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Показано, що при класичному підході при норму-
ванні оцінок в діагональних елементах кореляційних 
матриць відсутні похибки від перешкод, а в інших же 
елементах ця похибка, навпаки, виникає. В резуль-
таті поліпшення обумовленості матриці від пере-
ходу до нормованих кореляційних матриць не спо-
стерігається. Пропонуються технологія, софт для 
усунення цього недоліку і аналізу обчислювальних 
експериментів

Ключові слова: реальний сигнал, перешкода, коре-
ляційна функція, нормована кореляційна матриця, 
вхідний – вихідний сигнал

Показано, что при классическом подходе при 
нормировании оценок в диагональных элементах 
корреляционных матриц отсутствуют погрешно-
сти от помех, а в остальных же элементах эта 
погрешность, наоборот, возникает. В результате 
улучшения обусловленности матрицы от перехо-
да к нормированным корреляционным матрицам не 
наблюдается. Предлагается технология, софт для 
устранения этого недостатка и анализа вычисли-
тельных экспериментов
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1. Introduction

It is known [1] that one of the main challenges in solving 
problems of automated control of industrial facilities is estab-
lishing the quantitative interrelations between input and out-
put noisy signals characterizing the processes in those objects 
both in statics and dynamics. Such interrelations are called 
static and dynamic characteristics, respectively. These charac-
teristics can be determined from differential equations of con-
trol objects. However, those differential equations are often un-
known, which is why statistical methods are widely used – they 
make it possible to determine dynamic characteristics during 
normal operation of objects [1–3]. In practice, such dynamic 
characteristics as impulsive admittance and transfer functions 
of linear systems are determined by applying to their input 

artificial stimulation of a certain type (impulse, step function, 
sinusoids) and measuring the response. However, in that case, 
random uncontrollable disturbances are superimposed on these 
impacts. As a result, it proves impossible to precisely determine 
dynamic characteristics based on typical input signals [1–3].

2. Literature review and problem statement 

The statistical correlation method for determining these 
dynamic characteristics is based on the solution of an integral 
equation that includes the correlation functions RXX(iΔt) and 
RXY(iΔt) of the input X(iΔt) and output Y(iΔt) signals. It allows 
us to obtain the dynamic characteristics of an object without 
disturbing its normal operation mode. Therefore, statistical 
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methods are widely used for determining the dynamic charac-
teristics of objects during their normal operation [1–3].

However, the application of statistical methods for build-
ing mathematical models of real-life industrial objects pres-
ents the following difficulty. Interferences and noises are 
imposed upon the useful signal (that has to be obtained with 
the least possible amount of distortion), thus hindering the 
calculation of the estimates of their static characteristics.

One should take into account that interferences and 
noises are also represented by random functions ε(iΔt). The 
reasons behind the formation of interferences and noises can 
be very diverse [4]:

a) thermal noises;
b) noises caused by other machinery and equipment op-

erating nearby;
c) noises caused by power supply sources;
d) noises caused by self-oscillations generated in feed-

back circuits, etc.
For instance, for deep-water offshore platforms, noises 

are caused by waves, wind, etc. Another example is the radio 
detector of an antenna under a wind load, which also rep-
resents a random time function.

In view of the above, many algorithms and technologies of 
filtration have been proposed with the aim of eliminating the 
effects of the noise on the result of identification of statistical 
models of the dynamics of control objects over a long period 
of time [4]. The ones that allow for eliminating the error of the 
noises caused by external factors have found a wide application. 
However, in many real-life objects, noises of technological pro-
cesses are formed under the influence of various factors. Some 
of them reflect indirectly certain processes that cause defects in 
the objects under investigation. For this reason, the range of the 
noise spectrum frequently overlaps the spectrum of the useful 
signal. Besides, the spectra of the noise and the useful signal are 
not strictly stable. Therefore, filtration does not always yield 
the desired result. Sometimes, the spectrum of the useful signal 
is even distorted from the filtration.

Taking into account the above, the paper considers one 
possible option of creating alternative digital methods and 
technologies for eliminating the error induced by noise 
during the formation of correlation matrices in the process 
of identification of the dynamic model of industrial objects.

When applying the classical approach, it is possible to 
obtain more or less acceptable estimates of the characteris-
tics of the investigated parameters only if the signal is mod-
eled and complies with the classical conditions. In the case 
when the signal is received from real processes, the effect of 
noise, changing of the frequency range, differences in mea-
surement units create a number of difficulties. 

