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1. Introduction

The inertiality of change in the thermophysical param-
eters during operation process of heat power equipment is 
one of the reasons for the instability of its functioning and 
its deviations from the optimal state. The magnitude of 

delay in changing controlled magnitudes following external 
disturbances and controlling impacts depends on the ac-
cumulating properties of equipment under operation. This 
effect manifests itself in various parts of the equipment by 
changing the flow of energy compared with the flow that 
arrives with fuel. Energy flows are predetermined by the 
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flows of substance (a working body) and thermal fields in the 
elements of the structure.

Working bodies are typically gases. Gaseous products 
have low density and, as a consequence, small accumu-
lating properties of thermal energy. There is a different 
pattern with design elements that have significant masses 
and considerable accumulating capacity. In thermal power 
equipment, one can distinguish parts with regenerative and 
recuperative heat transfer conditions. Conditions for regen-
erative heat exchange are implemented for elements that are 
not heat-transfer surfaces: enclosures, fasteners. The main 
working elements, for example, in the boiler equipment, are 
the surfaces of heat exchangers where the recuperative heat 
transfer conditions are implemented.

In all cases, creation of effective control systems requires 
tools for the estimation of temperature fields and accumu-
lating properties of elements of heat power equipment under 
non-stationary conditions of heat exchange. At present, 
solution to a nonstationary problem can be obtained based 
on universal methods of numerical realization. At the design 
stage, however, when setting up control systems, of impor-
tance are the results of analytical studies. The existence of 
results of analytical studies becomes even more relevant 
when using fuel of variable composition [1], characterized by 
a sharp increase in the number of transition processes.

2. Literature review and problem statement

For the elements with regenerative heat transfer con-
ditions, papers [2, 3] developed analytical methods for de-
termining a nonstationary temperature field at any point of 
bodies that have complex shapes. Among the considered geo-
metric primitives are an infinite plate, a cylinder, a sphere, 
under conditions of heating or cooling with determining 
the nonstationary dimensionless temperature fields. Subse-
quently, by the geometric intersection of primitives, one can 
model bodies of complex shapes with their temperature fields 
obtained by multiplying the dimensionless temperature 
fields of the respective primitives.

To date, research in this direction have either tackled 
modifications of methods for solving the original model, 
which do not have fundamental advantages over each other, 
or have been considering a new subject for application in 
the form of modern equipment. Thus, authors of [4] employ 
the Trefftz functions that produce an approximate solution. 
Paper [5] considers a thermal field in one of the primitives – 
a cylinder. To solve the problem, authors apply a particular 
approach that employs the cylindrical coordinate system, 
multiple integrals, and Laplace transforms to solve them. In 
addition, boundary conditions of the first and second kind 
are applied, while the most common are conditions of the 
third kind.

In paper [6], mathematical model of the heat transfer 
process is based on the variational approach. Heat transfer 
through the anisotropic body is investigated, which is inter-
esting. However, [6] solves a stationary problem. In article 
[7], authors examine nonstationary heat transfer in a recu-
perative heat exchanger. In this work, they obtained results 
based on numerical studies, which binds them to a specific 
form of equipment and initial conditions. This makes it 
difficult or even excludes the possibility of their application 
at the design stage, when control systems are set up, where 
the results of analytical studies are important. Authors of 

paper [8], based on the Laplace transfor, search for analytical 
solution to one of the variants of a nonstationary problem 
on heat transfer. They search for a time delay in the transfer 
of heat pulse through the heat exchange surface. The result 
found, however, does not make it possible to solve the prob-
lem on accumulation of heat energy. Article [9] addresses the 
problem on cooling a display, and [10] considers cooling a 
plate with an internal heat source. In the latter case, special 
feature is the consideration of a multi-layer plate.

Recuperative heat exchange conditions in thermal power 
equipment are implemented in the heat-exchange devices. 
Main heat-transfer surfaces are a plate and a wall of the hol-
low cylinder (pipe). In the latter case, at the ratio of external 
cylinder radius to the internal cylinder radius of r2/r1<2, the 
results obtained based on models for a cylindrical wall and 
a flat wall differ by less than 4 %. That is why, in the vast 
majority of cases, in order to solve nonstationary problems, it 
will suffice to be able to determine temperature fields at heat 
transfer through a flat wall.

Attempts to obtain at least intermediate results in this 
direction were made in papers [2, 3]. They considered, as 
one of the examples, the asymmetrical heating of a flat 
plate. This case, due to the similarity of temperatures on 
both sides of the plate, meets the conditions for regenerative 
heat exchange. Different adopted heat transfer coefficients 
could provide a possible path for solving the problem on 
nonstationary heat transfer. Paper [2] outlined only a direc-
tion for possible solution without giving its form. Work [3], 
published later than [2], and repeating its results in many 
ways, described the solution to determine a dimensionless 
temperature field. Following a certain period of time, at the 
end of the examined process, albeit asymmetric, but still of 
heating, all points of the plate must have the same tempera-
ture equal to the ambient temperature. The expression, given 
in [3], does not show this.

Subsequently, solutions to problems on nonstationary 
heat transfer come down to various kinds of numerical 
studies. However, even given the easiest implementation [11] 
with the minimum possible number of estimated nodes, the 
results obtained do not demonstrate the degree of common-
ality that would distinguish analytical calculations.

In [12], authors applied an approximate solution to the 
problem of nonstationary heat transfer. The proposed ap-
proach is applicable, for example, in the study of processes 
in the boiler equipment. The authors employed a special 
feature in the heat transfer process from gaseous products 
of fuel combustion to the liquid heat carrier (water). This 
process is characterized by a large difference between heat 
transfer coefficients at different sides of the heat transfer 
surface. The magnitudes of coefficients may vary by 2−3 or-
ders. In addition, heat-transfer surfaces are characterized by 
low thickness, high thermal conductivity and, consequently, 
have low thermal resistance. As a result, temperature in the 
wall is considered constant. The magnitude of temperature 
is accepted to be equal to the surface temperature from the 
side of the liquid heat carrier and close to the temperature of 
the heat carrier itself.

