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Posenanymo caabkoneniniiiny mMooeib nomupenis ma
63aeM001i X6Ub 63006JiC NOBEPXOHL KOHMAKMY Y 2i0po-
Junamiunitl cucmemi <piokuil nienpocmip — wap — wap
3 meepdoro Kpuwkoio», nasedeno nepwi mpu ii JiMii-
Hi HAOMUINCEHHS, OMPUMAHO YMOBY NOWUPEHHS X6UJIb
6300691c nosepxonv xKonmaxmy. Ilpoananizoeano saneic-
HiCMb 6I0HOWEHH AMNIIMYO X6UIb HA NOBEPXHAX KOH-
makmy npu piznux 2eomempuyHux ma Qizuunux napa-
Mmempax cucmemu. /Jocaioiceno cmpykmypy Xeuav06ux
PYxie Ha nogepxuax konmaxmy. Pesynomamu docnioxncen-
HS MONCYMb OYymu suxopucmani npu po3podui anzopum-
Mi6 OemexmyeanHs XeUNb06UX PYXie Y PiHUX pPioKux
cepedosumax

Kmouosi cnosa: 63aemodia xeéunv, mpuwaposa 2io-
poounamivna cucmema, amMnaimyou Xeuio, 6i0HOUEHHA
amnaimyo

[, yu

Paccmompena caaboneauneiinas mooenv pacnpo-
cmpanenus u 63aumo0eilicmeus 60JiH 6007t NOBEPXHOCHEN
Konmaxma 6 2u0poOUHAMUMECKOU CcucmeMme <ICUoKoe
NoOYNPOCMPAHCMeEo — CIOU — CAOU C MBEPOOU KPLLUKOU >,
npugedenvt nepevie mpu eé auHelHvle NPUOTUINCEHUS,
nOYHEHO YC06UE PACHPOCMPAHEHUS BOJIH 8001 NOGEPX -
Hocmeil xonmaxma. Ilpoananusuposana 3aeucumocmo
OmHOWEHUS AMNIAUMYO BOJIH HA NOBEPXHOCMAX KOHMAK-
ma om pasiuuHbIx 260 MEMPUHECKUX U PUIUMECKUX napa-
Mempos cucmemvt. Hccnedosana cmpyxmypa 601H08bIX
dewicenuii na nogepxnocmsax xowmaxma. Pesynvmamo:
uccnedosanus mozym Gvimv UCNOTIBLIOGAHLL NPU PA3PA-
OomKe anzopummos 0emexmupoB8anust 60JIHOGLIX 06UINCe-
HUIL 8 PA3IUMHBIX HCUOKUX CPedax

Kmouesvie crosa: 6zaumodeticmeue 60, mpexcioti-
Has 2u0poouHaMUMECKAs. CUCTEMA, AMNIUMYObL GOJIH,
omHowenue amnaumyo

| =,
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Exploration of wave phenomena in fluids of different
types is one of the most difficult problems of modern science
as it needs serious mathematical methods and construction
of quite sophisticated mathematical models. Numerical and
analytical research in such models requires creation of new
approaches and application of modern CMS. A new impetus
to the study of waves in the World Ocean was given by
practical use of the energy component of propagation and
interaction of waves. One of the problems with this is timely
detection of internal wave motions.

2. Literature review and problem statement

Research into properties of propagation and interaction
of different wave motions in hydrodynamic systems of vari-
ous types is one of the relevant problems of modern theoret-
ical and experimental hydrodynamics.

In paper [1], the problem of oscillations of the contact
surface of two non-mixed viscous non-compressible liquids
over the hard bottom in the gravitational field was explored.
Correctness of the problem both with taking into account

surface tension and without it was proved. The paper con-
sidered the case when heavier fluid is above. In this case, the
Rayleigh-Taylor instability was found to be stabilized due to
significant surface tension.

Article [2] examines high-frequency internal wave mo-
tions, observed in the Mediterranean Sea at a considerable
depth. These wave motions are unusual for this sea. The
causes of occurrence of such waves, associated with climate
changes, were established.

