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1. Introduction

It is known [1] that one of the main challenges in solving
problems of automated control of industrial facilities is estab-
lishing the quantitative interrelations between input and out-
put noisy signals characterizing the processes in those objects
both in statics and dynamics. Such interrelations are called
static and dynamic characteristics, respectively. These charac-
teristics can be determined from differential equations of con-
trol objects. However, those differential equations are often un-
known, which is why statistical methods are widely used — they
make it possible to determine dynamic characteristics during
normal operation of objects [1-3]. In practice, such dynamic
characteristics as impulsive admittance and transfer functions
of linear systems are determined by applying to their input

artificial stimulation of a certain type (impulse, step function,
sinusoids) and measuring the response. However, in that case,
random uncontrollable disturbances are superimposed on these
impacts. As a result, it proves impossible to precisely determine
dynamic characteristics based on typical input signals [1-3].

2. Literature review and problem statement

The statistical correlation method for determining these
dynamic characteristics is based on the solution of an integral
equation that includes the correlation functions Ry (iAt) and
Ry, (iAt) of the input X(iAt) and output Y(iAt) signals. It allows
us to obtain the dynamic characteristics of an object without
disturbing its normal operation mode. Therefore, statistical




methods are widely used for determining the dynamic charac-
teristics of objects during their normal operation [1-3].

However, the application of statistical methods for build-
ing mathematical models of real-life industrial objects pres-
ents the following difficulty. Interferences and noises are
imposed upon the useful signal (that has to be obtained with
the least possible amount of distortion), thus hindering the
calculation of the estimates of their static characteristics.

One should take into account that interferences and
noises are also represented by random functions g(iAt). The
reasons behind the formation of interferences and noises can
be very diverse [4]:

a) thermal noises;

b) noises caused by other machinery and equipment op-
erating nearby;

¢) noises caused by power supply sources;

d) noises caused by self-oscillations generated in feed-
back circuits, etc.

For instance, for deep-water offshore platforms, noises
are caused by waves, wind, etc. Another example is the radio
detector of an antenna under a wind load, which also rep-
resents a random time function.

In view of the above, many algorithms and technologies of
filtration have been proposed with the aim of eliminating the
effects of the noise on the result of identification of statistical
models of the dynamics of control objects over a long period
of time [4]. The ones that allow for eliminating the error of the
noises caused by external factors have found a wide application.
However, in many real-life objects, noises of technological pro-
cesses are formed under the influence of various factors. Some
of them reflect indirectly certain processes that cause defects in
the objects under investigation. For this reason, the range of the
noise spectrum frequently overlaps the spectrum of the useful
signal. Besides, the spectra of the noise and the useful signal are
not strictly stable. Therefore, filtration does not always yield
the desired result. Sometimes, the spectrum of the useful signal
is even distorted from the filtration.

Taking into account the above, the paper considers one
possible option of creating alternative digital methods and
technologies for eliminating the error induced by noise
during the formation of correlation matrices in the process
of identification of the dynamic model of industrial objects.

When applying the classical approach, it is possible to
obtain more or less acceptable estimates of the characteris-
tics of the investigated parameters only if the signal is mod-
eled and complies with the classical conditions. In the case
when the signal is received from real processes, the effect of
noise, changing of the frequency range, differences in mea-
surement units create a number of difficulties.

Because of this, the description of many analyzed pro-
cesses through the classical mathematical apparatus of prob-
abilistic methods proves to be inadequate, and when solving
real problems, erroneous results are obtained. Precisely for
these reasons, the correlation matrices, being formed from
the correlation functions of real signals and having the most
important applied importance, as well as underlying many
engineering problems, are not adequately solved now. This is
due to the noise-induced error in each element of the correla-
tion matrix, which creates a perceptible error in the formation
of the final normalized correlation matrix of noisy signals and
the inaccuracy of the results in determining the statistical
characteristics of the matrix as a whole. It should also be
noted that the process of obtaining the output signal and de-
termining its characteristics is accompanied by serious errors.