Because of this, the description of many analyzed pro-
cesses through the classical mathematical apparatus of prob-
abilistic methods proves to be inadequate, and when solving 
real problems, erroneous results are obtained. Precisely for 
these reasons, the correlation matrices, being formed from 
the correlation functions of real signals and having the most 
important applied importance, as well as underlying many 
engineering problems, are not adequately solved now. This is 
due to the noise-induced error in each element of the correla-
tion matrix, which creates a perceptible error in the formation 
of the final normalized correlation matrix of noisy signals and 
the inaccuracy of the results in determining the statistical 
characteristics of the matrix as a whole. It should also be 
noted that the process of obtaining the output signal and de-
termining its characteristics is accompanied by serious errors. 

According to the existing literature [1], in order to elimi-
nate the effects of the noise on the estimate of the correlation 
function for zero-time shift μ=0, it is expedient to proceed to 
normalized estimates of the correlation functions. It is known 
that standardization or normalization reduces values of all 
transformed variables to a single range of values by express-
ing through the relation of these values to a certain value 
reflecting certain properties of a particular attribute [4–6]. At 
the same time, the normalization process really allows one to 
independently compare the cross-correlations of the absolute 
values of the data [7]. In addition, the normalization of the 
indicators is often required, and this is convenient in order 
to proceed to dimensionless variables [8]. Moreover, in most 
cases, random functions are approximated by a normalized 
correlation function [9]. It is common to proceed immediately 
to normalized correlation functions, as normalized correlation 
functions are considered to be convenient in that their values 
do not exceed unity [10]. It is also known that to estimate the 
degree of dependence of the cross sections of a random func-
tion, it is more convenient to use the normalization of the cor-
relation function [11]. It is also common that the normalized 
correlation function is used to be able to compare processes 
with different values of variances [12].

Thus, the normalized cross-correlation matrices that 
consist of normalized correlation functions are of the utmost 
applied importance.

It is known that correlation functions mainly are calcu-
lated as elements of correlation matrices [13]. At the same 
time, correlation matrices are the main indicators of eigen-
vectors estimates [14]. Besides, solving tasks with large cor-
relation matrices is one of the big spheres of computational 
mathematics and methods of optimization [15]. Correlation 
matrices are used for different engineering tasks as a tool 
of decision-making technologies. There is a great variety of 
tasks where correlation matrices are applied [16, 17]. 

It is known that the universality of the problem of im-
proving the conditionality of correlation matrices is due to 
the fact that, in essence, all typical problems associated with 
the statistical analysis of the processes under investigation 
require the knowledge of correlation matrices composed of 
the estimates of auto- and cross-correlation functions. How-
ever, in practice, for real objects, based on the data of their 
normal operation, the estimates of the auto- and cross-cor-
relation functions of input and output signals contain cer-
tain “micropulsations”, due to unavoidable noise-induced 
errors [18]. Since the methods used to solve these problems 
are very sensitive to these “micropulsations”, the correlation 
matrices turn out to be ill-conditioned, and the obtained 
solution is not adequate. Similar difficulties arise for any ma-
trix equation, when ill-conditioned correlation matrices are 
used to solve it, each element of which contains a noise-in-
duced error. It should also be noted that the process of ob-
taining the output signal and determining its characteristics 
is accompanied by serious errors.

To eliminate the difficulties caused by these reasons, 
many methods for improving the conditionality of the 
correlation matrices have been proposed. Despite the high 
academic level of these studies, the experience of their suc-
cessful practical use in solving applied problems is not great 
[1–3]. Among these methods, a special place is occupied by 
the method of regularization and its modification [1–3], which 
are the most popular. The usefulness of regularization is sub-
stantiated by a large number of theoretical studies. However, 
for all its indisputable merits, this method has a significant 
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drawback: the impossibility of practical selection of the optimal 
regularization parameter due to its dependence on unknown 
parameters. In view of this, there is also no complete guarantee 
that satisfactory results will be obtained after using the regu-
larization method [4–10]. In this regard, there is an urgent need 
to develop new methods and algorithms aimed at eliminating 
the difficulties caused by the ill conditionality of correlation 
matrices. Thus, to solve the above – mentioned problems, it 
is necessary to develop alternative methods, algorithms and 
technologies that allow solving statistical identification prob-
lems even under ill conditionality of correlation matrices and in 
violation of the classical conditions. Thus, this paper is devoted 
to the technology of correct normalization of correlation matri-
ces, the elements of which are normalized correlation functions. 

