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1. Introduction

delay in changing controlled magnitudes following external

The inertiality of change in the thermophysical param-
eters during operation process of heat power equipment is
one of the reasons for the instability of its functioning and
its deviations from the optimal state. The magnitude of

disturbances and controlling impacts depends on the ac-
cumulating properties of equipment under operation. This
effect manifests itself in various parts of the equipment by
changing the flow of energy compared with the flow that
arrives with fuel. Energy flows are predetermined by the




flows of substance (a working body) and thermal fields in the
elements of the structure.

Working bodies are typically gases. Gaseous products
have low density and, as a consequence, small accumu-
lating properties of thermal energy. There is a different
pattern with design elements that have significant masses
and considerable accumulating capacity. In thermal power
equipment, one can distinguish parts with regenerative and
recuperative heat transfer conditions. Conditions for regen-
erative heat exchange are implemented for elements that are
not heat-transfer surfaces: enclosures, fasteners. The main
working elements, for example, in the boiler equipment, are
the surfaces of heat exchangers where the recuperative heat
transfer conditions are implemented.

In all cases, creation of effective control systems requires
tools for the estimation of temperature fields and accumu-
lating properties of elements of heat power equipment under
non-stationary conditions of heat exchange. At present,
solution to a nonstationary problem can be obtained based
on universal methods of numerical realization. At the design
stage, however, when setting up control systems, of impor-
tance are the results of analytical studies. The existence of
results of analytical studies becomes even more relevant
when using fuel of variable composition [1], characterized by
a sharp increase in the number of transition processes.

2. Literature review and problem statement

For the elements with regenerative heat transfer con-
ditions, papers [2, 3] developed analytical methods for de-
termining a nonstationary temperature field at any point of
bodies that have complex shapes. Among the considered geo-
metric primitives are an infinite plate, a cylinder, a sphere,
under conditions of heating or cooling with determining
the nonstationary dimensionless temperature fields. Subse-
quently, by the geometric intersection of primitives, one can
model bodies of complex shapes with their temperature fields
obtained by multiplying the dimensionless temperature
fields of the respective primitives.

To date, research in this direction have either tackled
modifications of methods for solving the original model,
which do not have fundamental advantages over each other,
or have been considering a new subject for application in
the form of modern equipment. Thus, authors of [4] employ
the Trefftz functions that produce an approximate solution.
Paper [5] considers a thermal field in one of the primitives —
a cylinder. To solve the problem, authors apply a particular
approach that employs the cylindrical coordinate system,
multiple integrals, and Laplace transforms to solve them. In
addition, boundary conditions of the first and second kind
are applied, while the most common are conditions of the
third kind.

In paper [6], mathematical model of the heat transfer
process is based on the variational approach. Heat transfer
through the anisotropic body is investigated, which is inter-
esting. However, [6] solves a stationary problem. In article
[7], authors examine nonstationary heat transfer in a recu-
perative heat exchanger. In this work, they obtained results
based on numerical studies, which binds them to a specific
form of equipment and initial conditions. This makes it
difficult or even excludes the possibility of their application
at the design stage, when control systems are set up, where
the results of analytical studies are important. Authors of

paper [8], based on the Laplace transfor, search for analytical
solution to one of the variants of a nonstationary problem
on heat transfer. They search for a time delay in the transfer
of heat pulse through the heat exchange surface. The result
found, however, does not make it possible to solve the prob-
lem on accumulation of heat energy. Article [9] addresses the
problem on cooling a display, and [10] considers cooling a
plate with an internal heat source. In the latter case, special
feature is the consideration of a multi-layer plate.

Recuperative heat exchange conditions in thermal power
equipment are implemented in the heat-exchange devices.
Main heat-transfer surfaces are a plate and a wall of the hol-
low cylinder (pipe). In the latter case, at the ratio of external
cylinder radius to the internal cylinder radius of 75/71<2, the
results obtained based on models for a cylindrical wall and
a flat wall differ by less than 4 %. That is why, in the vast
majority of cases, in order to solve nonstationary problems, it
will suffice to be able to determine temperature fields at heat
transfer through a flat wall.

