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1. Introduction

Passive auto-balancers are used for balancing high- 
speed rotors [1, 2]. Correcting weights balance the rotor on 
the so-called main (steady-state) motions and no balance on 
the secondary motions. From a mathematical point of view, 
for operability of the auto-balancer, it is necessary and suf-
ficient that the main motions are stable and the secondary 
motions are unstable.

Stability of motions of rotary machines with auto-balanc-
ers was traditionally studied by Liapunov’s methods [2–9].

In the case of isotropic supports, when the coordinate sys-
tem in use is synchronously rotating with the rotor, the equa-
tions of motion and steady motions are stationary. Stability is 
studied with application of the theory of stability of stationary 
solution of the systems of autonomous nonlinear differential 
equations [2–5]. It is unnecessary to use additional assump-
tions about the smallness ratios between parameters.

By Liapunov, motion stability is also studied with the 
use of the small-parameter methods [6–9]. The approach is 
especially relevant in the case of anisotropic supports since 
the differential equations of motion are nonstationary in this 

case. The approach introduces additional assumptions about 
smallness ratios between parameters. Therefore, the stability 
conditions obtained have limitations as to their accuracy 
and the field of application.

The search for and study of stability of steady motions 
of the rotor-auto-balancer system is a complex mathematical 
problem [2–9]. The task becomes even more complicated 
for the auto-balancers with many weights when taking into 
account the forces of resistance, anisotropy of supports, etc.

Taking into consideration the features of motion dy-
namics of rotary machines with automatic balancers makes 
it possible to formulate empirical criteria for stability of 
main motions or occurrence of auto-balancing [2, 10, 12]. 
The criteria enable determination of the conditions for the 
occurrence of auto-balancing with no resort to the study of 
stability of the main motions by Lyapunov’s method, which 
minimizes labor-intensiveness [2, 10–12].

It is vital to show effectiveness of the criterion for the 
main motion stability in determining conditions for the 
occurrence of auto-balancing of the rotor mounted on aniso-
tropic elastic-viscous supports. It is important to estimate 
accuracy of the results obtained.
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2. Literature review and problem statement

Let us consider in more detail how deeply the possibil-
ity of rotor balancing was analytically investigated in the 
framework of planar models.

Stability of main motions of the rotor mounted on iso-
tropic elastic-viscous supports and balanced by a passive 
auto-balancer was studied in [2–5] with application of a 
mobile coordinate system.

In [3], the rotor is balanced by a two-ball auto-balancer. 
It was established that the rotor has one critical speed coin-
ciding with the frequency of natural oscillations of the rotor 
in absence of resistance forces (natural frequency). Auto-bal-
ancing onset takes place at supercritical rotor speeds.

In [4], the rotor is balanced by a two-pendulum auto-bal-
ancer. It was established that depending on the values of 
the system parameters, the rotor has one or three critical 
speeds. One critical speed always coincides with the natural 
frequency. Two additional speeds arise in the vicinity of 
the natural frequency and somewhat exceed this frequency. 
In the case of one critical speed, auto-balancing occurs at 
supercritical speeds. In the case of three critical speeds, 
auto-balancing occurs between the first and the second and 
above the third critical speeds. The effect of splitting the 
natural frequency into three critical speeds arises only at 
small forces of viscous resistance.

In [5], the rotor is balanced by a multi-ball auto-balancer. 
A characteristic equation was obtained for studying stability 
of families of main motions. Up to its notations, this equation 
coincides with the equation obtained in [4].

In [2], it was suggested to study stability of the main 
motions with the use of generalized rotor coordinates and 
total imbalances (rotor and auto-balancers) in the cor-
rection planes (of auto-balancers). For the main motions, 
these generalized coordinates are zero. This approach was 
realized within the framework of a planar model of the 
rotor mounted on isotropic elastic-viscous supports and 
balanced by a multi-ball (multi-roller, multi-pendulum) 
auto-balancer. A characteristic equation obtained in this 
work coincides with the characteristic equations derived in 
[4, 5], up to their notations.

The approach to studying the auto-balancing phenom-
enon in the case of auto-balancers with many weights pro-
posed in [2] was further developed in [6]. It was shown that 
the dynamics of ball, roller and pendulum auto-balancers is 
described by similar differential equations. A method was 
proposed for derivation of differential equations describing 
the process of auto-balancing (relative to the generalized ro-
tor coordinates and imbalances) with the use of differential 
equations of the system motion.

The small-parameter method (dynamic system synchro-
nization [7]) was used in analytical study of rotor balancing 
by only two-ball (two-pendulum) auto-balancers [6–8]. The 
weight mass to rotor mass ratio was taken as a small parameter.

