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Pozensnymo 3a0auy eusHamenns HecmauionapHozo
memnepamypHoeo nous 8 3axuuienil. Memanesii KoH-
cmpyxuii 6 ymosax nodcexci. Busnaueno eoenesaxuc-
HY eexmuenicmo noKpummsi, HaHeceHo20 HA Mema-
Jleey naacmuny, Hazpimy nid 4ac Hecmamoapmiozo
memnepamyprozo pexcumy 3a Ymoeu HeideanrbHozo
mennosozo xouwmaxmy. Buxopucmoeyirouu pospoone-
HY Mamemamuuny Mooeib PO3PAXYHKY memnepamypu
ma excnepumenmasvii 0ani, 6UIHAMEHO 602HE3AXUCHY
eexmusnicmo nokpumms

Kmouoei cnosa: necmauionapne memnepamypue
noJie, mMemaneea KOHCMPYKUisl, KOHGEKUIUIHUI MenJio-
00Min, 802HE3AXUCHA ePexmusHiCmb nOKpUmms

Paccmompena 3adaua onpedenenus necmauuonap-
HO020 MeMnepamypHozo noas 8 3auUWEHHOT MemaJsiiu-
4eCKOl KOHCMPYKUUU 8 YCA06usx noscapa. Onpedenena
oznezauumnas 3pdexmusnocmo nokpoimus, Hawe-
CEHH020 HA MEeMANIUMECKYI0 NIAACMUHY, HAZPemylo
60 8peMs HECMAHOAPMHOZ0 MEMNEPAMYPHOLO PEHCU-
Ma npu ycaosuu HeuoeanvHoz0 Menjo6oz0 KOHMAK-
ma. Hcnonv3ys paspadomaniyio mamemamuiecxkyo
MoOdenb pacuema memnepamypol U IKCNEPUMEHMATIb-
Hble darHbvle, onpedejena ozHezauumnas 3pexmus-
HOCMb NOKPLIMUS

Knroueevie cnosa: necmayuonapnoe memnepamyp-
HOe noJie, MEManLIU1ecKas KOHCMpYKuust, KOH8eKmMue-
Mol mennooomen, oeznHesauumnas dPPexmusnocmo
noKpoimust
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1. Introduction

At all stages of capital construction or reconstruction of
objects of any designation it is required to take into account
the ability of metallic building structures to maintain their
properties under fire conditions, particularly, to ensure the
necessary fire resistance limit.

It is known that in order to improve the limit of fire
resistance of structures, they are treated with fire-retarding
substances. One of the means to protect metallic structures
from fire is the application of special coatings on their sur-
faces, bloating under the influence of high temperature of
fire with the formation of a heat insulation layer.

To analyze the processes and phenomena that occur
during fire, it is necessary to apply methods of general phys-
ics, chemistry, thermophysics, thermodynamics, mechanics
of solids, mathematics, etc. By employing a complex of these
disciplines, it is possible to study and describe complex phe-
nomena that accompany the start and development of fire,
that is, to model a process that takes place there [1].

In the practice of calculating a temperature problem
during fire, it is as a rule necessary to solve the problem of
nonstationary thermal conductivity. Under conditions of
fire, a situation that most often occurs involves heating of
the wall on the one hand, and the presence of convective heat
exchange with the surrounding medium, on the other hand.




Under actual fire conditions, there is a nonstationary
temperature regime, which in turn leads to a non-ideal
thermal contact at the border of conjugation “metallic wall —
flame-retardant coating”. The task is considerably simplified
if one sets the conditions for a perfect thermal contact; the
solutions created in this case are well-known. Therefore, ex-
amining temperature regimes in a two-layer structure, con-
sidering conditions of a non-ideal thermal contact, remains
a relevant task.

2. Literature review and problem statement

The task of studying a non-stationary temperature field
has quite often been the subject of research in many scien-
tific papers. But if carefully considered, we can see that the
set challenge was solved on its own, and in most cases it has
no experimental confirmation. In addition, each study em-
ployed different mathematical apparatus, as well as methods
for solving differential equations.