There are a number of cases when such assumptions are 
not acceptable. Heat transfer coefficients on different sides 
of the heat-transfer surface may turn out to be different but 
still comparable. An example is the cooling of combustion 
chamber of gas turbine engine, when gaseous combustion 
products are on one side and air is on the other side. A simi-
lar situation could arise in direct flow boilers at shift in the 
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interface of steam − water. In this case, on one side are the 
gaseous combustion products, on the other side is steam. 
Superheaters also belong here. In all cases, the temperature 
and thermal-physical properties of heat-carrier (air, steam) 
are close to constant. The same parameters for the products 
of combustion when utilizing fuel of variable composition 
change considerably. One of them is the heat transfer coef-
ficient whose magnitude may change by several times [13]. 
These peculiarities lead to an increase in the quantity of 
transitional processes and increase the influence of energy 
accumulation in the design elements on manageability of the 
occurring thermophysical processes.

Solving a problem of nonstationary heat transfer is 
complicated not only by the distributed nature of a mathe-
matical model that describes processes in the body with two 
differentiated media, but also because of the need to take 
into consideration the processes that occur in the media that 
surrounds it. In other words, a given problem is conjugate. 
The accuracy of solution to a conjugate problem is limited 
by the largest error in the description of any of the elements 
of the original model.

In many cases, specifically in engineering applica-
tions, in order to obtain a solution, they change a general 
model of the process by simplifying some of its elements. 
As far as the examined problem is concerned, the descrip-
tion of processes of heat transfer from the environment 
to the dividing surface is replaced by assigning boundary 
conditions. Boundary conditions of the third kind are the 
most common and frequently used. In this case, the entire 
description of a complex process comes down to assigning 
one heat transfer coefficient. This coefficient is typically 
calculated using the criterial equations, which can lead 
to an error of its determining at 15−20 % [14]. Another, a 
later, work [15] argues that this error can be even larger 
and amount to 30−50 %. Under these conditions, there 
is no need to search for an exact analytical solution to 
the problem of nonstationary heat transfer. Approximate 
solution is acceptable.

The analysis that we conducted reveals the need to 
develop a method for the analytical solution to problems 
on nonstationary heat transfer. The method can be approxi-
mate, but the calculation error must not exceed possible er-
ror in determining original data (heat transfer coefficients). 
The method must be capable of solving problems on both 
regenerative and recuperative heat transfer conditions. The 
devices for which these conditions are implemented are typi-
cally elements of the same equipment and are exposed to the 
same influences. Given this, it is desirable that the problems, 
even under different conditions of influence, should have the 
same or similar solutions.

3. The aim and objectives of the study

The aim of present study is to develop a method for 
solving analytically the problems on heat exchange under 
different conditions of influence. This should provide the 
possibility of a unified approach both under conditions of 
nonstationary regenerative (heating or cooling) and recu-
perative heat exchange (heat transfer).

To accomplish the aim, the following tasks have been set:
– using symmetric heating of a plate as an example repre-

senting the simplest case, to work out a principle of approx-
imate solution to nonstationary problems of heat exchange;

– using asymmetrical heating of a plate as an example, to 
devise an approach that would make it possible to apply the 
devised principle to solve asymmetric problems;

– employing the approach applied to solving a problem 
on asymmetric heating, to devise a method for solving the 
problem on nonstationary heat transfer through a flat wall.

4. Method for constructing an approximate model of the 
problem on nonstationary heat transfer

An approximate solution can be obtained in a variety of 
ways. As a minimum:

– through the simplification of the more accurate and 
complex model;

– through the simplification of the model itself with its 
subsequent exact solution.

An analysis of the scientific literature did not reveal 
analytical solutions to the problem on nonstationary heat 
transfer, which could have formed the basis for their simpli-
fication. Therefore, we shall focus on the second way.

In order to maximize the power of signal transmitted 
from the source to the receiver, it is necessary to harmonize 
the load (convergence or equalization of the source and the 
load resistances). By analogy, it can be assumed that in order 
to maximize the informativeness of solution, it is required 
to adjust the degree of complexity (detail) in the models of 
parts of the conjugate problem. At present, there exists a 
contradiction in contemporary techniques for solving the 
problem on nonstationary heat transfer. On the one hand, 
they employ a differential model of thermal conductivity in 
partial derivatives (one-dimensional for an infinite plate). 
On the other hand, it is not about the concentrated state-
ment, but a zero-dimensional model of heat transfer from 
the environment to the plate in the form of a constant heat 
transfer coefficient. If we do not consider the possibility of 
complicating the model of heat transfer, there is a way to 
simplify a thermal conductivity model by reducing it to be 
at least in the form of concentrated statement. However, 
given such an approach, there is a contradiction in terms of 
the impossibility of accounting for temperature distribution 
through the thickness of the plate.

Approximate solution can be regarded as the approx-
imation of the exact one. With respect to this position, it 
is required to choose a functional dependence that will be 
applied to perform the approximation. A nonstationary heat 
transfer process is characterized by the accumulation of ther-
mal energy. In other words, it is inertial and, accordingly, can 
be described using an exponential dependence. In this case, it 
is possible to consider a temperature distribution through the 
thickness of the plate. The transition to the model in a concen-
trated statement is achieved by using the value of temperature 
averaged for the thickness of the entire body.