A rotor mounted on isotropic elastic supports and per-
forming a planar motion was considered in [6]. The results 
of [3] were confirmed in the part that auto-balancing occurs 
at super-resonant speeds of the rotor.

A rotor mounted on anisotropic elastic supports was con-
sidered in [7]. Existence of three critical speeds of the rotor 
was established. The first and the third speeds coincide with 
respective first and second natural frequencies of the rotor. 
The second critical speed is between the first two. Auto-bal-

ancing arises at the rotor motion with the speeds between 
the first and the second and above the third critical  speeds. 
It is worth to note that presence of three critical speeds is 
associated with anisotropy of the supports and not with the 
splitting of the natural frequency at small resistance forces 
in the supports. Balancing of a working grinding wheel by a 
two-ball auto-balancer was also studied in [7].

A planar model of a rotor mounted on isotropic elas-
tic-viscous supports was considered in [8] for the case of 
small forces of viscous resistance. The rotor was balanced 
by a two-ball auto-balancer. The results obtained in [4] con-
cerning splitting of the natural frequency into three critical 
velocities were confirmed. To this end, stability was studied 
with the use of higher small-parameter approximations.

Advantages of the method of dynamical system synchro-
nization include the possibility of studying auto-balancing for 
rotors mounted on anisotropic supports. The drawbacks of 
the method include a considerable increase in labor input of 
calculations when taking into account the resistance forces in 
supports. The method was not designed to study families of 
steady motions. The results obtained are only suitable for ex-
ecuting the introduced smallness ratios between parameters.

Rotor balancing by using the empirical criterion for the 
occurrence of auto-balancing was investigated in [2, 10].

The results obtained in [3, 7] were confirmed in [2]. Bal-
ancing of a working grinding wheel with the help of passive 
auto-balancers taking into account various resistance and 
cutting forces was also studied.

Balancing of a grinding wheel of a hand grinder mount-
ed on a tripod by means of passive auto-balancers was 
studied in [10].

There are empirical criteria for the occurrence of au-
to-balancing [2] and the main motion stability [2], a gen-
eralized criterion for the main motion stability [11], and a 
generalized criterion for the occurrence of auto-balancing 
[12]. The history of criteria development was described in 
[12]. In accordance with the criteria, potentiality of au-
to-balancing onset is determined by the reaction of the rotor 
to elementary imbalances applied in the correction planes (of 
the auto-balancers).

It should be pointed out that asymptotic methods solve 
mathematical problems just approximately [13]. Therefore, 
a question arises: how accurate are the results they provide. 
A similar question concerns the results obtained by empir-
ical criteria.

Thus, within the framework of the planar model of a 
rotor mounted on anisotropic elastic-viscous supports, the 
effect of finite and large forces of viscous resistance acting in 
supports on the region of auto-balancing onset was not an-
alytically studied. No critical rotational speeds of the rotor 
(i. e. the speeds causing onset or disappearance of auto-bal-
ancing in case of their transition) have been found. This is 
studied below with application of an empirical criterion for 
stability of the main motion. Accuracy of determining criti-
cal rotor speeds is estimated by a computational experiment.

3. The aim and objectives of the study

The study objective was to obtain, within the limits of 
the planar model, the conditions under which a passive auto- 
balancer of any type will balance a rigid rotor mounted on 
anisotropic elastic-viscous supports.
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To achieve this objective, it was necessary to solve the 
following tasks:

– construct a planar model of a rotor mounted on aniso-
tropic supports and balanced by a passive auto-balancer and 
derive differential equations of the system motion;

– find the conditions for the occurrence of auto-balanc-
ing by applying the empirical criterion for stability of the 
main motion;

– conduct a computational experiment to evaluate ac-
curacy of determining critical speeds, i. e. boundaries of the 
regions of auto-balance occurrence.

4. The study methods

To find the conditions for the occurrence of auto-balanc-
ing, an empirical criterion for stability of the main motion was 
used [2]. The criterion was intended to answer the question: 
under what conditions a certain main motion (possibly one 
from a multiparametric family of main motions) will be stable.

Let us use the criterion for the case of rotor balancing 
with one passive auto-balancer.

Empirical (engineering) criterion for stability of the main 
motion. Let the rotor – auto-balancer system performs a cer-
tain main motion. Consider motion of the C point in which 
longitudinal axis of the rotor intersects the auto-balancer cor-
rection plane. Let the weights in the auto-balancer elementa-
rily deviate from the main motion and take a new position rel-
ative to the rotor. At the same time, an elementary imbalance 
appears. Over time, motion of the rotor with its auto-balancer 
will establish. The C point in the new motion will deviate from 
the main motion by a 

�
( )Cr t  vector where t is time.