Attempts to obtain at least intermediate results in this
direction were made in papers [2, 3]. They considered, as
one of the examples, the asymmetrical heating of a flat
plate. This case, due to the similarity of temperatures on
both sides of the plate, meets the conditions for regenerative
heat exchange. Different adopted heat transfer coefficients
could provide a possible path for solving the problem on
nonstationary heat transfer. Paper [2] outlined only a direc-
tion for possible solution without giving its form. Work [3],
published later than [2], and repeating its results in many
ways, described the solution to determine a dimensionless
temperature field. Following a certain period of time, at the
end of the examined process, albeit asymmetric, but still of
heating, all points of the plate must have the same tempera-
ture equal to the ambient temperature. The expression, given
in [3], does not show this.

Subsequently, solutions to problems on nonstationary
heat transfer come down to various kinds of numerical
studies. However, even given the easiest implementation [11]
with the minimum possible number of estimated nodes, the
results obtained do not demonstrate the degree of common-
ality that would distinguish analytical calculations.

In [12], authors applied an approximate solution to the
problem of nonstationary heat transfer. The proposed ap-
proach is applicable, for example, in the study of processes
in the boiler equipment. The authors employed a special
feature in the heat transfer process from gaseous products
of fuel combustion to the liquid heat carrier (water). This
process is characterized by a large difference between heat
transfer coefficients at different sides of the heat transfer
surface. The magnitudes of coefficients may vary by 2 3 or-
ders. In addition, heat-transfer surfaces are characterized by
low thickness, high thermal conductivity and, consequently,
have low thermal resistance. As a result, temperature in the
wall is considered constant. The magnitude of temperature
is accepted to be equal to the surface temperature from the
side of the liquid heat carrier and close to the temperature of
the heat carrier itself.

There are a number of cases when such assumptions are
not acceptable. Heat transfer coefficients on different sides
of the heat-transfer surface may turn out to be different but
still comparable. An example is the cooling of combustion
chamber of gas turbine engine, when gaseous combustion
products are on one side and air is on the other side. A simi-
lar situation could arise in direct flow boilers at shift in the



interface of steam water. In this case, on one side are the
gaseous combustion products, on the other side is steam.
Superheaters also belong here. In all cases, the temperature
and thermal-physical properties of heat-carrier (air, steam)
are close to constant. The same parameters for the products
of combustion when utilizing fuel of variable composition
change considerably. One of them is the heat transfer coef-
ficient whose magnitude may change by several times [13].
These peculiarities lead to an increase in the quantity of
transitional processes and increase the influence of energy
accumulation in the design elements on manageability of the
occurring thermophysical processes.

Solving a problem of nonstationary heat transfer is
complicated not only by the distributed nature of a mathe-
matical model that describes processes in the body with two
differentiated media, but also because of the need to take
into consideration the processes that occur in the media that
surrounds it. In other words, a given problem is conjugate.
The accuracy of solution to a conjugate problem is limited
by the largest error in the description of any of the elements
of the original model.

In many cases, specifically in engineering applica-
tions, in order to obtain a solution, they change a general
model of the process by simplifying some of its elements.
As far as the examined problem is concerned, the descrip-
tion of processes of heat transfer from the environment
to the dividing surface is replaced by assigning boundary
conditions. Boundary conditions of the third kind are the
most common and frequently used. In this case, the entire
description of a complex process comes down to assigning
one heat transfer coefficient. This coefficient is typically
calculated using the criterial equations, which can lead
to an error of its determining at 15 20 % [14]. Another, a
later, work [15] argues that this error can be even larger
and amount to 30-50 %. Under these conditions, there
is no need to search for an exact analytical solution to
the problem of nonstationary heat transfer. Approximate
solution is acceptable.