5. The solution, and the assessment of its adequacy, to 
the problem on nonstationary heat transfer based on the 

approximated model

The solution will be sought for by considering three 
problems that are consistently complicated:

5. 1. Symmetric heating of an infinite plate;
5. 2. Asymmetric heating of an infinite plate;
5. 3. Nonstationary heat transfer through a flat wall.
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The first problem has an analytic solution already based 
on a more complex model in a distributed statement [2, 3]. 
Considering it within the framework of a new approach is 
aimed at working out the proposed method of solution. The 
existence of precise analytical solution will make it possible 
to assess adequacy of the new results. Solution to the second 
problem should make it possible to consider an approach to 
solving the desired problem, stated in point three. Assess-
ment of adequacy of the results of solution to the second and 
third problems will be carried out by comparing them with 
the results of numerical calculations.

5. 1. Symmetrical heating of an infinite plate
We investigate heating under the same temperature 

and heat transfer coefficients on both sides of the plate. 
Due to symmetry, the calculations are performed for half 
the thickness of the plate. The coordinate origin is posi-
tioned in the center of the plate with the count directed to 
the surface. At a starting point, body temperature and the 
ambient temperature are the same and are equal to tо. At 
a certain point of time, the ambient temperature abruptly 
changes to the magnitude ts=const. Temperature on the 
surface tп and in the center of the plate tc are time-depen-
dent variables. Temperature inside the plate tх depends 
on the coordinate of the point at which it is determined, 
and on time. Calculation will be carried out for devia-
tions of temperature from the body temperature at initial  
time tо:

θ = − ;х х ot t  θ = − ;п п ot t  θ = − ;c c ot t  θ = − .s s ot t 	 (1)

It is proposed to approximate the value of temperature 
inside the plate depending on temperatures at the surface 
and in the center using expression of the following form:

θ = θ + θ − θ ⋅ −( ) exp(1 / ).х c п c l x 	 (2)

Here l is half the thickness of the plate; x is the coordi-
nate of the point under consideration. The magnitudes of θп 
and θc are to be determined. 

Write an expression to determine the temperature, mean 
integral for the thickness of the plate, in the form:

	 (3)

the coordinate of point of realization of this temperature 
will be determined from ratio:

	 (4)

In expressions (3) and (4), V is the volume of the body, 
Sx is the surface area parallel to the external and passing 
through the point in question. For the plate, this magnitude 
equals the area of lateral surface Sх=Sb; for the sphere, for 
example, Sх=4πх2. The values for expressions (3) and (4) are 
calculated after substituting expression (2) and taking into 
consideration V=Sb·l for the plate. Integrals (3) and (4) can 
be determined accurately when using an integral exponen-
tial function Ei, pertaining to the specialized category. Their 
solutions are expressed in the form:

 = ⋅ .l k l 	 (5)

Original approximation dependence (2) is initially ap-
proximate in nature. Therefore, the magnitude of coefficient 
k, while reflecting main features of the mean integral tem-
perature, requires refining for practical application. It can 
be performed based on existing analytical or numerical solu-
tions. This will be done below. In the ongoing transforms, we 
shall employ expression (5) in a general form. 

With respect to (5), the model of heating a plate in con-
centrated parameters can be written in the following form:

	 (6)

	 (7)

Here, с, ρ, λ are, respectively, heat capacity, density, ther-
mal conductivity of a material of the plate, α is the coefficient 
of heat transfer from the environment to the plate. The first 
of these equations reflects the law of preservation of energy. 
The right side indicates energy that arrives from the surface 
to the plate body from the difference of temperatures on the 
surface and inside the plate. The left side describes energy 
accumulated in the examined body due to its heat capacity. 
The record of equation (7) assigns a boundary condition of 
the third kind. This equation expresses the equality of ener-
gies transmitted from the environment to the surface of the 
body and removed from the surface inside the body.

With respect to (5), transform equations (6) and (7) 
relative to θc – temperature in the center of the plate. The 
result will be:

θ ⋅
= ⋅ ⋅ ⋅ θ − θ

τ + ⋅2 ( ).
1

c b
s c

d S la Bi
d l V k Bi

	 (8)

Here a=λ/(c·ρ) is the coefficient of thermal diffusivity, 
Bi=(α·l)/λ is the Biot criterion. Next, we shall nondimen-
sionalize equation (8) using certain normalizations. Thus, 
for temperature:

θ
θ =

θ
,c

c
s

 
θ

θ = =
θ

1.s
s

s

	 (9)

We shall nondimensionalize time variable according to 
the method proposed in [16] using a complex included in 
equation (8) that has a time dimensionality:

⋅
⋅ ⋅

+ ⋅2 .
1

bS la Bi
l V k Bi

	 (10)

Such an approach makes it possible to reduce the number 
of parameters in the equation to the magnitudes smaller than 
those set by the π-theorem. The result will be:

θ
= − θ 1

( )
c

c

d

d Ho
 or 

θ
+ θ = 1.

