of

improving transformations.

Then improving transformations correspond to the addi-
tion (removal) of output classes, input terms, and rules. Im-
proving transformations allow formalization of the process




of generating the fuzzy knowledge base variants with the
simultaneous establishment of control variables that affect
the accuracy and complexity of the model. At the same time,
the system of fuzzy logic equations follows from the descrip-
tion of the tuning process in the language of V. M. Glush-
kov algorithmic algebras [3].

In practice, fuzzy classification knowledge bases are
tuned by generating the candidate rules with a further
selection of rules. Improving transformations for a given
granularity [4], when at the stage of generating the can-
didate rules it is possible to obtain the required number
of input terms are called formalized. In this case, only the
weights of rules are sufficient for selection. However, such
an approach provides lower inference accuracy. In general,
the knowledge base optimization problem is a problem of
granular min-max clustering [5], where the relation be-
tween design criteria is achieved by the level of granularity
of interval rules (hyperboxes).

2. Literature review and problem statement

Candidate rules for the min-max clustering problem [5]
are generated by means of multi-objective genetic algorithms
[6, 7] or min-max neural networks [8, 9]. Dimensions of hy-
perboxes are selected until the required inference accuracy
is achieved [6—9]. The preliminary method of partition is
determined by the boundaries of triangular membership
functions of candidate terms. However, the initial model is
redundant. The methods of candidate rule generation do not
guarantee the optimum number of rules and optimum gran-
ularity of input variables.

The number of terms and rules is determined during the
multi-objective evolutionary selection [10—12]. The purpose
of selection is to obtain a simplified and interpretable knowl-
edge base. Selection is implemented by choosing the best
configuration of terms and rules of zero option. The fitness
function is constructed on the basis of granularity measures,
which allow estimating the redundancy among fuzzy rules
[13]. Linguistic interpretation of the solutions obtained
requires the adjustment of preference relations between the
candidate terms [14, 15]. Criteria for the selection of terms
are the level of detail and the maximum size of the hyperbox
[16]. The selection process becomes more complicated with
increasing number of criteria, in particular, when taking into
account the rule length [12]. In addition to weights of rules,
such selection requires signs of the terms or their absence in
each rule.

The considered approach differs in computational com-
plexity due to the increasing number of rules. Both at the
stage of candidate rule generation and at the selection stage,
the control variables are the membership function parame-
ters in each rule. The proposed method consists in replacing
the tuning algorithm fragments with other fragments that
provide accuracy at lower cost. Improving transformations
of fuzzy classification knowledge bases are based on solving
fuzzy relational equations [17, 18]. As improving transfor-
mations, the following is proposed: transition to a composite
model for selecting the number of output classes and rules
[19-21]; transition to a relational model for selecting the
number of input terms [22, 23].

Composite transformation replaces the fragment of can-
didate rule generation. The problem of min-max clustering
is solved by generating composite rules in the form of in-

terval solutions of the trend system of equations [19-21].
The number of rules in a class is determined by the number
of solutions, and the granularity is determined by intervals
of values of input variables in rules. The set of minimum
solutions provides the minimum rule length [17, 18]. Simpli-
fication of the candidate rule generation process is achieved
through the sequential generation of solutions of the trend
equation system.

Relational transformation replaces the selection frag-
ment. Since the number of rules is already known, selection
of terms lies in the maximum approximation to the partition
by interval solutions of the trend equation system. Linguis-
tic interpretation of the resulting solutions is performed
by the relational partition of the space of input variables
[22, 23]. The level of detail and the density of coverage are
determined by the “input terms — output classes” relational
matrix, and the dimensions of hyperboxes are adjusted using
triangular membership functions. Simplification of the se-
lection process is achieved through a concise presentation of
rules in the form of a relational matrix.

3. The aim and objectives of the study

The aim of the work is to develop a method for optimiza-
tion of fuzzy classification knowledge bases using improving
transformations. The method should provide the construc-
tion of accurate, compact and interpretable knowledge bases.
At the same time, consistent use of composite and relational
models shall provide design process simplification.

To achieve this aim, the following objectives were ac-
complished:

—to develop logic-algorithmic models of improving
transformations;

— to develop a genetic algorithm for the fuzzy knowledge
base optimization.