The analysis that we conducted reveals the need to
develop a method for the analytical solution to problems
on nonstationary heat transfer. The method can be approxi-
mate, but the calculation error must not exceed possible er-
ror in determining original data (heat transfer coefficients).
The method must be capable of solving problems on both
regenerative and recuperative heat transfer conditions. The
devices for which these conditions are implemented are typi-
cally elements of the same equipment and are exposed to the
same influences. Given this, it is desirable that the problems,
even under different conditions of influence, should have the
same or similar solutions.

3. The aim and objectives of the study

The aim of present study is to develop a method for
solving analytically the problems on heat exchange under
different conditions of influence. This should provide the
possibility of a unified approach both under conditions of
nonstationary regenerative (heating or cooling) and recu-
perative heat exchange (heat transfer).

To accomplish the aim, the following tasks have been set:

— using symmetric heating of a plate as an example repre-
senting the simplest case, to work out a principle of approx-
imate solution to nonstationary problems of heat exchange;

— using asymmetrical heating of a plate as an example, to
devise an approach that would make it possible to apply the
devised principle to solve asymmetric problems;

— employing the approach applied to solving a problem
on asymmetric heating, to devise a method for solving the
problem on nonstationary heat transfer through a flat wall.

4. Method for constructing an approximate model of the
problem on nonstationary heat transfer

An approximate solution can be obtained in a variety of
ways. As a minimum:

— through the simplification of the more accurate and
complex model;

— through the simplification of the model itself with its
subsequent exact solution.

An analysis of the scientific literature did not reveal
analytical solutions to the problem on nonstationary heat
transfer, which could have formed the basis for their simpli-
fication. Therefore, we shall focus on the second way.

In order to maximize the power of signal transmitted
from the source to the receiver, it is necessary to harmonize
the load (convergence or equalization of the source and the
load resistances). By analogy, it can be assumed that in order
to maximize the informativeness of solution, it is required
to adjust the degree of complexity (detail) in the models of
parts of the conjugate problem. At present, there exists a
contradiction in contemporary techniques for solving the
problem on nonstationary heat transfer. On the one hand,
they employ a differential model of thermal conductivity in
partial derivatives (one-dimensional for an infinite plate).
On the other hand, it is not about the concentrated state-
ment, but a zero-dimensional model of heat transfer from
the environment to the plate in the form of a constant heat
transfer coefficient. If we do not consider the possibility of
complicating the model of heat transfer, there is a way to
simplify a thermal conductivity model by reducing it to be
at least in the form of concentrated statement. However,
given such an approach, there is a contradiction in terms of
the impossibility of accounting for temperature distribution
through the thickness of the plate.

Approximate solution can be regarded as the approx-
imation of the exact one. With respect to this position, it
is required to choose a functional dependence that will be
applied to perform the approximation. A nonstationary heat
transfer process is characterized by the accumulation of ther-
mal energy. In other words, it is inertial and, accordingly, can
be described using an exponential dependence. In this case, it
is possible to consider a temperature distribution through the
thickness of the plate. The transition to the model in a concen-
trated statement is achieved by using the value of temperature
averaged for the thickness of the entire body.

5. The solution, and the assessment of its adequacy, to
the problem on nonstationary heat transfer based on the
approximated model

The solution will be sought for by considering three
problems that are consistently complicated:

5. 1. Symmetric heating of an infinite plate;

5.2. Asymmetric heating of an infinite plate;

5. 3. Nonstationary heat transfer through a flat wall.



The first problem has an analytic solution already based
on a more complex model in a distributed statement [2, 3].
Considering it within the framework of a new approach is
aimed at working out the proposed method of solution. The
existence of precise analytical solution will make it possible
to assess adequacy of the new results. Solution to the second
problem should make it possible to consider an approach to
solving the desired problem, stated in point three. Assess-
ment of adequacy of the results of solution to the second and
third problems will be carried out by comparing them with
the results of numerical calculations.