According to the existing literature [1], in order to elimi-
nate the effects of the noise on the estimate of the correlation
function for zero-time shift u=0, it is expedient to proceed to
normalized estimates of the correlation functions. It is known
that standardization or normalization reduces values of all
transformed variables to a single range of values by express-
ing through the relation of these values to a certain value
reflecting certain properties of a particular attribute [4—6]. At
the same time, the normalization process really allows one to
independently compare the cross-correlations of the absolute
values of the data [7]. In addition, the normalization of the
indicators is often required, and this is convenient in order
to proceed to dimensionless variables [8]. Moreover, in most
cases, random functions are approximated by a normalized
correlation function [9]. It is common to proceed immediately
to normalized correlation functions, as normalized correlation
functions are considered to be convenient in that their values
do not exceed unity [10]. It is also known that to estimate the
degree of dependence of the cross sections of a random func-
tion, it is more convenient to use the normalization of the cor-
relation function [11]. It is also common that the normalized
correlation function is used to be able to compare processes
with different values of variances [12].

Thus, the normalized cross-correlation matrices that
consist of normalized correlation functions are of the utmost
applied importance.

It is known that correlation functions mainly are calcu-
lated as elements of correlation matrices [13]. At the same
time, correlation matrices are the main indicators of eigen-
vectors estimates [14]. Besides, solving tasks with large cor-
relation matrices is one of the big spheres of computational
mathematics and methods of optimization [15]. Correlation
matrices are used for different engineering tasks as a tool
of decision-making technologies. There is a great variety of
tasks where correlation matrices are applied [16, 17].

It is known that the universality of the problem of im-
proving the conditionality of correlation matrices is due to
the fact that, in essence, all typical problems associated with
the statistical analysis of the processes under investigation
require the knowledge of correlation matrices composed of
the estimates of auto- and cross-correlation functions. How-
ever, in practice, for real objects, based on the data of their
normal operation, the estimates of the auto- and cross-cor-
relation functions of input and output signals contain cer-
tain “micropulsations”, due to unavoidable noise-induced
errors [18]. Since the methods used to solve these problems
are very sensitive to these “micropulsations”, the correlation
matrices turn out to be ill-conditioned, and the obtained
solution is not adequate. Similar difficulties arise for any ma-
trix equation, when ill-conditioned correlation matrices are
used to solve it, each element of which contains a noise-in-
duced error. It should also be noted that the process of ob-
taining the output signal and determining its characteristics
is accompanied by serious errors.

To eliminate the difficulties caused by these reasons,
many methods for improving the conditionality of the
correlation matrices have been proposed. Despite the high
academic level of these studies, the experience of their suc-
cessful practical use in solving applied problems is not great
[1-3]. Among these methods, a special place is occupied by
the method of regularization and its modification [1—3], which
are the most popular. The usefulness of regularization is sub-
stantiated by a large number of theoretical studies. However,
for all its indisputable merits, this method has a significant



drawback: the impossibility of practical selection of the optimal
regularization parameter due to its dependence on unknown
parameters. In view of this, there is also no complete guarantee
that satisfactory results will be obtained after using the regu-
larization method [4—10]. In this regard, there is an urgent need
to develop new methods and algorithms aimed at eliminating
the difficulties caused by the ill conditionality of correlation
matrices. Thus, to solve the above — mentioned problems, it
is necessary to develop alternative methods, algorithms and
technologies that allow solving statistical identification prob-
lems even under ill conditionality of correlation matrices and in
violation of the classical conditions. Thus, this paper is devoted
to the technology of correct normalization of correlation matri-
ces, the elements of which are normalized correlation functions.