4. Models and method of fuzzy classification knowledge
base optimization

4. 1. Logic-algorithmic models of improving transfor-
mations

Algorithms for tuning the fuzzy classification knowledge
base for the object y=f(xy,...,.x,) were described in the lan-
guage of V. M. Glushkov algorithmic algebras [3].

The linear operator structure corresponds to the algo-
rithm of tuning by means of an expert (without tuning to
the experimental data):

— for the zero option

A =L, )
— for the composite model
A =LLLL, @)
— for the relational model
A, =LL, 3)
Here L; and L, are the operators of tuning the structure

and parameters of expert fuzzy rules: I and L) — for the
zero option, Lf, L5 and L, L, for the trend and composite



models, L; and L, for the relational model; Ay, Ay, Ay are
equivalent operators of the linear structure for the zero op-
tion, composite and relational models, respectively.

To increase the inference accuracy, the operator of im-
proving by tuning to experimental data is used.

An alternative operator structure corresponds to the
partial case of the “accuracy control — tuning” algorithm for
the specified output classes:

— for the zero option

BO=A0(Y\/D10), 4)
— for the composite model

B=4 ( YVD1RD1C)r ®)

o (og)

— for the relational model
B,=A, (YvDy). (©)

Here Dy is the tuning operator in case of the specified
output classes: D/ — for the zero option, D and Dy — for
the trend and composite models, Dj — for the relational
model; o and o are the conditions that are checked during
the control, o, ®=1(0) — if the rules or relations satisfy (do
not satisfy) the inference accuracy requirements: ag — for the
zero option, wg and a. — for the trend and composite models,
o, — for the relational model; Y is the identity operator, cor-
responding to the fixation of the tuning results; By, By, By are
equivalent operators of the alternative structure for the zero
option, composite and relational models, respectively.

The iterative operator structure corresponds to the
general case of the “control-tuning” algorithm for unknown
output classes:

— for the zero option

Co=4,{ Dg}, @)
— for the composite model

{ DyD;}, )

o (og)

C1 = A1
— for the relational model
Cz = Az { Dzr} 9)

Here Dj is the tuning operator in case of unknown out-
put classes: D) — for the zero option, Dy and D; — for the
trend and composite models, D; — for the relational model;
Cy, Cy, Cy are equivalent operators of the iterative structure
for the zero option, composite and relational models, respec-
tively.

It is assumed that the tuning operator D, is executed
until the conditions o and ® become true. The truth of the
conditions o and o is determined by the correctness of
knowledge base construction. The condition — indicator of
correctness of knowledge base construction is described by a
series-parallel logical structure:

— for the zero option [18]

— for the composite model [19, 20]

oy =ig7{1:%wﬁ(xi =cl-,)}—>y=E,, J=1M,

o ()= pgz[igj{,:v?a{}”(xi =af }]—>y=dj,

j=tm, 1)

— for the relational model [23]

wr=_&{,v [ Vol (v, =a, ]}%yw@, j=tm. (12)

i=tn | 1=1k | s=1g;

Here d](.), Ejand dj are output classes of the zero option,
trend and composite models, respectively; mg, M and m are
the number of output classes; o; and o; are the micro condi-
tions of correctness of terms of the variable x; in rules and
relations: o — for the term a” in the rule jp of the class
d} of the zero option; ®; — for the initial term ¢y in the
relation ¢;xE; of the trend model; o — for the linguistic
modification @ of the term ¢; in the rule jp of the class d; of
the composite model; @}, — for the term ay; in the relation
aiisxd; of the relational model; zj.) and z; are the number of
rules in the class of the zero option and composite model;
k; and gy are the number of primary terms and linguistic
modifiers to evaluate the variable x;.

The parameters of improving operators are the number
of input terms, output classes, rules, and parameters of mem-
bership functions in logical conditions (10)—(12).

The stages of generation and selection of the zero option
rules are described by the same operator and logical struc-
tures. Then, as a result of improving transformations, we
obtain variants of the fuzzy knowledge base:

— without tuning to experimental data

Aog=A1Ay,

— with tuning to data for the specified output classes
Bo=B1B,,

— with tuning to data for unknown output classes
Co=C1Cs.

In this case, the condition of correctness of knowledge
base construction takes the form:

Olp=WROL-M.