3. The aim and objectives of the study

The aim of this technology is transforming initial (noisy 
matrices) matrices to the view which is almost equivalent to 
the view of matrices with elements which do not consist in 
any errors of the noise. It is done by eliminating the influence 
of the noise. It happens even in case of “bad” conditionality. 
This problem is solved by new technology for normalization 
of correlation matrices (cross- and auto-correlation matrices) 
(4), (5). This technology is for eliminating the influence of the 
noise/interference. 

The comparative analysis should prove the difference be-
tween traditional equations and advantages of it. For solving 
this problem, the creation of new special software was suggest-
ed too. The software should be maximum informative 
(all necessary estimates of initial, noisy, corrected ma-
trices) should be calculated.

It should be obvious thanks to easy interface. The 
interface computes both variants: traditional and sug-
gested one. Thus, the purpose was:

– to suggest new equations for normalized correla-
tion functions and normalized correlation matrices;

– to suggest a new technology which easily helps 
one to eliminate the errors of noise in correlation func-
tions which are elements of correlation matrices;

– to create the special new software for applying the 
new technology;

– to compare the results of correlation matrices of useful 
signals (without any noise), classical normalized correlation 
matrices of noisy signals and normalized correlation matrices 
counted by the suggested technology; 

– to open the possibility of easy comparison of their statis-
tical estimates.

4. Technology for determining equivalent normalized 
correlation matrices for solving identification problems.

The technology for obtaining correct values and character-
istics of normalized correlation matrices in solving identifica-
tion problems in the case of ill conditionality is as follows. In the 
following paragraphs, we propose a technology for forming the 
corrected values of normalized correlation matrices, which pro-
vides improved accuracy of the obtained estimates even under 
ill conditionality in solving identification problems.

1. For each noisy input signal g1(t),g2(t),g3(t) and output 
signal η(t), the estimates of the auto- and cross-correlation 
functions are calculated [19]:

( ) ( ) ( )( )
=

µ = ∆ + µ ∆∑ 

 

1

1
,

i j

N

i j
g g k

R g k t g k t
N

( ) ( ) ( )( )
η =

µ = ∆ η + µ ∆∑ 

 

1

1
,

i

N

i
g k

R g k t k t
N

=, 1, .i j n  	 (1)

2. For each noisy input signal ( )


ig t  and output signal ( )η


,t  
the noise variances ( )∗ ε ,iD  ( )∗ φD  are calculated [7–10]: 

3. The normalized correlation matrices of the useful 
signals, noisy signals, and corrected normalized correlation 
matrices ( )

 



0 ,k

X X
r  ( )

 



0k

XY
r  are formed:

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

1
2 1 2 . (3)

N

k

D

k t k t k t k t k t k t
N

∗

=

φ =

 = η ∆ η ∆ − η ∆ η + ∆ + η ∆ η + ∆  ∑
     

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

1
2 1 2 ,(2)

i

N

i i i i i i
k

D

g k t g k t g k t g k t g k t g k t
N

∗

=

ε =

 = ∆ ∆ − ∆ + ∆ + ∆ + ∆  ∑
     

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

1
2 1 2 ,(2)

i

N

i i i i i i
k

D

g k t g k t g k t g k t g k t g k t
N

∗

=

ε =

 = ∆ ∆ − ∆ + ∆ + ∆ + ∆  ∑
     

( )
( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )

( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

=

 
 
 − ε ⋅ − ε − ε ⋅ − ε 
 
 
 = − ε ⋅ − ε − ε ⋅ − ε 
 
 
 
 
 
 − ε ⋅ − ε − ε ⋅ − ε 

 

  

  

   







   



11 2

22 1

1 2

1 1 2 2 1 1

2 2 1 1 2 2

1 1 2 2

0

00
1

00
1

0 0
1

n

n

n n

k

X X

g gg g

n n

g gg g

n n

g g g g

n n n n

r

RR

D g D D g D D g D D g D

RR

D g D D g D D g D D g D

R R

D g D D g D D g D D g D

. (4)

( )
( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )
ηη η

∗ ∗ ∗ ∗ ∗ ∗

=

 
 =  − ε ⋅ η − φ − ε ⋅ η − φ − ε ⋅ η − φ  

 