5. 1. Symmetrical heating of an infinite plate

We investigate heating under the same temperature
and heat transfer coefficients on both sides of the plate.
Due to symmetry, the calculations are performed for half
the thickness of the plate. The coordinate origin is posi-
tioned in the center of the plate with the count directed to
the surface. At a starting point, body temperature and the
ambient temperature are the same and are equal to ¢,. At
a certain point of time, the ambient temperature abruptly
changes to the magnitude ¢;=const. Temperature on the
surface t, and in the center of the plate ¢, are time-depen-
dent variables. Temperature inside the plate ¢, depends
on the coordinate of the point at which it is determined,
and on time. Calculation will be carried out for devia-
tions of temperature from the body temperature at initial
time z,:

0. =t —-t; 0 =t —t; 0 =t —t

x x o’ n n o’ c c o’

es =ts_t0' (1)

It is proposed to approximate the value of temperature
inside the plate depending on temperatures at the surface
and in the center using expression of the following form:

0,=6,+(0,-0,)-exp(1-1/x). (2)

Here [ is half the thickness of the plate; x is the coordi-
nate of the point under consideration. The magnitudes of 6,
and 0, are to be determined.

Write an expression to determine the temperature, mean
integral for the thickness of the plate, in the form:

. 1k
6=—16,5 dx, 3
vles. 3)

the coordinate of point of realization of this temperature
will be determined from ratio:

I
izéi([x-exp(l—l/x)dx. 4)

In expressions (3) and (4), V is the volume of the body,
S, is the surface area parallel to the external and passing
through the point in question. For the plate, this magnitude
equals the area of lateral surface 5,=Sy; for the sphere, for
example, S,=4nx2. The values for expressions (3) and (4) are
calculated after substituting expression (2) and taking into
consideration V=S, for the plate. Integrals (3) and (4) can
be determined accurately when using an integral exponen-
tial function Ei, pertaining to the specialized category. Their
solutions are expressed in the form:

6=0,+(0,-0,)-k; [=k-I. 5)

Original approximation dependence (2) is initially ap-
proximate in nature. Therefore, the magnitude of coefficient
k, while reflecting main features of the mean integral tem-
perature, requires refining for practical application. It can
be performed based on existing analytical or numerical solu-
tions. This will be done below. In the ongoing transforms, we
shall employ expression (5) in a general form.

With respect to (5), the model of heating a plate in con-
centrated parameters can be written in the following form:

e A .
c~p~VE—SblT(9n—9), (6)
A -
Ot'Sb-(es—en)=5b7(9”—9). (7)

Here, ¢, p, A are, respectively, heat capacity, density, ther-
mal conductivity of a material of the plate, o is the coefficient
of heat transfer from the environment to the plate. The first
of these equations reflects the law of preservation of energy.
The right side indicates energy that arrives from the surface
to the plate body from the difference of temperatures on the
surface and inside the plate. The left side describes energy
accumulated in the examined body due to its heat capacity.
The record of equation (7) assigns a boundary condition of
the third kind. This equation expresses the equality of ener-
gies transmitted from the environment to the surface of the
body and removed from the surface inside the body.

With respect to (5), transform equations (6) and (7)
relative to 0, — temperature in the center of the plate. The
result will be:

do, a S,1 Bi
dt 1> V 1+k-Bi

(6,-9,). ®

Here a=)/(c-p) is the coefficient of thermal diffusivity,
Bi=(a:l)/\ is the Biot criterion. Next, we shall nondimen-
sionalize equation (8) using certain normalizations. Thus,
for temperature:

- 0, - 0

0,=-=, 6,=—=1. 9

c eS s es ( )

We shall nondimensionalize time variable according to

the method proposed in [16] using a complex included in
equation (8) that has a time dimensionality:

a S,-1  Bi
I V. 1+k-Bi

(10)