Study [3] describes a new method of detection of param-
eters of internal waves by SAR-image. The new method was
tested in the South China Sea, where the amplitudes and the
phase velocities of internal waves were studied. Actual data
were compared with the data, obtained using a new method
of analysis of SAR images. Root mean square and relative
error are 1 % and 7 %, respectively, which indicates applica-
bility of the new method.

Paper [4] is devoted to studying scattering of linear
waves in periodic multi-layer media. The Hemholtz equation
is solved numerically using the method of perturbation of
high order. The results of numerical modeling show spectral
convergence of the proposed method.

Article [5] contains solution of the Korteweg-de-Vries
equation in the assigned form of nodal waves and solitons




for shallow water. Based on the obtained solution, numerical
analysis for studying wave motions in the Baltic Sea in the
framework of the three-layered model was carried out. An
increase in the amplitude of a wave and a decrease in phase
velocity in shallow waters were clearly demonstrated. Criti-
cal parameters of internal waves were determined.

In paper [6], wave motions in the South China Sea and
related phenomena are explored. The topography of the dou-
ble ridge, the Earth’s rotation, changes in stratification have
great impact on wave propagation. Assessment of these ef-
fects allows us with great precision to simulate internal tides
in the sea. The specified effects were found to lead to a daily
decrease in barotropic internal tides in the Luzon strait.

Research [7] is devoted to exploration of wave propaga-
tion in a three-layer system “layer of reinforced fiber — po-
rous cross-elastic layer — viscoelastic half-space”. Based on
solution for velocities, obtained in a closed analytic form,
a significant effect of parameters on phase velocity of wave
propagation was revealed. The resulting model was tested
for the system, which consists of the upper epoxy resin layer,
reinforced by fiber, the cross-elastic layer of sandstone and
the viscoelastic half-space.

In paper [8], internal waves, which propagate over the
ridge in a two-layered liquid, were studied. The paper con-
sidered three types of interaction: weak, moderate or strong.
It was found that different types of interaction between
waves and the ridge are related to a modified blockage de-
gree. It was found that the maximum speed of a wave, loss of
energy and amplitude of waves have self-similar characteris-
tic with the blockage degree.

In article [9], dispersion analysis of surface waves, which
occur on the surface of the contact of liquid and homoge-
neous elastic body, was conducted. Analysis is performed by
finding the roots of secular equation and research in physical
content. Complete analysis of variance, with special focusing
on the frequency range, in which phase velocity of shear
waves is higher than velocity of fluid waves, was conducted.

Paper [10] addresses experimental study of formation of
harmonic waves as a result of interaction of internal waves.
It was found that at a collision of two non-resonant internal
waves, harmonics are formed by the sum and difference of
multiple frequencies of waves’ collision. Phenomenon of
transfer of relative kinetic energy from non-resonant waves
to formation of harmonics after a collision was discovered
experimentally

Paper [11] studied stability of gravity surface waves in a
fluid of finite depth in the presence of surface tension. Solu-
tions in the form of periodic waves that are formed under the
influence of gravity and surface tension were found. Spectral
stability of these waves was examined by the Hill method. It
was revealed that taking into account surface tension does
not lead to disappearance of phenomena of waves’ instability,
which was proved for waves of small amplitude.

Article [12] is dedicated to the study of periodic waves
at the surface of the contact between two liquid layers of
constant density, including waves with overturned crests.
The study of these waves is carried out with assumption of
continuity by physical parameters: the Bond and Atwood
numbers, as well as by an average shear. Using the continu-
ation methood, different cases, which illustrate application
of the criteria of the global bifurcation theorem of Ambrose,
are considered. Bifurcation surfaces, which are both invert-
ed and self-intersecting, are constructed. The relationship

between the Stokes second harmonics of wave propagation
and the form of bifurcation surfaces is outlined.