The rules of improving transformations (2)—(12) allow
representing the generation of the knowledge base variants
as inference in a formal grammar [1]:

G=(Vy, Vy, S0, P),

where V; is the set of operator and logical functional units
(terminals), {L),15,LF%, L5 L, L5, L, L} and {o}; V, is the



set of operator and logical functional structures (nontermi-
nals), {Ag, By, Co} and {oo}; Sy is the zero option of a fuzzy
knowledge base; P is the set of improving transformations:
(D}, Df%,D;,,D},} and {o),af o)} for operators and log-
ical conditions; {A1, Ay, By, By, Ci, Co} and {wg, 0, ®,} for
operator and logical structures.

Fuzzy logic equations follow directly from the algorith-
mic descriptions (10)—(12).

4. 2. Problems of fuzzy classification knowledge base
optimization

We denote the set of input terms of the trend, composite
and relational models as:

{Clirens CutyseeerCatronn O, S = L5 Ty},

{aq,....aq)

and

{a“,...,am‘ erer liygpyeeey A Y={t, et}

where N, g and K are the number of input terms, N=k+...+k,,

K=gi+..tgn.
Let:

E Ey v —E, -
Y, ="' y") Ye=(y oy )

and

d d, v —d, —d,
Y, ="y Ya=(y 'y ")

are the vectors of the lower (upper) boundaries of the out-
put classes Ej and dj;

B, =(8",..5") Br=B".5"),
B, =(B".§"). Bo=(8" .5

and

B, =(B",..5"), B.=(B",..")

are the vectors of the lower (upper) boundaries of triangular
membership functions of fuzzy input terms of the trend, com-
posite and relational models; _

R, xE, =[r{]and Pca, xd, =[pj] - “input terms —
output classes” fuzzy relational matrices before and after
linguistic modification.

Then the solution vectors are:

‘I’1=(M7N’merXEy?EvX,h?d7RvETvETyB

—=a’

B.)
and
¥,=(K,m,Y,,Ys,P,B,B:)

for the composite and relational transformations, respectively.
We will estimate the fuzzy model quality based on the
mean square error (W), and complexity — based on the num-
ber of rules Z(¥) [20, 23].
For each improving transformation, the knowledge base
optimization problem is formulated in a direct and dual
statement.

Direct statement. To find the vector ¥, for which Z(¥)—
—min and e(¥)<e, where e is the maximum permissible
inference error.

Dual statement. To find the vector ¥, for which e(¥)—
—min and Z(¥)<Z, where Z is the maximum permissible
number of rules.

4. 3. Genetic algorithm

For the composite transformation, the chromosome con-
tains elements of the vector W4, and for the relational — el-
ements of the vector Ws. The number of classes, rules, and
terms is determined using arrangement vectors [23]. The
elements of arrangement vectors are 1(0), which means the
addition (removal) of classes, rules, and terms.

For the composite transformation, the initial population
is generated for all output classes, and for the relational — for
all input terms. This ensures the maximum approximation
to the partition by interval solutions of the trend equation
system. Then the elements of the partition matrix determine
the degree of coverage of projections of hyperboxes [B” ,pr]
by the interval [B*,B"]. -

Let us define the fitness function for the solution ¥. For
the direct problem, we choose the function 1/Z(¥), inverse
to the target one. For the dual problem, we choose the func-
tion 1-8(¥), where S(T)ze(‘P)/(y—y) is the normalized
mean square error. B

The accounting of restrictions of constrained optimiza-
tion problems is carried out by fining the chromosomes, and
the fitness function combines the target and penalty func-
tions. According to [2], when leaving the admissible area,
the chromosome is subject to fining, reducing the value of
the target function. The amount of a penalty depends on the
distance to a zone of permissible solutions and reflects the
quality of the current population.

Thus, the fitness function for the solution ¥ has the
form [2]:

— for the direct problem

———,if ¥ — permissible solution,
] Z(Y)

F ()= —Q(P)

,otherwise;
Z(¥)

— for the dual problem

Fr(%)= (1-8('¥)),if ¥ — permissible solution,
“A=8(¥))(1-Q"(¥)), otherwise,
where Q'(¥)e[0,1] and Q”(¥)e[0,1] are penalty func-
tions that take into account the violation of constraints
of direct and dual optimization problems by the chromo-
some Y.
The penalty function is defined as the relation [2]:

Ae('P) or Q”(T):Az(q’),
Ae AZ

max max

Q¥)= (13)

where Ae(¥)=e(¥)—e or AZ(P)=Z(¥)-Z is the de-
viation from the permissible value for the solution ¥;
Alpax OT AZp .« is the maximum deviation in the current
population.