( )
c

c

d

d Ho
	 (11)

Here

⋅τ
= ⋅ ⋅

+ ⋅2
ˆ

1
bS la Bi

Ho
l V k Bi

 or 
⋅

= ⋅ ⋅
+ ⋅

ˆ .
1

bS l Bi
Ho Fo

V k Bi
	 (12)

In this expression, Fo is the Fourier number. In the 
problems on non-stationary heat exchange, it acts as nondi-

θ = θ∫

0

1
d ,

l

х хS x
V

= ⋅ −∫

0

1
exp(1 / )d .

l

l x l x x
V

θ l
⋅ρ⋅ = θ − θ

τ







( );b n

d
c V S

d l

l
a ⋅ ⋅ θ − θ = θ − θ



( ) ( ).b s n b nS S
l

θ = θ + θ − θ ⋅ ( ) ;c n c k
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mensionalized time and has another name – the number of 
homochronicity (Greek: homos − equal, chronos − time). By 
analogy, we shall denote (12) as extended number of homo-
chronicity. In addition to Fo, it includes a geometric complex 
(Sb·l/V) and complex Bi/(1+k·Bi). The Biot criterion is the 
ratio of thermal resistance of wall l/λ to thermal resistance of 
heat transfer 1/α. The Biot criterion determines similarity of 
temperature fields under geometrical similarity of the heated 
bodies. Given this, the complex Bi/(1+k·Bi) in (12) by anal-
ogy can be named the extended Biot criterion:

=
+ ⋅

ˆ .
1

Bi
Bi

k Bi
	 (13)

In the theory of automatic control, equation similar to 
(11) describes the inertial link of the first order. It has solu-
tion in the form:

θ = − −


1 exp( ).c Ho 	 (14)

Equation (14) describes a change in the nondimension-
alized temperature in the center of the heated infinite plate. 
Moreover, by carrying out the transforms, similar to those 
given above, it is possible to obtain an expression to describe 
a change in temperature at any point in the body under con-
sideration. In addition, by using equation (14), one can de-
scribe a change in temperature in the center of other geomet-
ric primitives – an infinite cylinder, or a sphere, and, upon 
appropriate transforms, at any point in these bodies. The 
changes refer only to geometrical complex Kg. It is simple for 
computation and it will acquire the following values for an 
infinite plate, an infinite cylinder, and a sphere, respectively:

⋅ ⋅
= = =

⋅
1;pl b b

g
b

S l S l
K

V S l
 

⋅ π ⋅
= = =

π 2

2
2;cyl b

g

S R RL R
K

V R L
 

⋅ π ⋅
= = =

π

2

3

4
3.

4
3

ball b
g

S R R R
K

V R
	 (15)

Note that in the second and third expressions in (15) 
the characteristic dimension is the radius of a cylinder and 
a sphere, respectively. In the second expression from (15), 
magnitude L corresponds to the length of a cylinder. Al-
though we consider a cylinder of infinite length (L=∞), this 
magnitude appears in the numerator and in the denominator 
in order to correctly reflect the area of its side surface and 
volume. They will be subsequently reduced.

We shall compare results of approximate calculation 
based on (14) with similar results of analytical calculations 
[2]. Comparison makes it possible to refine the magnitude of 
coefficient k at which approximated results have a minimal 
deviation from the precise results. In this case, the magni-
tude itself of these deviations is determined. We shall run 
a comparison for the magnitude of time of the end of the 
heating process. We consider the process of heating a body 
completed at a temperature in the center of the body of 
tc=0.95·ts. This matches an error in engineering estimations. 
In addition, according to the theory of automatic control, a 
transition process in the first-order inertial link (14) is con-
sidered completed at =



3.Ho  This leads to a deviation in the 
calculated magnitude of nondimensionalized temperature 
θc  from the desired temperature θ = 1s  by not more than  
5 %. In other words, the moment of nondimensionalized time 

=


3Ho  is matched by θ = ⋅θ =0,95 0,95.c s

Paper [2] misses the magnitude that corresponds to 


.Ho  
In it, Fo acts as nondimensionalized time. To ensure com-
parability of results from (12) with respect to (13), we shall 
express magnitude Fo:

=
⋅

ˆ
.

ˆ
g

Ho
Fo

K Bi
	 (16)

The magnitude of the Fourier number, employed in 
[2], will be denoted Fo1. We shall compare magnitudes 
of the Fourier numbers, in both cases, at the moment, 
discussed above, when the heating of a body is over. Note 
that authors of [2] examine the cooling of a body. But the 
processes of heating and cooling are symmetrical. There-
fore, comparison of results, obtained based on (16), of the 
magnitudes, given in [2], is valid. It should only be noted 
that during cooling the moment the process is over is con-
sidered to be a point when temperature reaches magnitude 
θ = ⋅θ =1 10,05 0,05.c s  The comparison was conducted by 
determining relative error ε of calculating Fo based on (16) 
relative to Fo1. In the process of comparing, we chose the 
magnitude of k from (13) that ensures minimum magnitude 
of relative error ε. The results are given in Table 1. It should 
be noted that the model was originally built for an infinite 
plate. Nevertheless, in addition to it, it makes it possible, 
with respect to (15), to perform calculations for an infinite 
cylinder and a sphere.

Table 1

Comparison of results of precise [2] and approximate (16) 
calculations of nondimensionalized time of the end of  

the process of heating the bodies

Bi
Plate, k=0.42 Cylinder, k=0.39 Sphere, k=0.36

Fo1 Fo ε, % Fo1 Fo ε, % Fo1 Fo ε, %
0.005 600.3 601.3 0.15 300.1 300.6 0.18 200.1 200.4 0.15
0.01 300.9 301.3 0.1 150.4 150.6 0.15 100.2 100.4 0.17
0.1 31.1 31.3 0.5 15.5 15.6 0.7 10.3 10.4 0.7
1.0 4.20 4.26 1.4 2.0 2.1 3.3 1.31 1.36 3.7
10 1.58 1.56 1.3 0.725 0.735 1.3 0.45 0.46 1.4

100 1.34 1.29 3.6 0.61 0.6 1.9 0.38 0.37 3.0
1,000 1.32 1.26 3.9 0.60 0.59 2.36 0.37 0.36 3.4

It follows from results shown in Table 1 that an error of 
determining the time of the end of heating the bodies using 
expression (16) compared to the results of precise analytical 
solution does not exceed 4 % over the entire examined range 
of change in Bi. 