According to the criterion, in order that the main motion 
is stable, it is necessary and sufficient that the C point devi-
ated under the action of any elementary imbalance from the 
main motion on the average per one rotation opposite to the 
vector of the elementary imbalance.

The criterion can be mathematically written as follows:

2 /

0

( ) 0,
2Cu Cr u r t dt

p ww
= ⋅ <

p ∫
� � 	  (1)

where w is a constant angular rotation speed of the rotor,  
u�  is a unit vector directed along the vector of elementary 
imbalance.

The criterion is applied in the following sequence:
1) a physical-mechanical model of the rotor with an au-

to-balancer of a certain type is described;
2) differential equations of the rotor motion are derived 

on the assumption that the correction weights are stationary 
relative to the rotor;

3) steady motion of the rotor is sought for;
4) functional of the criterion for the occurrence of au-

to-balancing is derived;
5) the conditions for the occurrence of auto-balancing 

are found proceeding from the condition of the functional 
negativity.

To verify the results obtained, a computational ex-
periment should be conducted. To do this, the differential 
equations of motion are reduced to a normal form. As ini-
tial conditions, the values of generalized coordinates and 
velocities corresponding to a certain main motion are to be 
used. Equations of motion are integrated numerically. The 
conclusion on stability of the main motion is made on the 

condition that the system continues to perform one of the 
main motions. If the system leaves the main motions, then a 
conclusion of instability of the main motions is made.

5. The conditions for stability of the main motions of 
the rotor mounted on anisotropic elastic-viscous supports 

and balanced by a passive auto-balancer

5. 1. Description of the rotor and auto-balancer model
Fig. 1 shows the diagrams explaining fastening and mo-

tion of the rotor. The fixed X, Y axes are directed along the 
main directions of rigidity of the supports and in such a way 
that the X axis is along the minimum rigidity and the Y axis 
is along the maximum rigidity (Fig. 1, a). The rotor motion 
is defined as the sum of two motions (Fig. 1, b): the transla-
tional motion together with the center of the mass in the C 
point and rotational motion around the center of mass at a 
constant angular speed w. Position of the center of mass of 
the rotor is determined by the x, y coordinates.

The static imbalance of the rotor is created by a point mass 
m0 located at a distance R from the longitudinal axis of the ro-
tor (the C point). Its radius forms an angle wt with the X axis.

The auto-balancer consists of N identical correction 
weights: pendulums, balls or rollers. The mass of the au-
to-balancer body is attributed to the mass of the rotor. As 
is customary in the theory of passive auto-balancers, we 
assume that the weights on the track do not interfere with 
each other’s motion. The effect of gravity on the motion of 
weights is neglected. Mass of one weight is m. The center 
of mass of the weight moves along a circle of radius R with 
its center on the longitudinal axis of the rotor (Fig. 1, b). In 
the case of balls or rollers, we assume that they roll along 
the track without slippage. Position of the weight number 
j defines angle jj between the X axis and the radius of the 
weight’s center of mass, =/ 1, / .j N  Motion of the weight 
relative to the auto-balancer body is impeded by a force of 
viscous resistance having modulus

= =( ), / 1, /,r
j W jF b v j N 	 (2)

where bw is the coefficient of the force of viscous resistance, 
= φ - w¢( ) | |r

j jv R  is the modulus of velocity of motion of the 
center of mass of the weight number j relative to the au-
to-balancer body, and the stroke after the value denotes the 
time t derivative.

  

   
 

             а                                   b                              c

Fig. 1. The planar model of the rotor – auto-balancer system: 
the rotor mounted on anisotropic elastic-viscous supports (a); 

kinematics of the rotor motion, unbalanced mass and 
weights (b); kinematics of motion of elementary imbalance (c)

The mass of the system and the total imbalance of the rotor

Σ = + + 0,M M Nm m
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=
= φ + w∑ 01

cos cos ,
N

x jj
S mR m R t

=
= φ + w∑ 01

sin sin .
N

y jj
S mR m R t 	  (3)

If the system performs the main motion (one of the mul-
tiparametric family for N³3), the weights balance the rotor, 
and = = 0.x yS S

Let the system perform any main motion. Suppose the 
correction weights elementarily deviate from it resulting 
in appearance of constant elementary imbalance (Fig. 1, c). 
There is (wt+g) angle between the X axis and the 

�
dS  vector 

of elementary imbalance.