Study [13] presented a new non-hydrostatic model of the
ocean with the coordinate system that is isopycnal by the
vertical. The motivation of introduction of such a system
lies in proper consideration of non-hydrostatic dispersion
and studying formation of nonlinear internal single waves.
Consideration of such a model in terms of calculation is the
best because it allows us to use a smaller number of nodes of
the computational grid and eliminates losses of amplitude of
single waves. It was demonstrated that the specified model
can describe nonlinear internal single waves for simplified
the physically realistic problems of the ocean.

In paper [14], the authors received a new system of equa-
tions of the Boussinesq type for the study of interaction be-
tween long nonlinear waves in two-layered fluid of finite depth.
Based on the derived equations, they developed an analytical
model for the study of the evolution of the resonant triad, which
consists of a surface wave and two sub-harmonious internal
waves. The paper considers wave attenuation associated with
weak viscosity of fluid. It was found that in viscous liquids,
amplitude of surface waves should be larger than some critical
value in order to overcome attenuation and to cause internal
response waves. Dependence of critical amplitude, as well as
the rate of increase and attenuation of internal waves on the
depth, density and ratio of viscosity of liquid layers, amplitude
and frequency of a surface wave, was studied.

Article [15] examines capillary-gravity wave motions in
three-layer fluid in linear approximation. The authors ob-
tained dispersion ratio and found analytical expressions for
relationship of amplitudes of the waves that propagate on the
contact surfaces. The latest ratios were analyzed depending
on parameters of a hydrodynamic system.

Paper [16] proposes an analysis of waves’ propagation in
the two-layer hydrodynamic system “hard-bottomed layer —
free surface layer”. Using the method of large-scale expan-
sions, the first three linear approximations of a nonlinear
problem were obtained. Solutions of the first linear approx-
imation were constructed and analyzed. Based on analysis
of the ratio of amplitudes of the internal and surface waves,
the interaction of wave motions in the studied system was
analyzed. Further research of propagation and interaction
of wave packets in the system “hard-bottomed layer — free
surface layer” was carried out in papers [17-19], where, in
particular, modular stability of wave packets was analyzed
and conditions of origin and shape of waves were studied.

A large number of studies, related to propagation and
interaction of wave motions in different types of systems are
associated with mathematical complexity and lack of gen-
eral approaches when constructing models. In fact, for each
hydrodynamic system, you need to construct a new, and,
often, more than one model, which makes it possible to fully
explore wave processes in this system.

3. The aim and objectives of the study

The aim of present research is to analyze propagation
and interaction of waves along the contact surfaces in a
three-layer hydrodynamic system “liquid half-space — lay-
er — layer with a lid”. This will give the opportunity to assess
more accurately and in detail the wave processes and wave
interaction of three-layer systems.



To accomplish the set goal, the following problems were
to be solved:

— to obtain the first three linear approximations of the
weakly nonlinear problem that is explored,;

— to determine the structure of wave motions in the stud-
ied system based on the ratio of amplitudes of the waves that
propagate along different contact surfaces.

4. Statement and solution to a problem of waves’
propagation in a three-layer hydrodynamic system

4. 1. Mathematical statement of the problem and re-
search method

We explore the problem of propagation of three-dimen-
sional wave packets of finite amplitude on the surface of a
liquid layer

Q, ={(x,2): |r|<eo, —0<2<0}
with density p,, a middle liquid layer
Q,={(x.2): [a| <o, hy<z<h,+hy}
with density p,and the upper liquid layer
Q,={(x,2): [a| <o, hy<z<h,+h}

with density p,. Layers Q, and Q, are separated by the con-
tact surface z=n,(x, ¢), and layers Q, and Q, are separated
by the contact surface z=h,+n,(x, £). When solving the prob-
lem, we take into account the forces of surface tension on the
surfaces of contact. Gravity is directed perpendicularly to
the contact surface in negative z-direction.

Mathematical statement of the problem has the following
form:
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where o and B are the coefficients of nonlinearity. Subse-
quently, we will consider the case when a<1, and p=1.