The proposed method has an error relative to the 
precise analytical solution. At the same time, the error 
does not exceed the magnitude accepted in engineering 
calculations (<5 %). Based on the results obtained, the 
proposed model and the method of calculation can be 
considered workable.

5. 2. Asymmetrical heating of an infinite plate
We shall consider a problem on the asymmetric heating 

of a plate. The asymmetry arises from different coefficients 
of heat transfer. Temperature conditions of the environment 
are similar to the case of the symmetric heating: tо is the 
initial temperature of the environment and the body; ts is the 
temperature of the environment after its abrupt change. Body 
temperature is constant at all its points after the heating and 
is equal to ts. In the process of symmetric heating, a minimum 
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of temperature is formed, which is located along the midline of 
the plate cross-section. Minimum point moves along the mid-
line until reaching ts aligned throughout the entire body of 
the plate. For the case of asymmetrical heating, the character 
of motion of the temperature minimum was determined using 
numerical study. Similar to the previous case, the point of 
minimum moves along the surface of the plate, but the trajec-
tory of motion is shifted towards the surface with a lower 
heat transfer coefficient. In the process of heating, a given 
minimum also shifts along a straight line, parallel to the 
sides of the plate. Deviations from the described scheme 
are insignificant and are observed are the starting point 
of the examined process (Fig. 1, a) and can be disregarded 
for the approximate solution. 

Coordinate system for the cross-section of the plate will 
be constructed in the following way (Fig. 1, b):

– vertical reference axis of temperatures passes through 
their minimum and is parallel to the sides of the cross-sec-
tion of the plate. The temperature at this point is denoted as 
tc − temperature at the center;

– coordinate count of the considered point in the 
cross-section is performed in either directions from the tem-
perature reference axis (X1 and X2);

– distance xп1 from the coordinate origin to one of the 
sides of the plate is unknown and must be determined;

– assuming that thickness of the plate equals 2l, the 
distance from coordinate origin to the second surface is de-
termined from relation xп2=2l–xп1.

Under such conditions, each part of the plate that cor-
responds to coordinates X1 and X2 can be treated using 
the approach applied at symmetrical heating. Additional 
unknown magnitude xn1 is determined from the equation of 
connection, constructed with respect to the equality of tem-
peratures tc, calculated for each part of the plate.

a                                                b 

Fig. 1. Temperature profile at asymmetrical heating of a 
plate: a – examples of results of numerical calculation of 

relative temperature Θ depending on relative coordinate X at 
different values of Fo; b – adopted procedure for analytical 

calculations 

Upon completion of the transforms, similar to those 
applied when solving a problem on symmetrical heating, we 
can determine temperatures at its minimum tc and at any 
point, including tп1, tп2 on the surfaces of the plate. Thus, 
nondimensionalized temperature at its minimum point is 

determined based on the relation identical to (14). Structure 
of the expression for determining the extended homochro-
nicity number 



Ho  coincides with the structure of expression 
(12). It includes: number Fo, geometrical complex Kg, and the 
extended Biot criterion. The difference is in determining the 
latter. With respect to (15) = 1,pl

gK  the expression for 


Ho in 
the examined case takes the following form:

Relative coordinate of location of the temperature mini-
mum can be determined from ratio:

+ ⋅
=

+ + ⋅ ⋅

1 2

2
2

1

1
.

2 1 2

nx k Bi
Bil k Bi
Bi

	 (18)

It should be considered that for the case of symmetrical 
heating, magnitudes Fo and Bi are determined for charac-
teristic dimension l. Whereas for the case of asymmetrical 
heating, for 2l.

Estimation of calculation error based on (14) using ex-
pressions (17) and (18) was performed by comparing them 
with the results of numerical calculations. For this purpose, 
we applied a method of control volumes whose one imple-
mentation was described in [11]. Numerical calculation was 
performed using a one-dimensional grid with 51 computa-
tional nodes. We considered an example at Bi1=1 and Bi2=10. 
The results obtained determine location of the temperature 
minimum at coordinate X=0.74 (Fig. 1, a). The coordinate 
is of relative character as a fraction of the plate’s thickness. 
Its dimension is accepted equal to 1. At numerical calcula-
tion, location of the start of a geometric coordinate count  
(Fig. 1, a) differs from the case of the model for analytical 
study (Fig. 1, b). That is why the value for a coordinate of 
temperature minimum, obtained from numerical calculation, 
for the variant of analytical study corresponds to magnitude 
xn1/(2l)=1–0.74=0.26. On the other hand, this same magni-
tude was calculated analytically using expression (18) and 
turned out to be equal to xn1/(2l)=0.2632. These magnitudes 
coincide in terms of accuracy of numerical calculations.  
Table 2 gives results of numerical and approximate analytical 
calculations of nondimensionalized normalized temperature 
at its minimum point for some values of criterion Fo. In ad-
dition, for the calculated values, we determined relative error 
of analytical calculations relative to numerical calculations.

Table 2

Comparison of results of calculating minimal temperature

Fo 0.05 0.30 0.55 0.80 1.05 1.30

Θnumerical
c 0.084 0.557 0.802 0.912 0.961 0.983

Θanalytical
c 0.115 0.519 0.739 0.858 0.923 0.958

ε, % 3.1 3.8 6.3 5.4 3.8 2.4

The magnitude of error in the results of analytical cal-
culations in some cases exceeds the magnitude generally 
accepted for engineering calculations (<5 %).
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Based on the results obtained, we consider workable the 
proposed model and the analytical method for taking into 
consideration the asymmetry of temperature profile at asym-
metrical heating of the plate.