5. 2. Differential equations of motion
Differential equations of motion of a rotor with a ball, 

roller or pendulum auto-balancer take the form [2, 9]:

Σ

=

+ + -¢¢ ¢

- φ φ + φ φ - w w =¢¢ ¢∑ 2 2
01

( sin cos ) cos 0,

x x

N

j j j jj

M x b x k x

mR m R t

Σ

=

+ + +¢¢ ¢

+ φ φ - φ φ - w w =¢¢ ¢∑ 2 2
01

( cos sin ) sin 0,

y y

N

j j j jj

M y b y k y

mR m R t

2 2( )

( sin cos ) 0,
j W j

j j

mR b R

mR x y

k φ + φ - w +¢¢ ¢

+ - φ + φ =¢¢ ¢¢  =/ 1, /,j N 	 (4)

where k is the coefficient depending on the weight type. For 
a mathematical pendulum, k=1; for a ball, k=7/5; for a roller, 
k=3/2 [9].

Natural rotor oscillation frequencies in absence of resis-
tance forces are

Σw = / ,x xk M  Σw = / .y yk M 	  (5)

Introduce:
– characteristic scales

w = w� ,x  Σ= / ;L NmR M  	 (6)

– dimensionless variables

x = / ,x L  h = / ,y L   t = w = w  t
� � ;

d d
t

dt d
	  (7)

– dimensionless parameters

w
=

w�
,n  

x
Σ

m =
w�

,
2

xb
M

 
h

Σ

m =
w�

,
2

yb

M
 e =

k
,

L
R

m =
k w�

,w
w

b
m

 
h

w
=

w
,y

x

n  c = 0 ,
m
Nm

 s =
1

.
N

	 (8)

Then the equations of motion take the following dimen-
sionless form:

x

=

x + m x + x -

-s φ φ + φ φ - c t =∑

�� �

�� � 2 2

1

2

( sin cos ) cos 0,
N

j j j jj
n n

h h

=

h+ m h+ h+

+s φ φ - φ φ - c t =∑
�� �

�� �

2

2 2

1

2

( cos sin ) sin 0,
N

j j j jj

n

n n

φ + m φ - + e -x φ + h φ =���� � ��( ) ( sin cos ) 0,j w j j jn =/ 1, /,j N  	 (9)

where the dot over the quantity denotes the dimensionless 
time t derivative. 

Introduce the dimensionless total imbalance of the rotor

x Σ =
= = s φ + c t∑ 1

/ ( ) cos cos ,
N

x jj
s S M L n

h Σ =
= = s φ + c t∑ 1

/ ( ) sin sin .
N

y jj
s S M L n 	  (10)

For the main motion, 

x hx = h = = = 0.s s

Introduce new variables

= x = x = = h = h =� �� �
0 1 0 2 3 2, , , ,z z z z z z

+ +

+ + + +

= φ = φ = = φ =

= φ = = φ = φ =

� � …
� �� �…

4 1 5 1 4 2 2 2 3

2 2 2 2 2 3 2 2

, , , ,

, , , .

j j j

j j N N N N N

z z z z z

z z z z
	  

(11)

Introduce matrix and vector

+

+

+ +

-s -s 
 s s 

-e e=  
 
  -e e 

�
�
�

� � � �

4 2 2

4 2 2

4 4

2 2 2 2

1 0 sin sin

0 1 cos cos

sin cos 1 0 ,

0

sin cos 0 0 1

N

N

N N

z z

z z

z zA

z z

x + +=

h h + +=

+

 - m - + s + c t
 
 - m h- h+ s + c t =  -m - 
 
 -m - 

∑
∑�

�

2 2
1 0 2 3 2 21

2 2 2
2 3 2 21

5

2 3

2 cos cos

2 sin sin
.

( )

( )

N

j jj

N

j jj

w

w N

z z z z n n

n z z n n
B

z n

z n

 	
(12)

Then the system of equations (9) in a normal form will 
be as follows:

+ += = =� � �
0 1 2 3 2 2 2 3, , ,j jz z z z z z  =/ 1, /,j N

-
+ =� � � �… 1

1 3 5 2 3( , , , , ) .T
Nz z z z A B  	 (13)

The system of equations in the form (13) with coeffi-
cients from (8) will be used for carrying out computational 
experiments. The occurrence of auto-balancing will be ob-
served for variables:

0 2, ,z z  
x +=

= s + c t∑ 2 21
cos cos ,

N

jj
s z n  

h +=
= s + c t∑ 2 21

sin sin .
N

jj
s z n 	  (14)

For the main motion, these variables are zero.

5. 3. Determination of conditions for the occurrence 
of auto-balancing by an empirical criterion

Projections on the X, Y axes of the vector of elementary 
(dimensionless) imbalance and the unit vector directed as 
an imbalance:
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x = t + gcos( ),ds ds n  h = t + gsin( ),ds ds n  

cos( ), sin( ).u n u nx h= t + g = t + g 	 (15)

The differential equations of the rotor motion with a 
constant elementary imbalance are obtained from the first 
two equations of system (9):

xx + m x + x = t + g�� �2 cos( ),ds n  

h hh+ m h+ h = t + g�� � 22 sin( ).n ds n 	  (16)

Note that these equations do not depend on the type of 
weights in the auto-balancer.