To solve the set problem, we will use the method of
multyscale expansions of the third order [20]. We will rep-
resent the desired functions of elevation of contact surfaces
and potentials of velocities in the form

3
N 0) =Y 0, (30, Xy, 2,6, 1, )+ O(), i =1,2,

n=1

3
¢,(x,z,0) = 20("71(9/."(xo,xl,xz,z,to,tl,tz) +0(ar),
n=1

=123, 2)
where x,=a*x and ¢,=a*t (k=0, 1, 2).

Below, there are notations of linear approximations and
analysis of the roots of dispersion equation.

4.2. Statement of the first three approximations of
the problem

Having applied the method of multyscale expansions and
equating expressions at the same powers o, we will get three
linear problems.

The problem on the first approximation (at o)
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The problem on the second approximation (at o')
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The problem on the third approximation (at o?)
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5. Dispersion equation and solutions of
the first approximation

The problem of propagation of waves in a three-layer
hydrodynamic system in the first approximation is a linear
boundary value problem of the second order, the solutions
of which were sought for in the form of progressive waves.
As a result, the condition of waves’ origin in the studied
three-layer system in the form of the dispersion equation was
detected (4).

p,0’cth(kh,)+

+ psz(_p2m2 +(—p10)2 +h(p,—py)+ T1k3 )cth(kh,)) _
_pszCth(khz)+(_p1w2 + k(p1 - P2)+ T1k3)

=k(p2 —p3)+T2k3. “)

Dispersion equation (4) is a biquadratic equation relative
to frequency @
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Equation (5) has two pairs of roots — frequencies of cen-
ters of the wave package
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where
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c= (T1k3 + k(p1 - pz))(k(pz - P3)+ Tzkg)

Physical reliability of the results is proved by two lim-
ited cases, in which a three-layer system degenerates into a
two-layer system “layer with a lid — half-space” [21].

The first limited case occurs under conditions of equality
of two layers’ density p,=p,=0.9. In this case, we have a layer
of liquid, limited from the top by a rigid lid and liquid half-
space under it with the contact surface contact n,. The sec-
ond limited case occurs under conditions of equality of two
lower layers’ density p,=p,=1. In this case, we have a layer of
liquid, bounded from the top by the lid and half-space with
contact surface n,. Comparative analysis of frequencies from
the thickness of the top layer showed coincidences of the in-
dicated dependencies with shear by thickness of the middle
layer p,=1, which also proves physical reliability.

According to (6), there are two pairs of independent
solutions for a linear problem (3),
—for o,
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where 1! is the wave-response to wave n{’ with frequency
o, and amplitude A, which propagates on the lower contact
surface. n(? is the wave-response to wave 1 with frequency
o, and amplitude B, which propagates on the upper contact

surface.

6. Analysis of solutions of the problem of
propagation of wave processes in
the examined system

6. 1. Dependence of ratios of amplitudes of elevations
of contact surfaces on geometrical parameters

In the first approximation of the problem, we will car-
ry out analysis of the ratio of amplitudes of elevations of
the lower surface of contact m,(x,¢) and upper surface of
contact M,(x,¢), which correspond to ®? and w3. We will
designate these ratios as a, and a,, respectively

a = Pzwah(khz )+ (91“)? —kp, +kp, - T1k3 )sh(kh,)
1 9 )
P, ]

®

oz Py,
2 pywich(khy)+(p,w, —kp, +kp, — T,k )sh(kh,)’

where a, characterizes contribution of the wave with
frequency o, to wave motion on the surface of contact of
liquid media Q, and Q,, and value a,is the contribution
of the wave with frequency o, to wave mo-
tion on the surface of contact of liquid media
Q, and Q,.

Fig. 1, a, b shows dependences of a, and a,
on the thickness of the upper layer 4, at different
wave numbers £=0.1, 0.3, 0.5, 0.7, 1 in the case
when k,=1, T=T,=0, p,=1, p,=0.9, p,=0.8. At an
increase in the thickness of the upper layer for
each fixed value of &, there are limited values,
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to which values a, and a, tend, in this case
coefficient a, acquires positive values, while
coefficient a, acquires negative values.