3. The aim and objectives of the study

The aim of this technology is transforming initial (noisy
matrices) matrices to the view which is almost equivalent to
the view of matrices with elements which do not consist in
any errors of the noise. It is done by eliminating the influence
of the noise. It happens even in case of “bad” conditionality.
This problem is solved by new technology for normalization
of correlation matrices (cross- and auto-correlation matrices)
(4), (5). This technology is for eliminating the influence of the
noise/interference.

The comparative analysis should prove the difference be-
tween traditional equations and advantages of it. For solving
this problem, the creation of new special software was suggest-
ed too. The software should be maximum informative
(all necessary estimates of initial, noisy, corrected ma- (81
trices) should be calculated.

It should be obvious thanks to easy interface. The
interface computes both variants: traditional and sug-
gested one. Thus, the purpose was:

— to suggest new equations for normalized correla-
tion functions and normalized correlation matrices;

— to suggest a new technology which easily helps
one to eliminate the errors of noise in correlation func-
tions which are elements of correlation matrices;

— to create the special new software for applying the
new technology;
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—to compare the results of correlation matrices of useful
signals (without any noise), classical normalized correlation
matrices of noisy signals and normalized correlation matrices
counted by the suggested technology;

— to open the possibility of easy comparison of their statis-
tical estimates.

4. Technology for determining equivalent normalized
correlation matrices for solving identification problems.

The technology for obtaining correct values and character-
istics of normalized correlation matrices in solving identifica-
tion problems in the case of ill conditionality is as follows. In the
following paragraphs, we propose a technology for forming the
corrected values of normalized correlation matrices, which pro-
vides improved accuracy of the obtained estimates even under
ill conditionality in solving identification problems.

1. For each noisy input signal g,(t),g,(t),g,(t) and output
signal n(t), the estimates of the auto- and cross-correlation
functions are calculated [19]:

)&, ((k+p)Ac)

g, g,

R. . 12g kAt) ((k+u)At) i,j=1n.

Ei"l

M

2. For each noisy input signal ;gi (¢) and output signal To](t),
the noise variances D’ (g; ), D" (¢) are calculated [7-10]:

(kA?)g, (kA?)-2g, (kAY)g, (k+1)At)+ g, (kAY)g ((k+2)At)] 2

(k) m(kat)—2n(kar)n((+1) Ac) + (kALY ((k+2)m)] 3)

3. The normalized correlation matrices of the useful
signals, noisy signals, and corrected normalized correlation
matrices 7 (O), 7t (0) are formed:

XX XY

R . (0) R . (0)
8281 1 828n
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8181 818> 1
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— &n &N 8, (5)




It should also be noted that D’(g;) was calculated
by two methods: by the classical method and by the
T. A. Aliev’s method. The calculations using the classical
formula were performed solely for comparison with the
values of the noise variances calculated from the Aliev’s
formula. This was possible, because the noisy signal was
obtained by adding the useful signal and the noise, i. e.
g =x(t)+e(t), with different distribution laws, and con-
sequently, the values of the noise variances are known in
advance and can be compared.

Thus, this technology for improving the formation and
evaluation of normalized correlation matrices, even with
a high degree of ill conditionality, allows one, by elimi-
nating the effects of the noise characteristics, to trans-
form the original matrices into a form almost equivalent
to the form of the matrix whose elements do not contain
noise-induced errors.

5. Software tools for determining
equivalent normalized correlation matrices in
solving identification problems

To test the effectiveness of the technology for forming
the robust normalized correlation matrices and obtaining
adequate statistical characteristics of noisy signals, namely
several input and output signals, numerous computational
experiments were conducted. To ensure the effectiveness of
the experiments, we have developed independent software
called signals_v1.

For this purpose, absolutely independent software was
created in JavaFX using Java JDK v1.8: Compiled on In-
tel i7 x64 Windows 10. This was done for several important
reasons. First, Matlab is extremely expensive and its in-
stallation takes several hours, and the libraries required for
signal processing cause additional difficulties. In addition,
Matlab takes up several Gb of memory. Second, Matlab
is designed for computers that meet high standards and
parameters. The advantages of our software are as follows.