Solution of system (16) has several components. But in 
the presence of even small resistance forces, they all tend to 
zero, except for the partial solution of this system. This com-
ponent will determine deviation of the C point when motion 
is steady-state. The partial solution has the form:

x

x

x = ´
- + m

´ - t + g + m t + g

2

2 2 2 2

2

(1 ) 4

[(1 )cos( ) 2 sin( )],

n ds
n n

n n n n

h h

h h

h = ´
- + m

´ - t + g - m t + g

2

2 2 2 2 2

2 2

( ) 4

[( )sin( ) 2 cos( )].

n ds
n n n

n n n n n

 	

(17)

The integrand of the criterion for  occurrence of auto- 
balancing has the form:

2
2

2 2 2 2

2

2 2 2 2 2

2 2

[(1 )cos( ) 2 sin( )]
(1 ) 4

cos( )
( ) 4

[( )sin( ) 2 cos( )]sin( ).

Cu r u u

n ds
n n n n

n n

n ds
n

n n n

n n n n n n

x h

x
x

h h

h h

⋅ = x + h =

= - t + g + m t + g ´
- + m

´ t + g + ´
- + m

´ - t + g - m t + g t + g

� �

The condition for the occurrence of auto-balancing

2 /

0

2 22 2

2 2 2 2 2 2 2 2 2

( )
2

1
0.

2 (1 ) 4 ( ) 4

n
n

u u d

n nn ds n
n n n n n

p

x h

h

x h h

x + h t =
p

 --
= + < 

- + m - + m  

∫

This condition is equivalent to the following:

h h

h h x

= - - + - +

+ - m + - m <

2 2 2 2 2

2 2 2 2 2 2

( ) (1 )( )(1 2 )

4 [(1 ) ( ) ] 0.

p n n n n n n

n n n n  
	 (18)

Condition (18) in a dimensional form:

w = w - w w - w w + w - w +

+w w - w β + w - w β <

2 2 2 2 2 2 2

2 2 2 2 2 2 2

( ) ( )( )( 2 )

[( ) ( ) ] 0,

x y x y

x y y x

P

 	 (19)

where

Σβ = / ,x xb M  Σβ = / .y yb M 	  (20)

Take condition (19) to determine critical speeds of the 
rotor. In a case of deviation from these velocities, the main 
motion acquires or loses stability. It is worth to note that the 
condition (19) does not depend on the type of weights in the 
auto-balancer.

5. 4. Analysis of the condition for the occurrence of 
auto-balancing

1. The case of equirigid supports.

w = w .y x  	 (21)

The condition for the occurrence of auto-balancing takes 
the form:

w = w - w w - w + w β + β <2 2 2 2 2 2 2 2( ) ( )[2( ) ( )] 0.x x x yP 	 (22)

Auto-balancing occurs at velocities greater than the only 
critical speed coinciding with the natural frequency of the 
rotor oscillations in absence of resistance forces:

w > w w = w =1 1, .x xk M  	 (23)

The forces of viscous resistance acting in supports do 
not affect the critical speed and the range of speeds at which 
auto-balancing occurs.

2. The case of absence of viscous resistance forces and 
anisotropy in supports.

β = β = w ≠ w0, .x y x y 	  (24)

The condition for the occurrence of auto-balancing (19) 
takes the form:

w - w w - w w + w - w <2 2 2 2 2 2 2( )( )( 2 ) 0.x y x y 	  (25)

It can be seen that there are three critical speeds. In a 
case of transition these speeds, the main motion acquires or 
loses stability.

w = w1 ,x  

w = w + w2 2
2 ( ) / 2,x y

w = w3 ,y  w < w < w1 2 3. 	  (26)

Auto-balancing can occur at velocities between the first 
and the second, and above the third critical speeds:

w Î w w w + ∞∪1 2 3( , ) ( , ). 	  (27)

Note that an additional critical rotor speed w2 appears. It 
is between the natural frequencies of the rotor. Appearance 
of an additional speed is caused by mounting of an auto-bal-
ancer on the rotor. In the transition of this speed changes 
the behavior of the weights. At slightly lower velocities, the 
weights balance the rotor but if the velocities are slightly 
larger, no balancing occurs.