Fig. 1, ¢, d shows dependences of a,and a,
on the thickness of the upper layer 4, at differ-
ent wave numbers £=0.1, 0.3, 0.5, 0.7, 1 in the
case when h,=1, T=T,=0, p,=1, p,=0.95, p,=0.8.
As in the previous graph, for each fixed value
of k, there are limited values, to which values
a, and a,tend.

We will note that at equal density jump on the contact
surfaces p,—p,=p,—p,;=0.1, coefficients a, and a, are equal by
module (Fig. 1, a, b). If density jump on the lower contact
surface p,—p,=0.05, and density jump on the upper contact
surface p,—p,=0.15, then |a,[>|a,]. Change in density p, sig-
nificantly influences both a, for waves with frequency w,,
and a, for waves with frequency o,. An increase in value of
density of the middle layer p, from 0.9 to 0.95 leads to an
increase in values of ¢, and in increase in absolute value of
a,, in addition, a change in density p, has much more consid-
erable impact on a, than on a,.

We will note that when plotting the charts, the region of
determining of @, and a, was taken in the interval from h,=1,
because for small values of thickness of the upper layer, the
linear model is not acceptable.
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Fig. 1. Dependence of a, and a, on thickness of the upper
layer h,at k=0.1, 0.3, 0.5, 0.7, 1, h,=1, T=T,=0, p,=1,
p,=0.8; a, b—p,=0.9; ¢, d— p,=0.95

6. 3. Analysis of dependences of ratios of amplitudes
of contact surfaces’ elevation on physical parameters

Analysis of the ratio of amplitudes of the waves that
propagate along the contact surfaces, depending on a
change in ratio of densities at different wave numbers, was
performed (Fig. 2).
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Fig. 2. Dependences of a, and a, on density of
medium layer p, at &=0.1, 0.3, 0.5, 0.7, 1; A=1, h=1,
=T,=0, p,=1, p,=0.8

Fig. 2 shows the graph of dependence of a, and a, on den-
sity of the middle layer p, at different values of wave number
k=0.1, 0.3, 0.5, 0.7, and in the case when h,=1, h,, T=T,=0,
pi=1,p;=0.8.

It can be seen that at an increase in p,, absolute values of
coefficients a, and a, increase, in addition, for smaller values
of the wave number, an increase is slower than for the case
where the wave number is larger. It was also discovered that
under certain conditions, coefficients a, and a, coincide for
different values of wave numbers. At an increase in wave
number k and at values of density of the middle layer p,, close
to density of the upper layer p,, absolute values of coefficients

a, and a, decrease. Otherwise, when values of density of the
middle layer are close to the value of density of the lower layer
of density p,, absolute values of coefficients ¢, and a, increase

The results, obtained for o, indicate that a decrease in
density jump on the lower contact surface of the two liquid
media and a simultaneous increase in density jump on the
upper contact surface lead to formation of large elevation
on the upper surface of the contact. At the same time, at the
actual absence of density jump on the lower contact surface,
another solution of dispersion equation (frequency o,) tends
to zero, which causes the need for a detailed study of this
limited case. Fig. 3, a, b shows the graph of dependence of a,
and a, on wave number # at different values of thickness of
the upper layer A, when h,=1, T=T,=0, p,=1, p,=0.9, p,=0.8.
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Fig. 3. Dependences of a, and a, on wave number k
at n,=1,2,3,5,7; h=1, T=T7,=0, p,=1, p,=0.8:
a, b—p,=0.9; ¢, d— p,=0.95

At values of thickness of the upper layer h,=2,3,
5, 7 graphs of dependences of a, and a, on wave number k are
located not far from each other and very quickly converge
to a common limited value. At the same time, the graphs
of dependences of a, and a, on wave number % at value of
thickness of the upper layer 2,=1 have a somewhat separated
character and not so quickly converge to the same limited
value. Similar to dependences of a, and a, on A, there is
equality of absolute values of |a,|=|a,| if density jump on the
contact surface are equal to p,—p,=p,—p,=0.1.