5. 3. Nonstationary heat transfer through a flat wall
Solution to a stationary problem on heat transfer is trivi-

al. By assigning temperatures of the environment ts1 and ts2, 
as well as heat transfer coefficients α1 and α2 on both sides of 
the plate, it is possible to determine temperatures on its both 
surfaces tn1 and tn2. A temperature profile inside the plate has 
a linear dependence and is defined by these temperatures. 
In the transition from a heat transfer coefficient to the Bi 
criterion, and from absolute values of temperatures t to their 
nondimensionalized normalized magnitudes θ, temperatures 
on the surfaces can be determined from ratios:

θ − θ
θ = θ −

+ +
1 2

1 1
1 1 2

;
(1 )

s s
n s Bi Bi Bi

 

θ − θ
θ = θ −

+ +
1 2

2 2
2 2 1

.
(1 )

s s
n s Bi Bi Bi

	 (19)

Here we accepted direction of the heat flow from the en-
vironment with a temperature of θs1 to θs2. In this case, due 
to the normalization of θs1=1, θs2=0. Geometrical dimension 
(thickness) of the plate is also considered to be normalized. 
The coordinate for thickness varies within Х∈[0, 1].

Based on numerical calculations [11], we shall consider 
a change in the temperature profile inside the plate at non-
stationary heat transfer in the process of transition from one 
stationary state to another (Fig. 2, a–c). In all cases, the 
profile (straight line) corresponding to Fo=0 refers to the 
original stationary state, and for Fo=1.5, (straight line) also 
models the resulting stationary state. In the examined cases, 
the reason for a non-stationary process is a stepwise change 
in criterion Bi from the heating side. An analysis of Fig. 2 can 
serve a proof for it.

Fig. 2, a demonstrates the process from initial state 
Bi1=0, Bi2=100. This corresponds to the identical tem-
perature of the plate at all points and to its equality to the 
temperature of the environment from a cooling side θs2=0 
(Fig. 2, a – on the right). Then the heat transfer coefficient 
from a heating side (Fig. 2, a – on the left) changes to the 
magnitude that corresponds to Bi1=2. Development of the 
process of nonstationary heat transfer is associated with the 
accumulation of energy in the plate. 

Fig. 2, b exhibits the process from initial stationary 
state Bi1=1, Bi2=100. Then the heat transfer coefficient 
from a heating side (Fig. 2, b – on the left) changes to the 
magnitude that corresponds to Bi1=4. Development of the 
process of nonstationary heat transfer is associated with the 
accumulation of energy in the plate.

Fig. 2, c shows the process from the initial stationary 
state Bi1=4, Bi2=100. Then the heat transfer coefficient 
from a heating side (Fig. 2, c on the left) changes to the 
magnitude that corresponds to Bi1=1. Development of the 
process of nonstationary heat transfer is associated with the 
release of energy from the plate.

We shall select at each point in time a longitudinal 
cross-section (point) in the plate body, in which temperature 
at the current moment has a maximum deviation from the 
magnitude of temperature in the final stationary state in 

this same cross-section. On the temperature profile, it will 
be matched with the point furthest from the profile (straight 
line) in the final stationary state. In order to maintain conti-
nuity in the terminology with the previously examined cases 
of heating, we shall name a given point as the “minimum” 
of temperature. Let us consider its displacement over time.  
Fig. 2, a–c shows it as a dotted line. In all cases, it is possible 
to separate two regions (Fig. 2, d), approximated by sections 
of the straight line: vertical DK and sloping AK. Schemat-
ic (Fig. 2, d) is based on Fig. 2, a, but all the represented 
variants in Fig. 2 correspond to it. Under this scheme, the 
character of displacement of “minimum” in the examined 
case along section DK corresponds to the displacement 
of minimum for the case of asymmetrical heating of the 
plate, considered in chapter 5.2. The sloping section starts  
(point A) on the heated side of the plate at the point of 
initial stationary temperature. When analyzing results of 
numerical calculations, it was assumed that inclination 
angle of section AK relative to the initial stationary profile 
(<KAV) is equal to the angle between the initial and re-
sulting stationary temperature profiles (<CBA). The charts  
(Fig. 2, a–c) were complemented with straight line segments 
(solid black line), constructed based on this assumption. 
The character of position of these lines allows us to draw a 
conclusion on the legality of their use as the approximation 
of trajectory of the temperature “minimum” displacement 
along a sloping section. Based on the revealed features, we 
built a model and chose an algorithm for estimating the pro-
cess of nonstationary heat transfer.

At symmetrical and asymmetrical heating of the 
plate, its longitudinal cross-section, along which the 
temperature minimum moves, can be considered a kind 
of thermally insulated wall. Heat flow from one part to 
another part of the plate is not transferred through this 
cross-section. Therefore, the model for each of the parts 
is composed only of a preservation equation (6) and the 
boundary condition of the third kind at the surface of the 
plate (7). For the case of nonstationary heat transfer, the 
pattern is different. As was the case in chapter 5.2, the 
coordinate system is connected to the temperature “min-
imum” (Fig. 1, b). Although the temperature “minimum” 
in section DK also moves along a particular cross-section, 
the heat flow passes through it. The plate, similarly to the 
previous cases, is considered to consist of two parts, but, 
in this case, not “thermally-insulated” from each other. 
Using the same approach applied in chapter 5.1, a model 
for each part can be written in a similar form, but consid-
ering that the plate is composed of parts. In addition to 
correcting equations in the form (6), (7), it is required to 
complement them with a boundary condition of the fourth 
kind at the border of the composite plate. As a result, the 
model of the first part, for example, takes the form:

θ
⋅ρ⋅ =

τ
l l

= ⋅ ⋅ θ − θ − ⋅ ⋅ θ − θ
−



 
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1
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a                                              b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c                                               d 

Fig. 2. A change in temperature Θ along plate thickness X 
at nonstationary heat transfer at different points in time Fo: 
a – process of energy accumulation from initial state Bi1=0, 