3. The case of small viscous resistance forces in anisotro-
pic elastic-viscous supports.

Assuming the coefficients bx, by of the viscous resistance 
forces are small quantities, we can approximately find de-
compositions of the critical velocities from these parameters:
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w ≈ w + β w - w ≈

≈ w + β w - w

2 2 2
1

2 2 2

1 / ( )
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x x y x

x x y x

w + w
w ≈ + β - β w - w ≈

 w + w β - β
≈ + 
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2 2
2 2 2 2

2

2 2 2 2

2 2
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2
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y x y x
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y x

w ≈ w - β w - w ≈

≈ w - β w - w

2 2 2
3

2 2 2

1 / ( )

{1 /[2( )]}.

y y y x

y y y x

 	
(28)

It is seen from (28) that small viscous resistance forces 
in the supports increase the smallest and reduce the greatest 
critical speeds of the rotor. The change in the second critical 
speed depends on the ratio between the coefficients bx, by.

4. The general case (of anisotropic elastic-viscous supports).
The following is found from (19)

w = w w - w β >2 2 2 2( ) ( ) 0,x x y x xP  

w = -w w - w β <2 2 2 2( ) ( ) 0,y y y x yP

w + w = - w - w β - β2 2 4 4 2 2( ( ) / 2) ( )( ).x y y x y xP  	 (29)

The following estimates are valid:
∀w £ w ,x  w >( ) 0P  – no auto-balancing;
∀w ³ w ,y  w <( ) 0P  – auto-balancing occurs.
For further analysis, write condition (19) as a polynomial:

W = W + W + W + <� 3 2
0 1 2 3( ) 0,P c c c c  	 (30)

where

x hW = w = - = w + w - β - β2 2 2 2 2
0 1, 2, 3( ) ,x yc c

= - w + w + w w - w β + w β2 2 2 2 2 2 2 2 2
2 [( ) 2 ( )],x y x y x y y xc

= w w w + w2 2 2 2
3 ( ).x y x yc 	  (31)

With respect to W, the polynomial (30) can have one or 
three real positive roots. Therefore, the rotor has one or three 
critical speeds. In the case of one critical speed, auto-balanc-
ing occurs when this speed is exceeded. In the case of three 
critical velocities, auto-balancing occurs between the first 
and the second and above the third critical velocity.

The polynomial (30) has three different real roots if its 
discriminant is greater than zero [2, 13]

- + - + - >3 2 2 3 2 2
1 3 1 2 0 2 0 1 2 3 0 34 4 18 27 0.c c c c c c c c c c c c  	 (32)

All roots of the polynomial (30) will be positive if condi-
tions of the Routh-Hurwitz criterion [2] are additionally met

<0 0,c  >1 0,c  <2 0,c  >3 0,c  <1 2 0 3.c c c c 	 (33)

Conditions (32) and (33) are cumbersome for analysis in 
a general form.

5. The case of large viscous resistance forces in supports.
It is seen from (31) that when viscous resistance forces in 

supports (bx, by) grow, the conditions c1>0, c2<0 are violated 
and therefore only one critical speed remains at the rotor.

For large viscous resistance forces in the supports 
(bx, by>>1), condition (19) takes approximately (accurately 
to the principal summands) the following form:

w ≈ w w - w β + w - w β <2 2 2 2 2 2 2( ) [( ) ( ) ] 0.x y y xP  	 (34)

from which the following approximate value of critical rotor 
speed is found:

w β + w β w + w
w ≈ ≈

β + β +

2 2 2 2 2 2 2 2

1 2 2 2 2 .x y y x x y y x

x y x y

b b

b b
 	 (35)

It is clear from (29) and (35) that:
– increase in by results in going (from above) of the criti-

cal rotor speed to the lowest natural frequency wx;
– an increase in bx results in going (from below) of the 

critical rotor speed to the largest natural frequency wy.

5. 5. Computational experiments
Computational experiments were performed for a two-

ball auto-balancer (n=2). In all experiments, differential 
equations (13) were integrated with the following param-
eter values:

– criterion parameters that do not affect the region of the 
occurrence of auto-balancing k=1, s=0.5, c=0.5;

– criterion parameter which affects the auto-balancing 
region nη=7.

The initial conditions for integrating the system (13): 
z0,1,2,3=0, z4=2.094, z5=n, z6=4.189, z7=n correspond to the 
main motion.

The case of small forces of viscous resistance in supports. 
The results of integration are listed in Table 1.

In absence of viscous resistance forces in supports 
( x hm = m = 0), the dimensionless critical speeds are roots of 
the polynomial (18):

n1=1, n2=5, n3=7.

At mx=0.25, mh=0.5, dimensionless critical velocities 
speeds are:

n1=1.003, n2=5.041, n3=6.925.