1. It “weighs” only 2 Mb, which makes it very “light”.

2. The installation is easy and takes a split second.

3. The program interface is designed solely to solve this
problem and can easily be used by an ordinary operator.

4. Tt does not require t any additional programs and does
not impose special requirements for the system.

We will still specify the requirements for the PC:
OS Windows Vista/7/10, JRE v1.8, or any Linux platform
with JRE v.1.8 installed.

Three useful signals X(kAt) were generated with the step of
pi/100 up to 24*pi and 3 noises e(kAt) by the random unit gen-
erator with different distribution laws. Thus, 2,400 points (es-
timates) were obtained for each of the 3 input noisy signals
and noises. Then noisy signals of the g(kAt)=X(kAt)+e(kAL)
form were generated. The output signal of the y(kAt)=
=k0+k1*s1(iAt)+k2*s2(iAt)+k3*s3(iAt) form was also gen-
erated, where k is the coefficients. Then a fourth noise was
generated to form a noisy output signal. Thus, the output
signal also consisted of 2,400 samples.

Then all the signals were centered. After that, the nor-
malized correlation functions of the input useful signals were
calculated for forming the correlation matrices of the useful
signals, i. e.

M )=rnsts1(1); M(1,2)=rns1s2(1);
M(@,3)=rns1s3(1);

M2, 1) =rns2s1(1); M(2,2)=rns2s2(1);
M(2,3)=rns2s3(1);

M(3,1)=rns3s1(1); M(3,2)=rns3s2(1);

M(3,3)=rns3s3(1).

Further, the normalized correlation functions of the
noisy signals were calculated for forming the correlation

matrices of the noisy signals calculated from the classical
formulas [1-3].

M(1,0)=rnglgl(1); M(1,2)=rnglg2(1);
M(1,3)=rmglg3(1);

M(2,1)=rng2g1(1); M(2,2)=rng2g2(1);
M(2,3)=rmg2g3(1);

M(3,1)=rng3g1(1); M(3,2)=rng3g2(1);

M(3,3)=rng3g3(1).

Next, the values of the noise variances are calculated
using the T. A. Aliev’s formula [4].

Then the corrected normalized correlation functions of
the noisy signals were calculated to form the corrected nor-

malized correlation matrices of the noisy signals calculated
from the new formulas.

M) =rkn11(1); M(1,2)=rkn12(1);
M(1,3)=rkn13(1);

M2, 1)=rkn12(1); M(2,2)=rkn22(1);
M(2,3)=rkn23(1);

M(3,1)=rkn13(1); M(3,2)=rkn23(1);
M(3,3)=rkn33(1).

In turn, the normalized output signal was generated
(useful, noisy, corrected, respectively):

Y=[rnxdx1(1);rnxdx2(1);rnxdx3(1)];

Y zabum=[rngdgl(1);rngdg2(1);rnglg3(1)];

Y korrektir=[rknd1(1);rkn42(1);rkn43(1)].

In addition, taking into account the possibility of finding
the noise variance, the values of the coefficients k0, k1, k2,
k3 were calculated. Further, the errors of the corrected esti-

mates obtained from the values of the useful signal estimates
were calculated.



After the calculations, the determinants A . .
XX gg

A* _(u), and the conditioning numbers H(?b . (u)), H(?s
XX XX

H (?k (u)) of the normalized correlation matrices 7. . (u),
XX XX
7..(u) of the useful and noisy signals and the corrected

8
matrix A7*. (i) were calculated for the operative and visual
XX

comparative analysis. Also, the values of the noise variance,
both those specified and those calculated by Aliev’s formula,
the coefficients for all 3 cases, namely the useful signal, the
normalized noisy signal and the corrected normalized noisy
signal were shown.

Further, the errors of the corrected estimates obtained
from the values of the useful signal estimates were calculated.