Such an approach makes it possible to reduce the number
of parameters in the equation to the magnitudes smaller than
those set by the n-theorem. The result will be:

a8, =1-6, or s, +6,=1. (11)
d(Ho) ‘ d(Ho) °

Here

~ at S,-1 Bi . ;T
Ho=2".2"", Ho=Fo-=2—. . (12
o=y s sy e 12

In this expression, Fo is the Fourier number. In the
problems on non-stationary heat exchange, it acts as nondi-



mensionalized time and has another name — the number of
homochronicity (Greek: homos — equal, chronos — time). By
analogy, we shall denote (12) as extended number of homo-
chronicity. In addition to Fo, it includes a geometric complex
(Sy-l/V) and complex Bi/(1+k-Bi). The Biot criterion is the
ratio of thermal resistance of wall [/ to thermal resistance of
heat transfer 1/a. The Biot criterion determines similarity of
temperature fields under geometrical similarity of the heated
bodies. Given this, the complex Bi/(1+k-Bi) in (12) by anal-
ogy can be named the extended Biot criterion:

~  Bi
" 1+k-Bi’

(13)

In the theory of automatic control, equation similar to
(11) describes the inertial link of the first order. It has solu-
tion in the form:

0, =1—exp(—Ho). (14)

Equation (14) describes a change in the nondimension-
alized temperature in the center of the heated infinite plate.
Moreover, by carrying out the transforms, similar to those
given above, it is possible to obtain an expression to describe
a change in temperature at any point in the body under con-
sideration. In addition, by using equation (14), one can de-
scribe a change in temperature in the center of other geomet-
ric primitives — an infinite cylinder, or a sphere, and, upon
appropriate transforms, at any point in these bodies. The
changes refer only to geometrical complex K. It is simple for
computation and it will acquire the following values for an
infinite plate, an infinite cylinder, and a sphere, respectively:

w Syl Sl Ko - S, R 27:RLR_2;
£V S, vV nRL

2
Kt S, R R _4nRR _ (15)

/ nR?

Note that in the second and third expressions in (15)
the characteristic dimension is the radius of a cylinder and
a sphere, respectively. In the second expression from (15),
magnitude L corresponds to the length of a cylinder. Al-
though we consider a cylinder of infinite length (L=00), this
magnitude appears in the numerator and in the denominator
in order to correctly reflect the area of its side surface and
volume. They will be subsequently reduced.

We shall compare results of approximate calculation
based on (14) with similar results of analytical calculations
[2]. Comparison makes it possible to refine the magnitude of
coefficient & at which approximated results have a minimal
deviation from the precise results. In this case, the magni-
tude itself of these deviations is determined. We shall run
a comparison for the magnitude of time of the end of the
heating process. We consider the process of heating a body
completed at a temperature in the center of the body of
t,=0.95t;. This matches an error in engineering estimations.
In addition, according to the theory of automatic control, a
transition process in the first-order inertial link (14) is con-
sidered completed at Ho=3. This leads to a deviation in the
calculated magnitude of nondimensionalized temperature
6, from the desired temperature 6, =1 by not more than

% In other words, the moment of nondimensionalized time
=3 is matched by 6,=0,95-6, =0,95.

Paper [2] misses the magnitude that corresponds to Ho.
In it, Fo acts as nondimensionalized time. To ensure com-
parability of results from (12) with respect to (13), we shall
express magnitude Fo:

A

Ho

Fo= .
K,-Bi

(16)

The magnitude of the Fourier number, employed in
[2], will be denoted Fo;. We shall compare magnitudes
of the Fourier numbers, in both cases, at the moment,
discussed above, when the heating of a body is over. Note
that authors of [2] examine the cooling of a body. But the
processes of heating and cooling are symmetrical. There-
fore, comparison of results, obtained based on (16), of the
magnitudes, given in [2], is valid. It should only be noted
that during cooling the moment the process is over is con-
51dered to be a point when temperature reaches magnitude

0,,=0,05-0,,=0,05. The comparison was conducted by
determining relative error ¢ of calculating Fo based on (16)
relative to Foys. In the process of comparing, we chose the
magnitude of & from (13) that ensures minimum magnitude
of relative error €. The results are given in Table 1. It should
be noted that the model was originally built for an infinite
plate. Nevertheless, in addition to it, it makes it possible,
with respect to (15), to perform calculations for an infinite
cylinder and a sphere.