Table 1

Influence of parameters e and mw on accuracy of 	
determining critical speeds of the rotor

Parameters
Dimensionless  
critical speeds

invariable variable n1 n2 n3

g=0, nη=7, 
k=1, a=p/6, 
d=0, s=0.5, 

d=0.5, 
mx=0.25, 
mh=0.5

e=0.001, mw=0.25 1.0¸1.05 5.0¸5.05 7.45¸7.50

e=0.001, mw=1 1.0¸1.05 5.0¸5.05 7.0¸7.05

e=0.001, mw=5 1.0¸1.05 5.0¸5.05 6.90¸6.95

e=0.01, mw=0.5 1.0¸1.05 5.0¸5.05 8.3¸8.35

e=0.01, mw=5 1.0¸1.05 5.0¸5.05 7.05¸7.10

e=0.01, mw=25 1.0¸1.05 5.0¸5.05 6.90¸6.95

e=0.1, mw=0.5 1.1¸1.15 5.10¸5.15 9.95¸10.0

e=0.1, mw=1 1.05¸1.10 5.15¸5.20 9.75¸9.80

e=0.1, mw=2 1.0¸1.05 5.10¸5.15 9.70¸9.75

e=0.1, mw=25 1.0¸1.05 5.05¸5.10 7.15¸7.20

e=0.1, mw=50 1.0¸1.05 5.0¸5.05 7.0¸7.05
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The computational experiment confirms that for small 
viscous resistance forces in supports:

– the rotor has three critical speeds with the first and the 
third speeds being close to the two natural rotor oscillation 
frequencies and the second speed is between them;

– small forces of viscous resistance in supports increased 
the lowest critical speed of the rotor and can reduce the 
highest velocity speed.

The computational experiment has made it possible to 
establish that:

– accuracy of determining the first two critical speeds of 
the rotor is practically not affected by parameters e and mw;

– accuracy of determining the third critical speed grows 
with decreasing e (the mass of the auto-balancer with re-
spect to the mass of the rotor) and with increasing mw (the 
forces of viscous resistance to weight motion).

The case of large viscous resistance forces in supports. 
The results of integration are listed in Table 2.

Table 2

Influence of e and mw parameters on accuracy of 	
determining (single) critical rotor speed for large values of mx 

and mh parameters

Parameters
Dimensionless  

critical speed n1

invariable variable theoretical experimental

g=0, nη=7, 
k=1, a=p/6, 
d=0, s=0.5, 

d=0.5, e=0.01, 
mw=0.5¸5.0

mx=1.0, mh=2.0 1.044 1.0¸1.10

mx=2.5, mh=5.0 1.411 1.40¸1.45

mx=0.5, mh=1.5 1.011 1.0¸1.05

–//– 
mw=0.5

mx=3.0, mh=2.0 6.278 8.650¸8.70

mx=5.0, mh=2.5 6.431 9.45¸9.50

mx=5.0, mh=5.0 5.0 11.70¸11.75

–//– 
mw=0.5, e=0.001

mx=3.0, mh=2.0 6.27780 6.45¸6.50

mx=5.0, mh=2.5 6.43059 6.60¸6.65

mx=5.0, mh=5.0 5.0 5.10¸5.15

–//– 
mw=5.0, e=0.01

mx=3.0, mh=2.0 6.27780 6.30¸6.35

mx=5.0, mh=2.5 6.43059 6.45¸6.50

mx=5.0, mh=5.0 5.0 5.0¸5.05

The computational experiment has confirmed that for 
large viscous resistance forces in supports:

– the rotor has one critical speed and the main motion is 
stable when this speed is exceeded;

– an increase in mh results in going (from above) of the 
critical rotor speed to the smallest natural frequency wx;

– an increase in mx can result in going (from below) of the 
critical rotor speed to the largest natural frequency wy;

– at equal mx and mh, their growth results in going of the 
critical rotor speed to an additional critical speed.

The computational experiments have made it possible to 
establish that:

– accuracy of determining the critical rotor speed close 
to wx is practically not affected by the e and mw parameters;

– accuracy of determining the critical speed close to  
 w + w2 2( ) / 2x y  or wy increases with decrease in e (the mass 

of the auto-balancer with respect to the rotor mass) and with 
increase in mw (the forces of viscous resistance to the weight 
motion).

6. Discussion of the obtained conditions for  
occurrence of auto-balancing

1. Within the framework of the planar model of a rotor 
mounted on anisotropic elastic-viscous supports and bal-
anced by a pendulum (roller, ball) auto-balancer:

– differential equations of motion are nonlinear and de-
pend on the auto-balancer type;

– differential equations describing steady motion of the 
rotor with an elementary imbalance caused by deviation of 
weights from the main motion are linear and do not depend 
on the type of auto-balance.

2. As a result of analytical studies, it was confirmed that 
for isotropic elastic supports (with no viscosity), the rotor has 
a unique critical speed coinciding with the natural frequency. 
Auto-balancing occurs at supercritical speeds of the rotor.