Fig. 3, ¢, d shows the graph of dependence of @, and a, on
wave number k at different values of thickness of the upper
layer &, in case when h,=1, T=T,=0, p,=1, p,=0.95, p,=0.8.

At value of density of the medium layer p,=0.95, density
jump on the lower contact surface p,—p,=0.05, and on the up-
per contact surface p,—p,=0.15, in this case, the ratio |a,[>|a,|
is met, unlike dependences, considered above for p,=0.9
(Fig. 3, a, b). The ratio between absolute values of |a,| and |a,|
of dependence on % for p,=0.9 and p,=0.95 agree with similar
results of dependences on /4, represented in 6.1.



We will note that for all cases, shown in Fig. 3, absolute
values of a, and a, for gravity elevations are smaller than for
capillary ones

6. 4. Propagation of waves along surfaces of contact
at different moments of time

Relationship between amplitudes A" and A of waves
of response to the waves on the lower and upper surfaces of
contact A and B are accordingly determined from ratio

(D0 (kh) + (0" ~kp, +hp, ~ T/ )sh(kh)
pz(’)12

xA=aA,
P

B = X
p2w§Cth(k}6 )+ (pﬂ); —kp,+kp, - ];ka )sh(kh,)
B=a,B ©)
Elevation of contact surfaces in the first approximation
consists of the sum of two harmonics

M, = Acos(kx —o,t)+
(10)

+a,Bcos(kx —w,t),
M, =a,Acos(kx — o)+
+Bcos(kx —w,t).

Here A and B are constants, which determine the ampli-
tudes of harmonics with frequencies , and o,.

Fig. 4, a—c shows the pictures of wave motion on the
lower surface of contact n,(x, ) and upper surface of con-
tact n,(x, ) for the following values of parameters k=1,
p=1, p,=0.9, p,=0.8, h,=1, h,=1 at different values of
waves’ amplitudes on the surface of the contact A and B:
a— A=0.1, B=0.1; b — A=0.1, B=0.05; ¢ — A=0.05, B=0.1
and at different moment of time ¢.

We can see the structure of wave processes on the low-
er and upper contact surfaces, in particular, contribution
of main waves and waves-responses. Fig. 5, a, b shows
the pictures of wave motion on the lower inner surface of
contact n,(x, ) and on the upper inner surface of contact
n,(x, t) for the following values of parameters £=0.1, p,=1,
p,=0.8, h,=1,3, h,=1, A=0.1 B=0.1 at different values of
density of the middle layer p,=0.85, 0.9, 0.95, and at dif-
ferent moment of time ¢. As Fig. 5, a, b shows, under equal
conditions, a change in density of the middle layer has a
significant impact on amplitude of elevation of both the
upper and the lower surfaces of contact, in this case, at
approximation of value of density of the middle layer p, to
value p,=1, this influence is more pronounced on the lower
surface of the contact.

For pre-set parameters of the hydrodynamic system for
both cases of thickness of the upper layer 4,=1 and 4,=3, a
change in density of the middle layer p,=0.85, 0.9, 0.95 has
a significant impact on the amplitude of the lower surface
of contact. When it comes to the upper surface of contact,
its elevation is influenced by thickness of the upper layer
h,. In particular, at 4,=1 and at density p,=0.85 at certain
moment of time, amplitude of elevation is significantly
larger than amplitude at p,=0.9 and p,=0.95 (Fig. 5, a),
which is not observed at bigger thickness of the upper
layer A,=3.
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Fig. 4. Elevation of surfaces of contact n,(x, #) and n,(x, 1)
at different moment of time ¢ for values of amplitudes:
a— A=0.1, B=0.1; b — A=0.1, B=0.05; ¢ — A=0.05, B=0.1
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7. Discussion of results of research into wave processes
in a three-layer hydrodynamic system