Types of computational experiments conducted.

Experiment N1. Three useful input signals

X, (iAt) = 40sin (iAr) + 282,

X, (iAt)=50sin (iAt —0.4) +125,

X, (i6t) = 73sin (iA+0.39)+155
and the output signal

Y (iAt) =100+ 3x, (iAt)+8x, (iAt ) — 5, (iA¢)
are generated. The noises €,(¢), €,(¢), &(¢), ¢(¢) obey the
normal distribution law with the mathematical expecta-
tions m, =m, =m, =~m, =0 and mean — square deviations

=12, (5 ~15, cs =13, 6,=18. The classical conditions
are fulfilled for the useful 51gnals and the noise.

Experiment N2. Three useful input signals

X, (iAt) = 40sin (iAt) +101,

X, (i6t) = 50sin (iAt —0.49)+ 24 cos(0.78-iAt) + 119,

X, (iAt)=T1sin(iAt +0.28) - 44 cos(0.37-iAt)+177
and the output signal

Y (iAt)=101+11ux, (iAt) - 7ox, (iAL)+ 6ux, (iAL)
are generated. The noises obey the normal distribution law
with m, =m, =m_=m, =0 and o, =9, 6, =14, 6, =23,
c,=100. For the second and third useful signals, the con-

dition of the consistence of the mathematical expectation is
violated.

6. Data processing (Discussion): comparative analysis of
computational experiments

1) The elements of the normalized matrix of the noisy
signals are very different from the elements of the matrix of
the useful signals. It is evident from the example which was
done with special software (Fig. 1, b, Fig. 2, b):

.. (u);tr;(,;(, (0),

i5j

r. °(0)¢r° (O)v i,j=1,n.

&mn XiY

However, the elements of the corrected normalized
matrix of noisy signals are commensurable with the ele-
ments of the matrix of useful signals. It is evident from the
example which was done with special software (Fig. 1, b,
Fig. 2, b):

XiX; XiX;
k ~
r)‘(ll;(u)Nr’ (u)’ L] 1n

2) The clements of the matrix A7 .(u) of the relative
88
errors of the noisy input signals range from 0 % to 14.12 %,

and the elements of the column vector A7, . (0) of the relative
&M

errors from 7.5 % to 23.9 % (Table 1, rows 2, 4, column 2).

The elements of the matrix A7’ (0) of the relative errors in
XX

the matrix ?k ( ) of the input signals range only from 0 % to

5.28 %, and the elements of the column vector A7 (0) range
from 1.5 % to 5.3 %. X7

3) Despite the fact that the value of the conditioning
number of the matrix of the noisy signals differs signifi-
cantly from the value of that of the matrix of the useful
signals, i. e.

H(Féé (o)) " H(F}b} (0))

and the value of the conditioning number of the corrected
normalized matrix is not the same as that of the matrix of the
useful signals, i. e.

H(ffi

XX

(o))¢ H(a Q

)
the noisy output signal and its coefficients are close to the val-
ues of the useful output signal and its coefficients.

4) The found noise variance (calculated from the
T. A. Aliev’s formula) practically matches the given noise
variance (Fig. 1, b, Fig. 2, b).

Thus, the use of the developed technology makes it
possible to obtain values of normalized correlation matrices
of noisy signals that are practically equivalent to those of
correlation matrices of useful signals, i.e. to eliminate the
effects of the noise.

The main advantage of this technology is that it helps
one to eliminate the influence of the noise and correctly
compute the normalized correlation matrices. Thanks to
different input parameters (with different units of count)
after the procedure of normalization one can receive more
exact output results or better equation which describe the
output signal.

The disadvantage of this technology is that in the case
when the analyzed object is not an industrial object, but a
construction object (bridge or any other strategic object)
and does not have different input parameters, one should put
at least 3 sensors in different points. This is quite problem-
atic and expensive.