Penalties (13) vary for the same violations of constraints
in different populations of chromosomes. An adaptation of
penalties (13) to the population quality allows distancing



high-quality solutions from low-quality ones during the se-
lection [2]. Following [2], it is expedient to use tournament
selection, which does not require tuning the penalty coeffi-
cients to take into account constraints.

5. Example: time series forecasting

The problem of forecasting the number of comments after
the publication of a post in a social network is considered
[24]. Experimental data were obtained from [25].

Input parameters are: x{—x3 — the number of comments
for the last, the penultimate and the first day of observa-
tion, respectively, xy.3€[0, 250]; x4 — observation window,
x4e[1, 72] hours; x5 — forecasting time-frame (H), xs5e[1, 24]
hours. The output parameter is: y — the number of comments
in the next H hours, ye[0, 250].

The indicator of the model accuracy is: Py — the
probability of a correct forecast of top 10 posts, which will
receive the largest number of comments. The task was to find
an option of the knowledge base, which provides: Z—min
and Ppio 20.7 in a direct statement; P, sp—max and Z <30
in a dual statement.

As a result of the relational transformation, the number
of primary input and output terms for the direct and dual
problems was M=3, k;5=3.

The system of fuzzy relational equations for rule genera-

tion has the form:

W5 = A0.90)v (1 A0.41)v (™ A0.22)] A

AL A0.99)v (1 A0.89)v (L™ A0.62)] A
AL A0.87)v (1 A0.64)v (1 A0.26)] A
AL A0.45)v (U A0.59)v (L A0.93)] A
AL A0.95)v (U A0.46)v (L™ A0.30)];

W =[(u A0.35)v (1™ A0.83)v (1™ A0.56)] A

AU A017)v (U= A0.61) v (U™ A0.84)] A
AU A0.23) v (U A0.89) v (U™ A0.47)] A
AU A0.68) v (L A0.82) v (L A0.32)]A
A5 A0.62) v (U™ A0.90)v (L™ A0.68)];

B =™ A0.11) v (u A0.50) v (u® A0.74)] A

A(U™ A0.08) v (U™ A0.75) v (L™ A0.38)] A
AU A0.12) v (U™ A0.50) v (L™ A0.75)] A
AU A0.92) v (U A0.46) v (L A0.12)] A
AU A0.20) v (U= A0.77) v (L A0.89)].

(14)

Using the genetic algorithm, a set of solutions for B-pa-

rameters of candidate rules was obtained (Table 1).

Table 1
A set of values of -parameters in solutions of the trend system of equations
No. IF THEN
X1 X2 X3 X4 X5 Yy
11 [0, 25] [30, 40] [0, 4]
12 [0, 25] [25, 112] [36, 50] [0, 4] [0?115’0]
13 [0, 25] [0, 125] [0, 25] [55,72] [0, 4]
21 52 [30, 45] [0, 5]
22 52 [52, 105] [36, 55] [0,5] do,
23 [0, 52] [79, 105] [100, 140] [61,72] [0, 8] [35,100]
24 [0, 52] 52 [86, 100] [61,72] [0, 8]
31 [105, 140] [20, 29] [0, 16]
32 [73, 105] [89, 175] [29, 43] [6, 24]
33 [105, 163] 200 [29, 43] (6, 24] d,,
34 [73,105] 89 [105, 163] [46, 72] (6, 24] [75, 110]
35 [105, 140] [55, 89] [160, 197] [46, 72] (6, 24]
41 [125, 180] [10, 30] [4, 18]
42 [87, 125] [168, 250] [39, 50] (7, 24]
43 [125, 180] [120, 140] [39, 50] [7, 24] [907‘1’50]
44 [125, 180] [168, 210] [90, 125] [61,72] (7, 24]
45 [87, 125] [120, 168] [160, 197] [61,72] (7, 24]
51 [160, 197] [12, 30] [7,18]
52 [112, 160] [174, 210] [32, 50] [12, 24] ds,
53 [160, 197] 210 [112, 160] [46, 72] [12, 24] [130, 190]
54 [160, 185] [140, 174] [160, 197] [46,72] [12, 24]
61 203 [0, 29] [11,16]
62 203 165 [29, 43] [20, 24] J
63 [184, 203] [165, 203] [202, 250] [40, 60] [20, 24] [17562’20]
64 [184, 203] 203 [171,202] [40, 60] [20, 24]
71 [217, 250] [0, 27] [12, 18]
72 [217, 250] [118, 153] [20, 42] [22, 24]
73 [217, 250] [160, 207] [31, 50] [22, 24] [195250]
74 [168, 250] [118, 153] [200, 250] [40, 46] [22, 24]
75 [168, 250] [160, 207] [167, 196] [40, 46] [22, 24]