In particular, paper [2] proposes an algorithm for the
calculation of non-stationary temperature fields at friction of
bodies taking into account behavior peculiarities of uneven
contact surface. Heat conduction equation was solved by
the method of integral Laplace and Hankel transforms. Nu-
merical results were obtained for the average dimensionless
temperature for different Fourier parameters and roughness
of the surface, as well as for different loads.

Article [3] proposed a procedure for calculating the class
of problems on heat exchange in multilayer structures with
a generalized non-ideal contact. The procedure is illustrated
by calculating heat transfer in a pile of plates with fluids that
move in the gaps between plates.

Authors of paper [4] show the structure of unique math-
ematical solutions to causal linear systems, invariant over
time, applying time-domain methods and generalized Laplace
and Fourier transforms. In particular, the authors correct a
widespread inconsistency in using the Laplace transform.

Scientific study [5] addresses the problem of determin-
ing a non-stationary temperature field of a multi-layer flat
structure, heated by convective heat exchange with the
surrounding environment whose temperature changes over
time in line with the logarithmic law. A solution to the cor-
responding problem on thermal conductivity was obtained
using the method of Green’s function under conditions of
perfect contact.

Authors of scientific research [6] developed a method of
analytical solutions to the problems of thermal conduction
of conductivity in the one-dimensional multilayer composite
bodies. The resulting method enables determining the exact
transition temperature and heat flow. The proposed method
is numerically effective, as it requires simple operations.

In paper [7], authors obtained analytical solutions to the
problems on non-stationary heat conduction under conditions
of a non-ideal frictional contact between two solid isotropic
semi-limited bodies.

The purpose of study [8] was to test numerical inverse
Laplace transformation methods using a thermal character-
istic within the framework of experiment. As a result, the
work proved the reliability of methods based on the Fourier
series methods.

Paper [9] considered a nonlinear boundary problem of
thermal conductivity for an isotropic infinite thermosensi-
tive layered plate with thermally insulated face surfaces and

a foreign through heat-producing inclusion. By applying the
proposed transform, a partial linearization was performed of
the original heat conductivity equation; a numerical-analyti-
cal solution to this equation was found with boundary condi-
tions of the second kind using an integral Fourier transform.

Based on the theoretical, as well as known, experimental
results, authors of scientific study [10] constructed an im-
proved mathematical model of thermo-chemical destruction
of a multi-layered heat insulation coating. Consideration of
flow through the body made it possible to predict the state
of a protected structure under fire conditions more accurate-
ly. Results of numerical calculations were compared with
known data.

Scientific study [11] tackles a one-dimensional multilay-
er diffusion problem. The multi-layer diffusion problem is
represented as a sequence of single-layer tasks.

Paper [12] proposed and justified design scheme for
building a solution to the mixed problem for the heat conduc-
tivity equation with piecewise continuous coefficients that
depend on a coordinate at the finite interval. The basis for
the scheme is formed by the method of reduction, the concept
of quasi-derivatives, the modern theory of linear differential
equations, the Fourier method, and the modified method of
native functions. The results obtained could be used in the
study of heat transfer process in a multi-layer plate under
conditions of perfect thermal contact between the layers.

Article [13] reported experimental results of testing fire
resistance of unprotected steel beams and their comparison
with the estimated models. The comparison reveals differ-
ences between experimental temperature data and the calcu-
lations carried out in accordance with standards.

Thus, to date, there is a relevant task on creating a math-
ematical model, which would make it possible to adequately
perform analytical calculations for determining the effec-
tiveness of a fire-retardant coating as there are no practical
results of research into non-stationary temperature fields
for layered structures, considering conditions for a non-ideal
heat contact on the conjugating surfaces of their non-uni-
form elements.