For developing these experiments, one must have the
natural experiments on real objects parallel with computa-
tional ones.



‘ Input | Output

v Discretization (t)

Begin 0

v Signals

s1 40%sin(dis)+282

¥ Coefficients

k0 100

¥ Cycle parameters

Upper limit n

¥ Noices

sigma1 12

Input ‘ Output‘

Noice dispersion (disp_eN):
115.89277
207.80888
133.74844
286.85368

Found dispersions (var_eN):
144.62169
22461203
17532731
31590357

Indicators of the estimates of
conditionality of useful, noisy and
corrected signals (ob):

3.8670394391132415E15
20.94695445974T676

293.2965467771163

Determinants of the matrices of
estimates of useful, noisy and
corrected signals (dt):

6.661338147750939E-16

0.11328501258545398

0.0076008637999079864

Step  pi100

52 50”sin(dis-0.4)+125

1200

End 24°pi-pif00

53 73"sin(dis+0.39)+155

kK1 3 k2 8
Sigma2 15 Sigmad 13 Sigma4 18
Procass
a

Matrix of normalized estimates of useful
signals (M):

Col0 Coll
1.0 0.92106

Col2
0.92491
082106 10 0.70385

092491 070385 10

QOutput stream of estimates of useful
signals (Y):

045581
0.76644
0.08319

Coefficients of useful signals (a):
-506.5107
6.26921
5.84264
-5.20443

Coefficients of equations of useful
signals (b):

075781
0.88281
-116797

Absolute errors for coefficients of
useful signals (pa):

Matrix of normalized estimates of noisy
signals (M):

Col0 Coll
1.0 0.78878

Col2
0.83478
o78s7e 10 0.62313

0.83478 062313 10

‘Output stream of estimates of noisy
signals (Y):

0.40396
0.69116
0.83478

Coefficients of noisy signals (a):
356249018
-16.19942
7.60888
7.93042

Coefficients of equations of noisy
signals (b):

-1.98702
115201
177566

Absolute errors for coefficients of
noisy signals (pa):

K3

Matrix of corrected normalized estimates
of noisy signals (M)

Col0 Coll Col2
1.0 0.911 091397
0911 10 0.68977
0.91397 068977 10

Output stream of estimates of corrected
signals (Y):

043289
0.74885
0.05483

Corrected coefficients of noisy signals
(a):

28688954

-1.8101

9.65651

-3.30813

Coefficients of equations of corrected
signals (b):

-0.22203
145203
-0.74071

Absolute errors for corrected
coefficients of noisy signals (pa):

6.06611 34,5249 8.8580

108974 635981 160337

0.26967 0.04889 0.20706

0.05889 2.58008 033837
b

Fig. 1. Software interface: a — initial data; b — results window



‘ Input| Output

¥ Discretization (f)

Begin 0 Step pi/100 End 24°pi-pil100
¥ Signals
s1 407sin(dis)+101 52 507sin(dis-0.49)+24°cos s3  717sin(dis+0.28)-44"cos|
v Coefficients
ko 101 k1| 1 k2 -7 6
v Cycle parameters
Upper limitn = 1200
¥ Noices
Sigmat1 9 Sigma2 14 Sigma3d 23 Sigma4 100
Process
a

input | Output |

Noice dispersion (disp_eN):
115.89277
208.21687
135.81548
188.1182

Found dispersions (var_eN):
14462168
22461293
17532731
31590357

Indicators of the estimates of

conditionality of useful, noisy and

corrected signals (ob):
1.7166705141193022E16
18.376771383202247

246.4662935517288

Determinants of the matrices of
estimates of useful, noisy and
corrected signals (dt):

9.10729824887823TE-1T

0.07373594742002743

0.0034179465150111325

Matrix of normalized estimates of useful

signals (M):

Col0 Coll Col2
10 00592094 08417
09%9934 10 0.93807
00417 093807 1.0

Output stream of estimates of useful
signals (Y):