Note: * — output classes (rules) for the dual problem



The set of interval rules (Table 1) corresponds to the set
of solutions of the system of equations (14), where the mini-
mum solutions determine the rule length:

S(d,)={0.86U[0.86, 1] — ", u ,u us;
[0.86,1]U[0, 0.86]— ", u;
0.23-pu™;[0,0.23]—p™, u™, nu, u;

[0, 0.14] = p®2, w5 [0, ] =, poe s

S(d,)={0.61U[0.61,1]— ", ,u;
[0.61,1]U[0,0.61] - ,u;
[0.61,1]U[0.35,0.61]U[0,0.61] - u;

[0.35, 1] °:[0.35,0.50]U[0, 0.50] — i ;
0.35U[0,0.35]—u‘;

[0,0.20] - [0, 0.1 1] - 0, 1] -

S(d,)=1{0.57U[0.57,1] — =, u;
[0,0.57]U[0.57, 1] -, u pfe = s,
[0,0.57]U[0.41,0.57]U[0.57, 1] —

[0,0.50] - 5[0, 0.46] - 0.41U[0, 0.41] -
[0,0.38] —pu; [0, 1] - 1w };

S(d,)={0.83U[0.83,1] - p 1 ue u;
[0,0.64]—p*;[0,0.59] — p;

050 — I,Lcn ,uc‘“ ; [0, 050] _ uCrs ’“E33 ;
[0,0.46]—u;[0,0.41] — [0, 1] - u = };

S(d;)={0.68U[0.68, 1] — =, u»,pn;
[0.68, 1]U[0, 0.68] — s, u% u;
[0,0.50]— %, 0.46U[0, 0.46] —
[0,0.41] =™, n™;

[0, 4] =™, ™, u )

S(dy)={0.54U[0.54, 1] — % u = u,;
[0,0.54]U[0.54, 1]— 1 ,u; [0, 0.54] — >, u;
[0,0.47]—p,15[0,0.22] -, uoe;

[0, 1] —p™, u,u ek

S(d,;)={0.74U[0.74, 1] -, =, u" ,u;
[0.74,1]U[0, 0.74] - " ,u;

10,0.68] 173 [0,0.61]~ 5[0, 0.47 |~
[0,0.22] = 50, 1] = 1 1.

As a result of the composite transformation, the number
of output classes and rules was m=>5, Z=21 for the direct
problem; m=7, Z=30 for the dual problem.

As a result of the relational transformation, the number
of output classes and input terms was m=>5, q1_3=5, q4=6,
q5=>5 for the direct problem; m=7, q1.3=7, q;=6, q5=>5 for the
dual problem.

The fuzzy partition matrix for the direct and dual prob-
lems is presented in Table 2. Composite terms were obtained
through linguistic modification: little (L) — very little (vL);

average (A) — lower (higher) than average (IA, hA); big (B) —
very big (vB).

The relation matrix (Table 2) is a concise form of presen-
tation of the rules, the length of which can be variable. This
means that for the incomplete composite “inputs — output”
rules (Table 1), the relational “input — output” rules are ab-
sent in Table 2. Therefore, for each element of the partition
matrix, the number of the composite rule in the output class
is specified. This allows reproducing the measurability of
hyperboxes over the partition matrix.