Table 1

Comparison of results of precise [2] and approximate (16)
calculations of nondimensionalized time of the end of
the process of heating the bodies

Bi Plate, £=0.42 Cylinder, £=0.39 Sphere, £=0.36
Fo; | Fo | &% | Foq Fo | ¢ % | Foy Fo | %
0.005(600.31601.3| 0.15 {300.1|300.6| 0.18 [200.1|200.4| 0.15
0.01 1300.9|301.3| 0.1 [150.4[150.6| 0.15 |100.2|100.4| 0.17
0.1 | 311313 05 [155]156| 0.7 | 103 | 104 | 0.7
1.0 | 420 | 426 | 1.4 | 2.0 | 2.1 33 | 131136 | 3.7
10 | 1.58 | 1.56 | 1.3 |0.725|0.735| 1.3 | 0.45| 0.46 | 1.4
100 | 1.34 [ 1.29 | 36 | 061 | 06 | 1.9 | 038|037 | 3.0
1,000 1.32 | 1.26 | 3.9 | 0.60 | 0.59 | 2.36 | 0.37 | 0.36 | 3.4

It follows from results shown in Table 1 that an error of
determining the time of the end of heating the bodies using
expression (16) compared to the results of precise analytical
solution does not exceed 4 % over the entire examined range
of change in Bi.

The proposed method has an error relative to the
precise analytical solution. At the same time, the error
does not exceed the magnitude accepted in engineering
calculations (<5 %). Based on the results obtained, the
proposed model and the method of calculation can be
considered workable.

5. 2. Asymmetrical heating of an infinite plate

We shall consider a problem on the asymmetric heating
of a plate. The asymmetry arises from different coefficients
of heat transfer. Temperature conditions of the environment
are similar to the case of the symmetric heating: ¢, is the
initial temperature of the environment and the body; ¢ is the
temperature of the environment after its abrupt change. Body
temperature is constant at all its points after the heating and
is equal to ¢, In the process of symmetric heating, a minimum



of temperature is formed, which is located along the midline of
the plate cross-section. Minimum point moves along the mid-
line until reaching ¢, aligned throughout the entire body of
the plate. For the case of asymmetrical heating, the character
of motion of the temperature minimum was determined using
numerical study. Similar to the previous case, the point of
minimum moves along the surface of the plate, but the trajec-
tory of motion is shifted towards the surface with a lower
heat transfer coefficient. In the process of heating, a given
minimum also shifts along a straight line, parallel to the
sides of the plate. Deviations from the described scheme
are insignificant and are observed are the starting point
of the examined process (Fig. 1, a) and can be disregarded
for the approximate solution.

Coordinate system for the cross-section of the plate will
be constructed in the following way (Fig. 1, b):

— vertical reference axis of temperatures passes through
their minimum and is parallel to the sides of the cross-sec-
tion of the plate. The temperature at this point is denoted as
t. — temperature at the center;

— coordinate count of the considered point in the
cross-section is performed in either directions from the tem-
perature reference axis (X1 and X»);

— distance x, from the coordinate origin to one of the
sides of the plate is unknown and must be determined;

—assuming that thickness of the plate equals 2/, the
distance from coordinate origin to the second surface is de-
termined from relation x,,5-2/—x,;.

Under such conditions, each part of the plate that cor-
responds to coordinates X; and X, can be treated using
the approach applied at symmetrical heating. Additional
unknown magnitude x, is determined from the equation of
connection, constructed with respect to the equality of tem-
peratures ., calculated for each part of the plate.