Bi2=100; b – process of energy accumulation from initial 
state Bi1=1, Bi2=100; c – energy release from initial state 

Bi1=4, Bi2=100; d – estimated scheme

Here: θ1  is the averaged temperature in the examined 
part of the body; θn1 is temperature at the surface of the 
plate; θc is temperature a current point of its “minimum”; 
θ 2 is the averaged temperature in the second, conjugate 
part of the body; θs1 is temperature of the environment, 
which washes the surface of the examined part of the 
body; xn1 is the distance from the coordinate origin, lo-
cated in the temperature “minimum” to the surface of the 
plate (thickness of the part under consideration); 1x  is the 
distance from the coordinate origin to the point of appli-
cation of the averaged temperature in the examined part 
of the body; 2x  is the distance from the coordinate origin 
to the point of application of the averaged temperature in 
the second part of the body; SB is the area of the lateral 
surface of the plate.

We consider an infinite plate (Sb=∞). The magnitude 
Sb is recorded for the completeness of the model. It is sub-
sequently reduced. All magnitudes of temperatures and 
dimensions are used in the nondimensionalized and normal-
ized form.

Equation (20), as well as equation (6), reflects the law of 
energy preservation. The left side of the equality describes the 
energy, accumulated in the examined part of the body due to 
its heat capacity. In the right side, the first term marks the 
energy that arrives from the surface into the plate body due 

to a temperature difference at the surface and inside the plate. 
The second term marks the energy that leaves the examined 
body part through the border that passes through the tem-
perature “minimum”. The record of equation (21) assigns the 
boundary condition of the third kind. It expresses the equality 
of energies transmitted from the environment to the surface of 
the body and directed from the surface inside the body. The 
record of equation (22) assigns the boundary condition of the 
fourth kind. This equation expresses the equality of energies 
transmitted from the examined body part to its internal bor-
der and directed away from this border to the second part of 
the body. The model for the second part of the plate from a 
cooling side is recorded in the similar fashion.

The approach implemented in chapter 5.1, allowed us to 
obtain a solution in the examined case as well. For example, 
temperature at its “minimum” point is determined from 
relation:

[ ]θ = ⋅ ⋅ ⋅ − −1 1 1 11 exp( ) ,c nA x Bi Ho 	 (23)

where

[ ]= ⋅ ⋅
⋅ + ⋅ ⋅ −1 2

1 1 1 1
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Here Ηο1 is the extended number of homochronicity 
(similar to the magnitude determined in chapters 5.1 and 
5.2); k is the coefficient that determines location of the point 
of application of the averaged temperature; Bi1, Bi2 are the 
Biot criteria from the respective sides of the plate. 

By applying the same procedure, we can derive ex-
pressions for determining other magnitudes employed in 
a mathematical model of the form (20)–(22). The form of 
expression (23) is similar to expression (14), used also when 
solving a problem on asymmetrical heating. Coefficient k is 
determined using a comparison of results of the numerical 
and analytical calculations by achieving the minimum of 
their mismatch. 

Let us consider, for example, determining, depending 
on time, a magnitude and location of temperature “mini-
mum” θc:

1. At the initial stage, solution algorithm is based on 
the same approach as was employed in chapter 5.2. For sec-
tion D-K (Fig. 2, d), we determine its coordinate. In other 
words, we determine the location of temperature “minimum” 
temperature − xn1 and, respectively, xn2. Next, knowing the 
magnitude of angle α (<CBA), we construct a section of 
straight line AK until its intersection with DK at point K. 
Path A-K-D is the approximation of trajectory of tempera-
ture “minimum” displacement.

2. At the initial moments of the process of nonstationary 
heat transfer, temperature dependence on time θ(τ) is deter-
mined using dependence (23) by solving the inverse prob-
lem. By assigning any abscissa xn1 (point M), we determine 
through point L the point corresponding to its ordinates 
(point N). By using these data, we determine the point of 
time (Fo) corresponding to them from relation (23).

3. After passing point K, we solve a direct problem in 
section K-D. Knowing the magnitude of xn1 (a coordinate of 
section K-D), and by assigning some magnitude τ, we deter-
mine θc from (23).
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By applying the algorithm proposed, we performed a 
series of computations and assessed their adequacy by com-
paring with the results of numerical study. 

We determined positions of vertical plots in the trajecto-
ries of motion of temperature “minimum” for three variants 
(Fig. 2, a–c). Based on the comparison, among the examined 
variants of results of numerical and analytical calculations 
we chose the value of magnitude k=0.67, which ensures their 
minimum divergence. All subsequent calculations were per-
formed employing a given magnitude. Comparison of results, 
based on a relative error, with the results of numerical calcu-
lations are given in Table 3. The margin of error is defined 
relative to the thickness of the plate, which is equal to 1.

Table 3

Comparison of results of determining a position of the 
temperature “minimum” along a vertical section

Calculation technique Fig. 2, a Fig. 2, b Fig. 2, c

xn1 analytically 0.32 0.36 0,28

xn1 numerically 0.32 0.4 0.22

ε, % 0 4 % 6 %

Next, we determined ordinates of the intersection points 
of the vertical, calculated analytically, and the sloping 
sections of trajectories of displacement of the temperature 
“minimum”. Thus, for the variants shown in Fig. 2, a and 
Fig. 2, b, which reflect the process of energy accumulation, 
these magnitudes are equal to, respectively: θa=0.212 and 
θb=0.451.