Table 2
Fuzzy “input terms — output classes” partition matrix
. THEN y
oL L 1A* A hA B* vB
ol |0.96'3(0.92!4 0 0 0 0 0
L 0 0.98"2] 0.7124 | 0.34%° 0 0 0
1A* 0 0 0.621 | 09125 0 0 0
x| A 0 0 0.76135 | 0.64' | 0.832 0 0
hA 0 0 0.60% |0.85%34|0.7914 ] 0.5112|0.624°
B* 0 0 0 0 0.6813 | 0.84'40.9145
vB 0 0 0 0 0 0 0.95!
ol |0.68%3 0 0 0 0 0 0
L 0.94%3(0.83%4| 0.85° 0 0 0 0
1A% 10.85%3 | 0.86%° | 0.69%%5 0 0 0 0
2 A | 054 | 0.38%% | 0.942 | 0.87%5 | 0.64% 0 0.56%4
hA 0 0 0.672 | 0.69%% | 0.61>4 | 0.73%3 [0.64%>
B* 0 0 0.89% | 0.90%% | 0.76%% | 0.7934|0.87%°
vB 0 0 0 0.8124 | 0.50%° 0 [0.39%
ol | 0.57° 0 0 0 0 0 0
L 0 0.50% 0 0 0 0 0
1A* 0 0.6234] 0.65 0.824 0 0 0
x| A 0 0.91% | 0.86% 0.91% | 0.75° 0 0
hA 0 0 0.61%5 | 0.86° | 0.72%4| 0.69* | 0.54°
B* 0 0 0.83° 0.885 | 0.80% | 0.84%40.90%>
vB 0 0 0 0 0.43% | 0.75% | 0.93%
L 0 0 0 0.50! 0.59' | 0.90' | 0.97!
IA 0 0 0.84'3 | 081" |0.75"%]091"%|0.96"2
A | 068! 0.74' | 0.89%% | 0.63%3 | 0.90% | 0.822 |0.78%°
X/l hA | 0.652 | 0.862 | 0.8025 | 0.7223 | 0.7424 | 0.6824(0.703>
B | 0.98% [0.80%4| 0.97%° | 0.80%° | 0.93%% | 0.74%4 0
oB | 1.00% [ 0.95%%| 0.95%5 | 0.94%4° | 0.98%4 0 0
L {0.90'30.92'4| 0.46'5 | 0.48! 0 0 0
IA 0 0.8434] 0.8315 | 0.69'5 | 0.75! 0 0
x5 A 0 0 0.87'-5 | 0.7215 | 0.77'4 | 0.80' | 0.60!
hA 0 0 0.60'3 | 0.65'> | 0.6314]0.5914| 0.65
B 0 0 0.9225 | 0.94%° | 0.8824 | 0.922410.91%4

Note: * — output classes and input terms for the dual problem

Parameters of membership functions of the trend and
composite models are shown in Table. 3. The membership
functions of fuzzy terms are presented in Fig. 1.

Linguistic interpretation of B-parameters for the direct
and dual problems is presented in Table 4.



Parameters of membership functions of the trend and composite models

Table 3

Input Parameter Trend model Composite model
P L A B oL L A A hA B B
E 0 55 160 0 40 80 92 137 177 186
. =
" B 114 197 250 49 98 115 152 195 206 250
E 1 20 46 - 1 16 28 37 52 59
X =
! B 30 50 72 - 22 34 44 56 65 72
B 1 7 16 - 1 4 9 14 20 -
X =
’ B 10 18 23 - 6 12 17 29 24 -
) VIT ‘ L ‘ ]A ‘A ‘ hA ‘ B‘ vB 1 L 1A A hA‘ B vB
0 . . . . . ) . . . X3 g . . |
0 25 50 75 100 125 150 175 200 225 250 0 10 20 30 40 50 60 70
a b
1 L N A hA B
0 1 1 1 XS
0 3 6 9 12 15 18 21 24
c
Fig. 1. Membership functions of fuzzy terms of variables: a — x1.3; b — x4; ¢ — X35
Table 4
Linguistic interpretation of solutions of the direct/dual problems
No IF THEN
: X4 L) X3 Xy X5 Y
11 oL A L
12 oL oL-L/vL-IA hA L oL
13 oL oL-A oL B-vB L
21 L A L
22 )3 L-A/L-IA hA )3 B
23 oL-L L-A/L-IA A/IA-A B-uB L-IA
24 oL-L L L/L-IA B-vB L-IA
31 IA-A IA L-hA
32 L-IA IA-hA IA-hA L-B
33 IA-hA B IA-hA L-B 1A*
34 L-IA IA IA-hA hA-vB L-B
35 IA-A L-IA hA-B hA-vB L-B
41 A-hA L-IA L-hA
42 L-A/IA-A hA-vB A-hA IA-B
43 A-hA A A-hA IA-B A
44 A-hA hA-vB/hA-B A/IA-A B-vB IA-B
45 L-A/IA-A A-hA hA/hA-B B-0B IA-B
51 hA/hA-B L-IA IA-hA
52 A-hA hA-vB/hA-B IA-hA A-B
53 hA/hA-B vB/B A-hA hA-0B A-B hA
54 hA A-hA hA-vB/hA-B hA-vB A-B
61 B L-IA A-hA
62 B hA IA-hA hA-B
63 hA-B hA-B B-vB hA-B hA-B B*
64 hA-B B hA-B hA-B hA-B
71 vB L-IA A-hA
72 vB A-hA IA-A B
73 vB hA-vB/hA-B A-hA B B
74 hA-vB/B-vB A-hA vB/B-0B hA B v
75 hA-vB/B-vB hA-vB/hA-B hA/hA-B hA B