3. The aim and objectives of the study

The aim of present study is to devise a mathematical mod-
el of temperature field calculation in the structure “metallic
wall — flame-retardant coating” that would make it possible to
determine the effectiveness of a fire-retardant coating under
fire conditions, taking into account a non-ideal thermal con-
tact on the conjugating surfaces of non-uniform layers. The re-
sult will be determining the time of occurrence of the critical
value of surface temperature of the metallic plate, which is not
heated, without conducting experimental studies.

To achieve the set aim, the following tasks must be
solved:

— to solve a non-stationary task of thermal conductivity
for a two-layer structure “metallic wall — flame-retardant
coating” considering the conditions for a non-ideal thermal
contact at the conjugating surfaces;

— applying the obtained analytical solution of a bound-
ary-value problem, to calculate a non-stationary tempera-
ture field of the examined structure for specific geometrical
and thermophysical parameters;

— to compare results of experimental studies, conducted
previously on determining the efficiency of a fire-retardant



coating, with the numerical results obtained when employ-
ing the devised mathematical model.

4. Analytical solutions to the boundary value problem of
heat conduction for a two-layered structure

4. 1. Mathematical model of temperature field cal-
culation

We shall determine a distribution of temperature field in
a double-layered structure with a non-ideal thermal contact
between the layers and in the presence of conditions for
convective heat exchange with the external environment.
The heat conduction equations for each of the layers take
the form:

’t(x,1) 1 9t (x,7)
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where /,, [, are the thickness of the first and second layers, re-
spectively; a,, a,are the thermal diffusivity coefficients; T is
the time; x is the spatial coordinate; z,, Z, is the temperature
of the first and second layer, respectively.

Initial temperature distribution through the thickness of
the two-layered system will be assigned in the following form:

t(x,0)= f(x), (0<x<l,). 3)

We assume that there is a convective heat exchange with
the surrounding environment on the external surfaces of a
double-layered wall, in line with the law of Newton
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where A,, A, are the coefficients of thermal conductivity of
materials of the first and second layers, respectively; o, o,
are the heat release coefficients form the boundary surfaces
of the structure; £,,(t) is the change in fluid temperature
outside the borders of a thermal near-surface layer in the
vicinity of surface x=0; t,,(t) is the change in fluid tempera-
ture outside the borders of a thermal near-surface layer in the
vicinity of surface x=[,~,.

There is a non-ideal thermal contact between the layers,
that is, the following conditions are satisfied
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To solve a heat conduction problem (1)—(7), we shall ap-
ply the Laplace transform for parameter, then equations (1)
and (2) will take the form:
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Solutions to differential equations (7) and (8) are:
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where C,,, C,,, C,,, C,, are the integration constants.

We shall determine integration constants by using
boundary conditions (4), (5) and conditions for a non-ideal
thermal contact between layers (6), (7), which, after per-
forming the Laplace transform, will take the form:
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By substituting (11) into (14) and (15), we shall obtain a
system of equations:
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We shall obtain from this system of equations:
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Considering these dependences, relation (11) will take
the form:
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Boundary values (12) and (13), considering (10), (16)
and (17), will take the form:
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We shall obtain from this system of equations:
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By substituting expressions for AC,, and AC,, into rela-
tions (10), (11), (12), we shall determine:
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Perform expansion of the right side of characteristic
equation (18) as a function of ® argument into a power
series
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An analysis of characteristic equation (21) shows that it
has real roots equal to zero, or imaginary roots. The roots of
characteristic equation (21) were calculated employing the
software MATLAB.

Expansion of the right-hand sides of expressions (19),
(20) into the power series takes the form:
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where £,,4(T), £,5(7) is the temperature of environment out-
side the borders of near- surface thermal layers;
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An analysis of characteristic equations (22), (23) reveals
that they have a valid multiple root equal to zero. After
performing the inverse integral Laplace transform, we shall
obtain the following expressions:
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The presence of imaginary roots of characteristic equa-
tions (22), (23) indicate the existence of the following terms:
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¥, (i=1, 2), @ are the roots of characteristic equations; Z,9,(1),
t51(7) are the temperature changes of medium.