A

=== trend of minima t
Fo=0.15 T )
Fo=0.50 ts
! I\ \\\ /
0.8 @ \ th /,Il
/
tal
" ; o Q——’/// o
0.4 1 (Biz (Biy)
! Xn2=2lXn1 | Xn1
0.2 ! b
Il X < \_/O/\ ,
0 > X2 X
0 025 0.5 075 1 21
a b

Fig. 1. Temperature profile at asymmetrical heating of a
plate: @ — examples of results of numerical calculation of
relative temperature ® depending on relative coordinate X at
different values of Fo; b — adopted procedure for analytical
calculations

Upon completion of the transforms, similar to those
applied when solving a problem on symmetrical heating, we
can determine temperatures at its minimum ¢, and at any
point, including ¢,, t,2 on the surfaces of the plate. Thus,
nondimensionalized temperature at its minimum point is

Ho=Fo-1-

determined based on the relation identical to (14). Structure
of the expression for determining the extended homochro-
nicity number Ho coincides with the structure of expression
(12). Tt includes: number Fo, geometrical complex K, and the
extended Biot criterion. The difference is in determining the
latter. With respect to (15) K?' =1, the expression for Ho in
the examined case takes the following form:

. 2
Bi1(1+BZ?+2~k~Bi2)
Bi,

. a7)
(1+k~Bi2)~(1+BZ?+2~k~Bi2+k~Bi1+k2-Bi1~Bi2J
B

L

Relative coordinate of location of the temperature mini-
mum can be determined from ratio:

x,  1+k-Bi,

2 1+B—l.2+2~/’e~Bi2
Bi,

(18)

It should be considered that for the case of symmetrical
heating, magnitudes Fo and Bi are determined for charac-
teristic dimension /. Whereas for the case of asymmetrical
heating, for 21.

Estimation of calculation error based on (14) using ex-
pressions (17) and (18) was performed by comparing them
with the results of numerical calculations. For this purpose,
we applied a method of control volumes whose one imple-
mentation was described in [11]. Numerical calculation was
performed using a one-dimensional grid with 51 computa-
tional nodes. We considered an example at Bij=1 and Bi,=10.
The results obtained determine location of the temperature
minimum at coordinate X=0.74 (Fig. 1, a). The coordinate
is of relative character as a fraction of the plate’s thickness.
Its dimension is accepted equal to 1. At numerical calcula-
tion, location of the start of a geometric coordinate count
(Fig. 1, a) differs from the case of the model for analytical
study (Fig. 1, b). That is why the value for a coordinate of
temperature minimum, obtained from numerical calculation,
for the variant of analytical study corresponds to magnitude
Xn1/(20)=1-0.74=0.26. On the other hand, this same magni-
tude was calculated analytically using expression (18) and
turned out to be equal to x,,1,/(21)=0.2632. These magnitudes
coincide in terms of accuracy of numerical calculations.
Table 2 gives results of numerical and approximate analytical
calculations of nondimensionalized normalized temperature
at its minimum point for some values of criterion Fo. In ad-
dition, for the calculated values, we determined relative error
of analytical calculations relative to numerical calculations.

Table 2
Comparison of results of calculating minimal temperature
Fo 0.05 0.30 0.55 0.80 1.05 1.30
G)'(?“'“C””" 0.084 | 0.557 | 0.802 | 0.912 | 0961 | 0.983
@i | 0415 | 0519 | 0.739 | 0.858 | 0.923 | 0.958
g, % 3.1 3.8 6.3 5.4 3.8 24

The magnitude of error in the results of analytical cal-
culations in some cases exceeds the magnitude generally
accepted for engineering calculations (<5 %).



Based on the results obtained, we consider workable the
proposed model and the analytical method for taking into
consideration the asymmetry of temperature profile at asym-
metrical heating of the plate.