Notes: * — output classes (rules) for the dual problem



The linguistic model (Table 4) ensures the forecasting
correctness at the level of Py,19=0.71 for the direct prob-
lem; Po,10=0.83 for the dual problem.

6. Discussion of the results of effectiveness estimation of
improving transformations

The papers [19-23] proposed methods for simplifying
the process of tuning a fuzzy knowledge base for the speci-
fied (unknown) output classes and input terms.

The given method uses these results as improving trans-
formations that replace fragments of the granular min-max
clustering algorithm. The principal difference of this method
is the establishment of control variables in improving trans-
formations that allow formalizing the fuzzy knowledge base
generation. The effectiveness estimates of improving trans-
formations are given below.

Candidate rule generation requires solving the optimi-
zation problem with 2nZy+2m, variables for boundaries of
interval rules and boundaries of output classes [4, 5, 7—11].
Application of the composite transformation allows reducing
the number of tuning parameters by solving Z optimiza-
tion problems for 2m boundaries of output classes [19-21].
2N variables for boundaries of -parameters of the rules are sub-
ject to tuning. At the same time, the rule length is determined
by minimum solutions. Rule generator tuning is the optimi-
zation problem with 2N+2M+NM variables for the relational
matrix and boundaries of triangular membership functions.

Selection, that is, finding the best configuration of terms
and rules of zero option, requires solving the optimiza-
tion problem with 2Ky+2mg+nZ, variables. The boundaries
of triangular membership functions, a term sign with the
possibility of tuning the rule length, as well as the degree
of relevance of rules are subject to tuning [4, 5, 7-11,
15, 16]. In the case of Z solutions of the trend system of
equations, selection is reduced to maintaining the level of
detail and density of coverage. Application of the relational
transformation reduces the number of tuning parameters
to 2K+2m+Km for the partition matrices and boundaries of
triangular membership functions [23].

For time series forecasting problems, the model tuning
time from the moment the new experimental data appear
shall not exceed the forecasting time-frame. The minimum
value of this parameter for the problem of forecasting the
number of comments in a social network is 1 hour. The time
of tuning according to the method [4, 5, 7-11, 15, 16] is

72 min, which exceeds the forecasting time-frame. The tun-
ing time for this method is 21 min (Intel Core 2 Duo P7350
2.0 GHz processor).

A restriction of the proposed method is the use of im-
proving transformations for fuzzy knowledge bases of clas-
sification type.

7. Conclusions

1. Logic-algorithmic models of improving transforma-
tions for the fuzzy classification knowledge base are pro-
posed. Such transformations are transition to a composite
or relational fuzzy model. The composite model represents
interval solutions of the trend system of fuzzy logic equa-
tions. The number of rules in a class is determined by the
number of solutions, and the granularity is determined by
intervals of values of input variables in rules. The set of
minimum solutions provides the minimum rule length. The
relational model represents a linguistic interpretation of the
resulting solutions. The level of detail and the density of
coverage are determined by the “input terms — output class-
es” relational matrix, and the dimensions of hyperboxes are
tuned using triangular membership functions. Composite
transformation provides the choice of the number of output
classes and rules, the relational — the choice of the number
of input terms.

2. The method of fuzzy classification knowledge base
optimization using improving transformations is proposed.
Improving transformations allow formalizing the generation
of fuzzy knowledge base variants with the simultaneous
establishment of control variables that affect the accuracy
and complexity of the model. This solves the problem of
redundancy of terms and rules in min-max clustering prob-
lems. The choice of control variables (the number of classes,
terms, and rules) is carried out using the genetic algorithm.
At the same time, consistent use of composite and relational
improving transformations provides tuning process simpli-
fication.
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