Thus, the solution to a boundary-value problem of heat

conduction (1)—(7), taking into account expressions (24),
will take the form:
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4.2. Determining temperature distribution / N . : e
in a two-layered structure “metallic wall — 5 500 Lo A P S e o e e
flame-retardant coating” £ 400 / i e i [ #807C 4 S:S:rl:fnzrfn

Using the developed mathematical model, we £ / * |t ’
determined a temperature field distribution in £ 300 i
a two-layered structure whose first layer is a 200 / 4 ! 3 o Reaulis of
metallic wall, the second — a protective coating / * ; calculations by
for the following geometrical and thermophysi- 100 1 - the devised
cal layer parameters: @,=7.1-10°% m?/s, a,=13.8x 0 4/3 s ° Ik model
%10 m?/s, [,=0.001 m, 7,=0.051 m, /,—/,=0.05 m, 0 1000 2000 3000 4000 5000
A,=0.87 W/(m-C), %,=55 W/(m-C), f(£)=20°C, Time,
0,=20 W/(m?*°C), 0,=240 W/m**C), o,=16 W/(m?*°C), Fig. 1. Results of analysis of experimental measurements of
£,00=20°C, t,0,=1°C, 1,,,=20 °C, £,,,=0.01 °C. temperature and its obtained values in line with

We shall calculate temperature distribution the devised model, depending on time
using the MATLAB software. The obtained re- (coating’s thickness is 0.8 mm)
sults are given in Table 1.

Experimental studies have shown that an increase in the
Table 1

Estimated results of determining the temperatures of a near-
surface layer, surface of the coating and the surface that is not
heated, depending on the duration of heating and temperature

of the environment (coating’s thickness is 0.8 mm)

. Tempera- Temperature
Duration ture of the Temperature Tcmpcratqrc of the surface
of heat- . of a near-sur- | of the applied hat i
ing, min. | <"V | face layer, °C | coating, °C that is not
’ *| ment, °C ’ ’ heated, °C
1 80 26.1 24.9 20.1
5 320 53.8 477 23.3
15 920 142 124 52.7
30 950 442 411 370
45 980 712 514 480
60 1080 804 627 520

To confirm the adequacy of the developed mathematical
model for calculating a temperature field in the examined
system, we shall will carry out a comparative analysis of
the obtained numerical results with the results obtained
experimentally.

5. Analysis of the obtained numerical estimations of
temperature and the experimental data

Fire-retardant efficiency of the examined materials was
obtained in line with the procedure by VNIIPO [14].

Composition of the flame-retardant coating [15]: bind-
er —30 %, K-2104 (LAC carborane siloxane varnish), fillers —
35 % AlLO,, 20 % ZrO,, 15% kaolin. It was established in
study [16] that the time for reaching the critical temperature
is 41 min. (Fig. 1).

The influence of thickness of fire-retardant coatings
on its fire-retardant efficiency was studied experimentally
for a metallic plate. Corresponding dependence is shown
in Fig. 2.

thickness of coating exerts a positive effect on the fire-retar-
dant efficiency. The mechanism of a fire-retardant coating
is based on the creation of a heat-insulating and tempera-
ture-resistant layer at the surface of the material due to
bloating, when heated, with the formation of a porous and
strong structure. When heating the samples to a tempera-
ture well above 400 °C, due the gaseous products of thermal
destruction of carborane siloxane, the bloating of the coating
occurs and its volume increases by 8.3—12.4 times at satisfac-
tory adhesion strength to metal with an optimum thickness
of the coating of 0.8 mm.

It was established that an increase in the thickness
of a coating from 0.8 to 2.0 mm results in an increase in
the time needed to reach the critical temperature (¢.) for
metallic structures from 38 to 52 minutes. Therefore, for
a maximum limit of fire resistance of a coating, effective
thickness equals 0.8 mm.