We will note that the study was conducted in the frame-
work of a weakly nonlinear model. Existence of a large number
of physical and geometrical parameters of the system that are
interrelated leads to the need of detailed analysis and inter-
pretation of obtained results. All results are related, they cre-
ate a complete picture of the wave process. We will underline
that in the process of research, the authors revealed the case,
in which a three-layer system degenerates in a two-layer sys-
tem, and one of the frequencies of waves that can propagate in
the system tends to zero, which causes the need for additional
research. Previously obtained results for similar two-layer
systems “ half-space — a layer with a rigid lid” and “solid-bot-
tomed layer — layer with rigid lid” were used for testing and
verification of physical validity of the new results. Results of
the research are fully applicable to studying wave processes
in the ocean with the ice lid with the laminated structure of
fluid that occurs near the mouth of rivers, as well as in the
open ocean in the ice melt period. Advantages of this research
in propagation and interaction of waves in the hydrodynamic
system “half-space — layer — layer with a rigid lid” refers to
identification of dependences of ratios of amplitudes of waves
on one of the contact surfaces and response to them on the
other surface on different parameters of the system.

Completed study describes the phenomenon of waves’ prop-
agation in linear approximation, though problem statement (1)
isnonlinear. In future, it is planned to obtain solutions of higher
approximations, which will make it possible to obtain evolution
equations of bypassed wave packets on contact surfaces, as well
as to explore the phenomenon of modulation stability of waves.

Conducted analysis of the ratio of amplitudes is import-
ant in subsequent study of energy processes in the studied
system. At propagation of waves in multi-layered hydrody-
namic systems, the phenomenon of waves’ energy pumping
occurs. In the future it is planned to use the results, obtained
in present research, during the study of this phenomenon.

8. Conclusions

1. By using the method of large-scale expansions, we
obtained the first three linear approximations of a weakly

nonlinear problem of propagation and interaction of waves
along the contact surfaces in a three-layer hydrodynamic
system “liquid half-space — layer — layer with a rigid lid”.

2. For each frequency, dependences of amplitudes of
waves that run along contact surfaces at various geo-
metrical and physical parameters of the hydrodynamic
system were constructed. At an increase of thickness of
the upper layer, amplitudes of waves-responses begin to
tend to the limited value. At equal density jumps on the
contact surfaces, the impact of propagation of a wave on
one of the contact surfaces on propagation of a wave on
the other contact surface coincides, no matter whether
a wave propagates on the upper or on the lower surface.
If density jump on the lower contact surface is smaller
than density jump on the upper contact surface, wave-re-
sponses that appear on the lower surface are larger than
wave-responses on the upper surface. A change in density
of the inner layer from value of density of the lower layer
to value of density of the upper layer leads to changes of
amplitudes of waves-responses, in this case, for smaller
values of wave number, an increase is slower than in the
case when the wave number is large. The cases of coinci-
dence of amplitudes of waves-responses for different val-
ues of wave numbers were identified. A change in the value
of wave number leads to the fact that values of amplitudes
of waves-responses very quickly converge to common
limited value at values of thickness of the upper layer of
more than two. Analysis of the ratio between amplitudes
of waves on contact surfaces and amplitudes of responses
was conducted, which revealed equality at the same densi-
ty jumps on contact surfaces. We identified the need for a
detailed study of the limited case when there is no actual
density jump, in which one of the solutions of dispersion
equation tends to zero. A change in density of the middle
layer has a significant effect on amplitude of elevation
of both the upper and the lower surfaces of contact. At
approximation of value of density of the middle layer to
the value of density of the lower layer, this effect is more
pronounced on the lower surface of the contact. A change
in density of the middle layer has a significant impact on
the amplitude of the lower surface of contact; in this case
amplitude of the upper contact surface undergoes signifi-
cant changes only under certain properties of the system
(at a change in geometrical parameters).
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