    





1 2

1 1 2 2

0

00 0
.n

k

XY

gg g

n n

r

RR R

D g D D D D g D D D D g D D D
(5)



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 ( 90 ) 2017

72

It should also be noted that ( )∗ ε iD  was calculated 
by two methods: by the classical method and by the 
T. A. Aliev’s method. The calculations using the classical 
formula were performed solely for comparison with the 
values of the noise variances calculated from the Aliev’s 
formula. This was possible, because the noisy signal was 
obtained by adding the useful signal and the noise, i. e. 
g(t)=x(t)+ε(t), with different distribution laws, and con-
sequently, the values of the noise variances are known in 
advance and can be compared.

Thus, this technology for improving the formation and 
evaluation of normalized correlation matrices, even with 
a high degree of ill conditionality, allows one, by elimi-
nating the effects of the noise characteristics, to trans-
form the original matrices into a form almost equivalent 
to the form of the matrix whose elements do not contain 
noise-induced errors.

5. Software tools for determining  
equivalent normalized correlation matrices in  

solving identification problems

To test the effectiveness of the technology for forming 
the robust normalized correlation matrices and obtaining 
adequate statistical characteristics of noisy signals, namely 
several input and output signals, numerous computational 
experiments were conducted. To ensure the effectiveness of 
the experiments, we have developed independent software 
called signals_v1. 

For this purpose, absolutely independent software was 
created in JavaFX using Java JDK v1.8: Compiled on In-
tel i7 x64 Windows 10. This was done for several important 
reasons. First, Matlab is extremely expensive and its in-
stallation takes several hours, and the libraries required for 
signal processing cause additional difficulties. In addition, 
Matlab takes up several Gb of memory. Second, Matlab 
is designed for computers that meet high standards and 
parameters. The advantages of our software are as follows.

1. It “weighs” only 2 Mb, which makes it very “light”.
2. The installation is easy and takes a split second.
3. The program interface is designed solely to solve this 

problem and can easily be used by an ordinary operator.
4. It does not require i any additional programs and does 

not impose special requirements for the system.
We will still specify the requirements for the PC: 

OS Windows Vista/7/10, JRE v1.8, or any Linux platform 
with JRE v.1.8 installed.

Three useful signals X(kΔt) were generated with the step of 
pi/100 up to 24*pi and 3 noises ε(kΔt) by the random unit gen-
erator with different distribution laws. Thus, 2,400 points (es-
timates) were obtained for each of the 3 input noisy signals 
and noises. Then noisy signals of the g(kΔt)=X(kΔt)+ε(kΔt) 
form were generated. The output signal of the y(kΔt)= 
=k0+k1*s1(iΔt)+k2*s2(iΔt)+k3*s3(iΔt) form was also gen-
erated, where k is the coefficients. Then a fourth noise was 
generated to form a noisy output signal. Thus, the output 
signal also consisted of 2,400 samples.

Then all the signals were centered. After that, the nor-
malized correlation functions of the input useful signals were 
calculated for forming the correlation matrices of the useful 
signals, i. e.

M(1,1)=rns1s1(1); M(1,2)=rns1s2(1); 

M(1,3)=rns1s3(1);

M(2,1)=rns2s1(1); M(2,2)=rns2s2(1); 

M(2,3)=rns2s3(1);

M(3,1)=rns3s1(1); M(3,2)=rns3s2(1); 

M(3,3)=rns3s3(1).

Further, the normalized correlation functions of the 
noisy signals were calculated for forming the correlation 
matrices of the noisy signals calculated from the classical 
formulas [1–3].

M(1,1)=rng1g1(1); M(1,2)=rng1g2(1); 

M(1,3)=rng1g3(1);

M(2,1)=rng2g1(1); M(2,2)=rng2g2(1); 

M(2,3)=rng2g3(1);

M(3,1)=rng3g1(1); M(3,2)=rng3g2(1); 

M(3,3)=rng3g3(1).

Next, the values of the noise variances are calculated 
using the T. A. Aliev’s formula [4].

Then the corrected normalized correlation functions of 
the noisy signals were calculated to form the corrected nor-
malized correlation matrices of the noisy signals calculated 
from the new formulas.

M(1,1)=rkn11(1); M(1,2)=rkn12(1); 

M(1,3)=rkn13(1);

M(2,1)=rkn12(1); M(2,2)=rkn22(1); 

M(2,3)=rkn23(1);

M(3,1)=rkn13(1); M(3,2)=rkn23(1); 

M(3,3)=rkn33(1).