0.9638
096001
095732

Coefficients of useful signals (a):
-1563.94816
-5.14887
19.36787
-1.96545

Coefficients of equations of useful
signals (b):

-0.36719
152344
-0.25391

Absolute errors for coefficients of
useful signals (pa):

1648464

146808

376684

132758

Matrix of normalized estimates of noisy
signals (M):

Col0 Coll Col2
10 083823 0.84723
083923 10 0.80934
0.84723 0.80954 1.0

Qutput stream of estimates of noisy
signals (Y):

0.88781
0.86
0.84723

Coefficients of noisy signals (a):
-762.42892
599504
3.84503
176147

Coefficients of equations of noisy
signals {b):

043241
031284
023762

Absolute errors for coefficients of
noisy signals (pa):

85488

0455

156371

070642

b

Matrix of corrected normalized estimates
of noisy signals (M)

Col0 Coll Col2
10 0.08745 092878
028745 10 0.91408
092878 091408 1.0

Qutput stream of estimates of corrected
signals (Y):

094246

0.84732

0.9881

Corrected coefficients of noisy signals
(a):

-56.26191

-3.71251

615686

612605

Coefficients of equations of corrected
signals (b):

-0.26778
048812
0.79163

Absolute errors for corrected
coefficients of noisy signals (pa):
155705
13373
1.87955
0.02101

Fig. 2. Software interface: a — initial data; b — results window




7. Conclusions

After the analysis of numerous computational experi-
ments, the following conclusions are drawn:

1. The proposed new equations for normalized correla-
tion functions and normalized correlation matrices ignore
the impact of noise even in the case when traditional con-
ditions [1-3] are not satisfied and matrices are with “bad”
conditionality. It is clear from Fig. 1, a, Fig. 2 as the condi-
tionality of all three matrices is very high.

2. A new technology which easily helps one to eliminate
the errors of noise in correlation functions which are ele-
ments of correlation matrices is proposed. Thus, corrected
elements of normalized correlation matrices of noisy signals
are almost equal to the elements of the normalized correla-
tion matrix of useful signals. As it is clear from Fig1, b,
Fig 2, b, correlation matrices of corrected normalized esti-
mates (4) of noisy signals are practically equal to correlation
matrices of useful signals.

3. The software which is suggested for formalizing cor-
rected normalized matrices is helpful for showing that new
technology gives positive results (similarity of normalized
correlation matrices of noisy signals to normalized correla-
tion matrices of useful signals). At the same time, this is

proven by comparing the variances (dispersion) which are
founded by 2 expressions: classical one [3] and suggested
one (2). As the noisy signal was modeled as g(©)=x(t)+e(?),
the estimate of variance was evident. That is why, in the
program there are 2 values for each experiment — calculat-
ed by the standard function and determined by the Aliev’s
expression (2) Fig. 1, b, Fig. 2, b. I need to notice that it was
counted for all 4 noises (3 for input signals and one for output
signal). From values which are shown in the software’s win-
dow (Fig. 1, b, Fig. 2, b), it is clear that variances which are
calculated from (2) are closer to real estimates of variance.

4. At the same time, the software helps one to easily com-
pare (both traditional and suggested technology) of other sta-
tistical estimates of corrected normalized correlation matrices
of noisy signals with normalized correlation functions of useful
signals. The software is helpful to determine and compare the
determinant of all 3 matrices (matrix of useful signals, normal-
ized matrix of noisy signals and corrected normalized matrix of
noisy signals) Fig. 1, b, Fig. 2, b. It is evident that the estimate
of the determinant of the corrected matrix is closer to the de-
terminant of the useful signal matrix. Thus, the influence of the
noise is less. Besides, the errors of the input signal’s coefficients
y(kAL)=kO0+k1-s1(iAL)+k2-s2(iAt)+k3-s3(iAt) are minimalized
too Fig. 1, a, b, Fig.2 a, b.
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