With anisotropic elastic supports (with no viscosity), the 
rotor has three critical speeds. The first and the third speeds 
coincide with the natural frequencies of the rotor oscillation. 
The second critical speed is between the first two velocities. 
Auto-balancing occurs at  speeds between the first and sec-
ond and above the third critical speeds.

The additional critical speed (the second speed) appears 
when the auto-balancer is mounted on the rotor. In the tran-
sition of this speed behavior of the auto-balancer changes: 
the auto-balancer reduces imbalance of the rotor at slightly 
lower  speeds and increases it at somewhat higher speeds.

3. As a result of analytical studies, it has been established 
that for isotropic elastic supports, emergence of viscous re-
sistance forces in supports (including anisotropic ones) does 
not affect the value of the critical speed of the rotor and the 
condition for the occurrence of auto-balancing.

In the case of anisotropic elastic supports, with the ap-
pearance of small viscous resistance forces in supports, the 
smallest and the highest critical speeds of the rotor grow. 
The change of the second critical speed depends on the rela-
tionship between the bx, by coefficients.

At large forces of viscous resistance in supports, the rotor 
has only one critical speed and when it is exceeded, auto-bal-
ancing occurs. If the coefficient of viscous resistance force in 
a support of smaller rigidity is larger than this coefficient in 
a more rigid support, the critical speed approaches a lower 
natural frequency.

If the coefficient of viscous resistance forces in a less rig-
id support is less than this coefficient in a more rigid support, 
then the criticalspeed approaches a larger natural frequency.

4. As a result of the computational experiments, it was es-
tablished that accuracy of determining speeds increases with:

– reduction of the auto-balancer mass with respect to the 
mass of the rotor;

– an increase in the forces of viscous resistance to weight 
motion.

As the forces of viscous resistance to motion of weights 
decrease, the first and the second critical speeds practically 
do not change and the third one grows.

The empirical criterion for stability of the main motion is 
an effective method for determining conditions under which 
auto-balancers of a certain type can balance a certain rotor. 
This criterion correctly describes the qualitative behavior of 
the rotor – auto-balancer system: it determines the number 
of critical speeds and the regions of auto-balancing.

The criterion has drawbacks inherent to approximate Lia-
punov’s methods of studying motion stability. It gives approxi-
mate formulas for critical speeds that are uniformly unsuitable 
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for the entire range of variation of the system parameters. Also, 
it does not enable study of the influence of the forces resisting 
motion of weights on the conditions for onset of auto-balancing.

For the future, it is planned to determine conditions for 
onset of auto-balancing of rotors in concrete machines with 
the help of empirical criteria for the occurrence of auto-bal-
ancing and stability of the main motion.

7. Conclusions

The empirical criterion for stability of the main motion is 
an effective method for determining conditions under which 
an auto-balancer of a certain type can balance a certain rotor.

1. Within the framework of a planar model of a rotor 
mounted on anisotropic elastic-viscous supports and bal-
anced by a pendulum (roller, ball) auto-balancer:

– differential equations of motion are nonlinear and de-
pend on the auto-balancer type;

– differential equations describing steady motion of the 
rotor with an elementary imbalance caused by deviation of 
weights from the main motion are linear and do not depend 
on the auto-balancer type.

2. For equirigid supports, regardless their viscosity, the 
rotor has a unique critical speed. Auto-balancing occurs at 
supercritical rotor speeds.

For anisotropic purely elastic supports (with no viscosi-
ty), the rotor has three critical speeds. The first and the third 
speeds coincide, respectively, with the first and the second 
resonant speeds of the rotor. The second, additional critical 
speed, is between the resonant speeds. Auto-balancing can 
occur at speeds between the first and the second and above 
the third critical speeds.

With appearance of small viscous resistance forces in 
supports, the smallest and the greatest critical speeds of rotor 
increase. The change in the second critical speed depends on 
the relationship between the coefficients of support viscosity.

For large forces of viscous resistance in supports, the 
rotor has the only critical speed and when it is exceeded, 
auto-balancing takes place. Depending on anisotropy of 
the support viscosity, the critical speed may be closer to 
the lower or higher frequency of the rotor’s natural oscilla-
tions in absence of resistance forces in the supports.

3. The criterion correctly describes the qualitative behav-
ior of the rotor – auto-balancer system: it determines the num-
ber of critical speeds and the regions of the auto-balancing on-
set. Accuracy of determining critical speeds (the boundaries 
of the regions of auto-balancing onset) increases with:

– reduction of the auto-balancer mass with respect to 
the rotor mass;

– growth of forces of viscous resistance to the motion of 
correction weights.