In turn, the normalized output signal was generated 
(useful, noisy, corrected, respectively):

Y=[rnx4x1(1);rnx4x2(1);rnx4x3(1)];

Y_za6um=[rng4g1(1);rng4g2(1);rng1g3(1)];

Y_korrektir=[rkn41(1);rkn42(1);rkn43(1)].

In addition, taking into account the possibility of finding 
the noise variance, the values of the coefficients k0, k1, k2, 
k3 were calculated. Further, the errors of the corrected esti-
mates obtained from the values of the useful signal estimates 
were calculated.
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After the calculations, the determinants ( )∆ µ
 
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matrix ( )∆ µ
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X X
r  were calculated for the operative and visual 

comparative analysis. Also, the values of the noise variance, 
both those specified and those calculated by Aliev’s formula, 
the coefficients for all 3 cases, namely the useful signal, the 
normalized noisy signal and the corrected normalized noisy 
signal were shown.

Further, the errors of the corrected estimates obtained 
from the values of the useful signal estimates were calculated.

Types of computational experiments conducted. 
Experiment N1. Three useful input signals 

( ) ( )∆ = ∆ +1 40sin 282,X i t i t

( ) ( )∆ = ∆ − +2 50sin 0.4 125,X i t i t

( ) ( )∆ = ∆ + +3 73sin 0.39 155X i t i t

and the output signal 

( ) ( ) ( ) ( )∆ = + ∆ + ∆ − ∆1 2 3100 3 8 5Y i t x i t x i t x i t

are generated. The noises ( )ε1 ,t ( )ε2 ,t ( )ε3 ,t ( )φ t  obey the 
normal distribution law with the mathematical expecta-
tions ε ε ε≈ ≈ ≈ ≈

1 2 3
0ym m m m  and mean – square deviations 

εσ ≈
1

12, εσ ≈
2

15, εσ ≈
3

13, σ ≈ 18.y  The classical conditions 
are fulfilled for the useful signals and the noise. 

Experiment N2. Three useful input signals 

( ) ( )∆ = ∆ +1 40sin 101,X i t i t

( ) ( ) ( )∆ = ∆ − + ⋅ ∆ +2 50sin 0.49 24cos 0.78 119,X i t i t i t

( ) ( ) ( )∆ = + − ⋅ ∆ +∆3 71sin 0.28 44cos 0.3 177 7X i t i t i t  

and the output signal 

( ) ( ) ( ) ( )∆ ∆ − ∆= ∆+ +1 2 311 6101 7Y i t x i t x i t x i t  

are generated. The noises obey the normal distribution law 
with ε ε ε≈ ≈ ≈ ≈

1 2 3
0ym m m m  and εσ ≈

1
9, εσ ≈

2
14, εσ ≈

3
23,

σ ≈ 100.y  For the second and third useful signals, the con-
dition of the consistence of the mathematical expectation is 
violated.

6. Data processing (Discussion): comparative analysis of 
computational experiments 

1) The elements of the normalized matrix of the noisy 
signals are very different from the elements of the matrix of 
the useful signals. It is evident from the example which was 
done with special software (Fig. 1, b, Fig. 2, b):

( ) ( )µ ≠
   

0 ,
i ji jg g X X

r r  

( ) ( )
η

≠
   

0 0 ,
iig X Y

r r  =, 1, .i j n

However, the elements of the corrected normalized 
matrix of noisy signals are commensurable with the ele-
ments of the matrix of useful signals. It is evident from the 
example which was done with special software (Fig. 1, b, 
Fig. 2, b): 

( ) ( )µ ≈ µ
   

,
i j i j

k

X X X X
r r

 

( ) ( )µ ≈ µ
   

,
i i

k

X Y X Y
r r

 =, 1, .i j n 	

2) The elements of the matrix ( )∆ µ
 



g g
r  of the relative  

 
errors of the noisy input signals range from 0 % to 14.12 %, 

and the elements of the column vector ( )
η

∆
 



0
g

r  of the relative  
 
errors from 7.5 % to 23.9 % (Table 1, rows 2, 4, column 2). 