The next step of the algorithm at the sloping section of 
trajectory (A−K, Fig. 2, d) was the selection of abscissa equal 
to xn1=0.2 for the examined variants of energy accumula-
tion. Ordinates θ =0,2 0.133a  and θ =0.2 0.451.b  correspond to 
them. By using these data, from relations (25) and (24), we 
determine magnitude A1 and then Ho1. Employing the latter 
magnitude, we derive Fo − nondimensionalized time. In 
order to estimate error in determining dependence θ=θ(Fo) 
using such a technique in relation to similar numerical cal-
culations, the latter [11] were performed for the found time 
points Fo. Results of comparison are given in Table 4. The 
margin of error is defined relative to the range of change in 
the nondimensionalized normalized temperature, which is 
equal to 1.

Table 4

Comparison of results of determining temperatures along a 
sloping section of the trajectory of their “minimum”

Calculation technique Fig. 2, a Fig. 2, b

θ analytically 0.133 0.451

θ numerically 0.140 0.491

ε, % 0.7 % 4 %

By solving a direct problem (23) for the analytically 
computed values for the coordinate of position of vertical 
section K-D (Fig. 2, d) of the trajectory of displacement 
of temperature “minimum” temperature xn1 (Table 3) for a 
certain nondimensionalized time point (Fo) we determined 
the value of temperature “minimum” θc. The same magnitude 
and at the same value of Fo was determined by numerical 
calculations [11]. For calculations, we accepted Fo=0.52. 
Results of their comparison are given in Table 5. Here, simi-
lar to previous cases, ε is the relative error.

Table 5

Comparison of results of determining temperatures along a 
sloped section of the trajectory of their “minimum”

Calculation technique Fig. 2, a Fig. 2, b

θ analytically 0.456 0.516

θ numerically 0.420 0.475

ε, % 3.6 % 4.0 %

The results of calculations given in Tables 3–5 allow us 
to argue about the applicability of the developed method for 
determining temperature inside a flat wall in the process of 
nonstationary heat transfer. An error of calculation does not 
exceed, or close to permissible, magnitude for engineering 
calculations, 5 %.

6. Discussion of the study results: special features of the 
developed method of approximate solution to a problem 

on nonstationary heat transfer

Heat transfer process is inherently a distributed process. 
An attempt to use a solution for the examined problem in 
a concentrated statement is common. The approach that 
implies dividing an object (a plate) into several layers is also 
known. One of the special features of the proposed method 
is dividing the plate in two layers only. The acceptability 
of such an approach is noted in [11] for numerical calcu-
lations. In the case under consideration, it was applied for 
analytical calculations. Moreover, the previously considered 
cases involved layer splitting based on various geometrical 
considerations. In the method in question, this occurs on a 
physical basis. The border of layers is located at an extre-
mum of temperature when heating (cooling) a plate and its 
coordinate is calculated. Furthermore, when calculating 
during heat transfer process at the initial point in time of 
change in the temperature field, the boundary between 
layers (temperature “minimum”) moves and its coordinate 
is calculated. It should be noted that in papers [2, 3], in the 
reported solutions to symmetrical heating of a plate, the bor-
der of the examined region was also located at an extremum 
of the temperature profile. But it was substantiated only by 
the symmetry of the problem.

The approach to solving a set problem was chosen based 
on an analysis of results of numerical studies. They served 
not only for the purpose of identifying the qualitative pat-
tern of the course of analyzed process. Analytical solutions 
were obtained with an accuracy to a certain coefficient “k”, 
which combines all the unaccounted-for features. Numerical 
solutions received preliminary have allowed us to determine 
optimal magnitude for this coefficient.

Errors of all the obtained solutions given in Tables 1–5 
do not exceed the permissible limits of engineering accuracy 
(ε<5 %) or are close to them. This is significantly less than 
the possible errors, considered previously, in determining 
the source data (heat transfer coefficients), which may reach  
50 %. Although the proposed method is approximate, it 
makes it possible to obtain analytical solutions, acceptable 
from an engineering point of view, in all of the cases exam-
ined, in the absence of their precise forms.

In order to create effective control systems, it is required 
to have tools for the calculation of temperature fields and 
accumulating properties of the elements of heat power equip-
ment under non-stationary conditions of heat exchange. At 
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the design stage, when setting up control systems, results of 
analytical studies are important. The availability of results 
of analytical studies becomes even more relevant when us-
ing fuel of variable composition, characterized by a sharp 
increase in the number of transition processes. This explains 
the relevance and usefulness of the present research.

7. Conclusions

1. Using a problem on symmetrical heating of a plate 
as an example, which has an exact analytical solution in a 
distributed statement, we estimated error in the proposed 
approximate analytical solution in concentrated statement. 
The acceptability of the obtained result within the precision 
of engineering calculations is shown. A special feature of the 
proposed method is the possibility of its application as an 
integral part when solving the problems on nonstationary 
heat transfer.

2. By using a numerical study, we revealed the character 
of displacement of the minimum of temperature profile for 

thickness of the plate for the case of its asymmetric heating. 
This made it possible, when employing the proposed approx-
imate analytical method, to obtain a solution to the problem 
on asymmetric heating of the body. A special feature of the 
solution is the devised approach to determining the mini-
mum of temperature for thickness of the plate. Such an ap-
proach might be used as another constituent part for solving 
a problem on nonstationary heat transfer.

3. A nonstationary heat transfer through a flat wall was 
considered as a transition process between two stationary 
states, described by temperature profiles in the form of straight 
lines: initial and resulting. Numerical study allowed us to iden-
tify a characteristic point in the varying temperature profile. 
Its current position is determined by the maximum distance 
from a given point to the resulting stationary profile. Nu-
merical study also enabled us to determine the trajectory of 
motion of this point, which we named, for the continuity of 
terminology, the “minimum” of temperature. Based on these 
data and applying the developed method, we demonstrated the 
possibility of approximate analytical solution to the problem 
on nonstationary heat transfer through a flat wall.
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