Fire-retardant efficiency of coating n will be determined
from ratio:

T]=T/Tmax'100 %=
=41 min./52 min.100 %=78.8 %.

150
135
120
105

0,5 1
[, mm

1,5

Fig. 2. Dependence of time needed to reach a critical
temperature on the coating’s thickness for a metallic plate

An analysis of the presented experimental data and the
obtained numerical values for temperature distributions
(Fig. 1) shows that the difference between them is 9.7 %.



6. Discussion of modeling and experimental results of
research into a temperature field in the structure
“metallic wall — flame-retardant coating”

Comparison of the results obtained based on the devised
model and those received experimentally shows that error is
9.7 %. This is caused by the inaccuracy of the mathematical
model (model is linear) and an error in the experiment.

Heat transfer conditions can acquire a more complicat-
ed form, in the case when complex physical-mechanical or
chemical processes occur in the contact area, leading, for
example, to the emergence of sources of heat (as a result of
bloating of a fire-retardant layer) whose power needs to be
considered for these conditions. Presence of heat sources
in the contact area leads to a jump in both temperature and
heat flow. Depending on the sequence of distribution of heat
sources, the jump occurs both in the direction of tempera-
ture rise and temperature fall.

The devised mathematical model for determining a tem-
perature field in a fire-retardant coating allows us to argue
that the effectiveness of a fire-retardant coating, applied
onto metallic wall, when reaching a critical value of tempera-
ture on the surface of the side, which is not heated (480 °C),
has a value that is 80.07 %.

In future, the aim of research is to construct a non-linear
mathematical model for determining temperature regimes in
heat-sensitive layered structures (thermophysical parameters
depend on temperature), as well as consideration in the bound-
ary conditions of locally arranged internal sources of heat.

A direct benefit of the mathematical model for determining
a temperature field is the presence of conditions for a non-ideal
thermal contact on the boundary conjugating surfaces of the
structure “metallic wall — protective coating”. Our research
results should subsequently serve to design new fire-retardant
coatings. This will make it possible to effectively protect vari-
ous layered systems under fire conditions.

7. Conclusions

1. By applying the Laplace transform, we obtained an ana-
lytic solution to the nonstationary heat conduction problem for
a two-layered structure (metallic structure — protective coat-
ing). The mathematical model takes into account a non-ideal
contact of the surfaces, a nonstationary temperature regime.

2. By employing the obtained mathematical model for
a nonstationary temperature field, we determined numer-
ical values for temperature field distribution. Calculations
showed that the effectiveness of a fire-retardant coating ap-
plied onto a metallic plate, has an estimated value of 45 min-
utes when reaching a critical temperature on the unheated
surface of 480 °C.

3. Comparisons are performed between the analytical
calculations and the results of experimental research into
temperature distribution throughout the thickness of a me-
tallic structure protected by a flame-retardant coating. It
was established that the fire-retardant efficiency for a given
structure is 41 minutes.
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1. Introduction

Nonlinear optical materials have numerous applications,
including photodynamic therapy, nonlinear photonics, 3D
optical data storage, frequency upconverted lasing, and
fluorescence imaging [1-5]. One of the most important
problems of applied nonlinear optics is the search for media
with possibly large values of nonlinear susceptibilities. In
this regard, semiconductors, as experiments have shown, are
among the most promising media [6, 7]. The large nonlinear-
ity of semiconductors basically comes from the fact that they,
with their relatively small bandgap E,, are characterized by
sufficiently low internal fields, which determine the couple

forces acting on optical electrons. Therefore, even not too
high laser fields should already provide a large contribution
to the susceptibility of nonlinear electronic polarization.

2. Literature review and problem statement

The study of cubic susceptibilities is the central problem
of nonlinear spectroscopy [8]. The effects due to the cubic
susceptibility are the basis of such methods of nonlinear
spectroscopy as two-photon spectroscopy, saturation spec-
troscopy and also allow solving such an important practical
problem as the correction of phase distortions by the four-