The elements of the matrix ( )∆
 



0k

X X
r  of the relative errors in  

 
the matrix ( )

 



0k

X X
r  of the input signals range only from 0 % to  

5.28 %, and the elements of the column vector ( )∆
 



0k

XY
r  range 

from 1.5 % to 5.3 %.
3) Despite the fact that the value of the conditioning 

number of the matrix of the noisy signals differs signifi-
cantly from the value of that of the matrix of the useful 
signals, i. e. 

( ) ( )( )  ≠     

 

0 0
g g X X

H r H r
 

and the value of the conditioning number of the corrected 
normalized matrix is not the same as that of the matrix of the 
useful signals, i. e. 

( )( ) ( )( )≠
   

 

0 0R

X X X X
H r H r , 

the noisy output signal and its coefficients are close to the val-
ues of the useful output signal and its coefficients.

4) The found noise variance (calculated from the 
T. A. Aliev’s formula) practically matches the given noise 
variance (Fig. 1, b, Fig. 2, b).

Thus, the use of the developed technology makes it 
possible to obtain values of normalized correlation matrices 
of noisy signals that are practically equivalent to those of 
correlation matrices of useful signals, i. e. to eliminate the 
effects of the noise.

The main advantage of this technology is that it helps 
one to eliminate the influence of the noise and correctly 
compute the normalized correlation matrices. Thanks to 
different input parameters (with different units of count) 
after the procedure of normalization one can receive more 
exact output results or better equation which describe the 
output signal.

 The disadvantage of this technology is that in the case 
when the analyzed object is not an industrial object, but a 
construction object (bridge or any other strategic object) 
and does not have different input parameters, one should put 
at least 3 sensors in different points. This is quite problem-
atic and expensive.

For developing these experiments, one must have the 
natural experiments on real objects parallel with computa-
tional ones.
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Fig. 1. Software interface: a – initial data; b – results window

a
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Fig. 2. Software interface: a – initial data; b – results window 
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7. Conclusions

After the analysis of numerous computational experi-
ments, the following conclusions are drawn:

1. The proposed new equations for normalized correla-
tion functions and normalized correlation matrices ignore 
the impact of noise even in the case when traditional con-
ditions [1–3] are not satisfied and matrices are with “bad” 
conditionality. It is clear from Fig. 1, a, Fig. 2 as the condi-
tionality of all three matrices is very high. 

2. A new technology which easily helps one to eliminate 
the errors of noise in correlation functions which are ele-
ments of correlation matrices is proposed. Thus, corrected 
elements of normalized correlation matrices of noisy signals 
are almost equal to the elements of the normalized correla-
tion matrix of useful signals. As it is clear from Fig 1, b, 
Fig 2, b, correlation matrices of corrected normalized esti-
mates (4) of noisy signals are practically equal to correlation 
matrices of useful signals. 

3. The software which is suggested for formalizing cor-
rected normalized matrices is helpful for showing that new 
technology gives positive results (similarity of normalized 
correlation matrices of noisy signals to normalized correla-
tion matrices of useful signals). At the same time, this is 

proven by comparing the variances (dispersion) which are 
founded by 2 expressions: classical one [3] and suggested 
one (2). As the noisy signal was modeled as g(t)=x(t)+e(t), 
the estimate of variance was evident. That is why, in the 
program there are 2 values for each experiment – calculat-
ed by the standard function and determined by the Aliev’s 
expression (2) Fig. 1, b, Fig. 2, b. I need to notice that it was 
counted for all 4 noises (3 for input signals and one for output 
signal). From values which are shown in the software’s win-
dow (Fig.  1, b, Fig. 2, b), it is clear that variances which are 
calculated from (2) are closer to real estimates of variance.

4. At the same time, the software helps one to easily com-
pare (both traditional and suggested technology) of other sta-
tistical estimates of corrected normalized correlation matrices 
of noisy signals with normalized correlation functions of useful 
signals. The software is helpful to determine and compare the 
determinant of all 3 matrices (matrix of useful signals, normal-
ized matrix of noisy signals and corrected normalized matrix of 
noisy signals) Fig. 1, b, Fig. 2, b. It is evident that the estimate 
of the determinant of the corrected matrix is closer to the de-
terminant of the useful signal matrix. Thus, the influence of the 
noise is less. Besides, the errors of the input signal’s coefficients 
y(kΔt)=k0+k1∙s1(iΔt)+k2∙s2(iΔt)+k3∙s3(iΔt) are minimalized 
too Fig. 1, a, b, Fig. 2 a, b.