5. 3. Nonstationary heat transfer through a flat wall

Solution to a stationary problem on heat transfer is trivi-
al. By assigning temperatures of the environment ¢y and £y,
as well as heat transfer coefficients a4 and a» on both sides of
the plate, it is possible to determine temperatures on its both
surfaces t,,1 and ¢,5. A temperature profile inside the plate has
a linear dependence and is defined by these temperatures.
In the transition from a heat transfer coefficient to the Bi
criterion, and from absolute values of temperatures ¢ to their
nondimensionalized normalized magnitudes 0, temperatures
on the surfaces can be determined from ratios:

0. =0, — exl_esZ .
"' (1+Bi, + Bi,/Bi,)’

0,,=6, _ﬁ. 19)
"> " (14 Bi,+ Bi,/Bi))

Here we accepted direction of the heat flow from the en-
vironment with a temperature of 8,1 to 0,. In this case, due
to the normalization of 05;=1, 055=0. Geometrical dimension
(thickness) of the plate is also considered to be normalized.
The coordinate for thickness varies within Xe[0, 1].

Based on numerical calculations [11], we shall consider
a change in the temperature profile inside the plate at non-
stationary heat transfer in the process of transition from one
stationary state to another (Fig. 2, a—c). In all cases, the
profile (straight line) corresponding to Fo=0 refers to the
original stationary state, and for Fo=1.5, (straight line) also
models the resulting stationary state. In the examined cases,
the reason for a non-stationary process is a stepwise change
in criterion Bi from the heating side. An analysis of Fig. 2 can
serve a proof for it.

Fig. 2, a demonstrates the process from initial state
Bi;=0, Bi»=100. This corresponds to the identical tem-
perature of the plate at all points and to its equality to the
temperature of the environment from a cooling side 0sy=0
(Fig. 2, a — on the right). Then the heat transfer coefficient
from a heating side (Fig. 2, a — on the left) changes to the
magnitude that corresponds to Bij=2. Development of the
process of nonstationary heat transfer is associated with the
accumulation of energy in the plate.

Fig. 2, b exhibits the process from initial stationary
state Bil=1, Bi2=100. Then the heat transfer coefficient
from a heating side (Fig. 2, b — on the left) changes to the
magnitude that corresponds to Bil=4. Development of the
process of nonstationary heat transfer is associated with the
accumulation of energy in the plate.

Fig. 2, ¢ shows the process from the initial stationary
state Bil=4, Bi2=100. Then the heat transfer coefficient
from a heating side (Fig. 2, ¢ on the left) changes to the
magnitude that corresponds to Bil=1. Development of the
process of nonstationary heat transfer is associated with the
release of energy from the plate.

We shall select at each point in time a longitudinal
cross-section (point) in the plate body, in which temperature
at the current moment has a maximum deviation from the
magnitude of temperature in the final stationary state in

this same cross-section. On the temperature profile, it will
be matched with the point furthest from the profile (straight
line) in the final stationary state. In order to maintain conti-
nuity in the terminology with the previously examined cases
of heating, we shall name a given point as the “minimum”
of temperature. Let us consider its displacement over time.
Fig. 2, a—c shows it as a dotted line. In all cases, it is possible
to separate two regions (Fig. 2, d), approximated by sections
of the straight line: vertical DK and sloping AK. Schemat-
ic (Fig. 2, d) is based on Fig. 2, a, but all the represented
variants in Fig. 2 correspond to it. Under this scheme, the
character of displacement of “minimum” in the examined
case along section DK corresponds to the displacement
of minimum for the case of asymmetrical heating of the
plate, considered in chapter 5.2. The sloping section starts
(point A) on the heated side of the plate at the point of
initial stationary temperature. When analyzing results of
numerical calculations, it was assumed that inclination
angle of section AK relative to the initial stationary profile
(<KAV) is equal to the angle between the initial and re-
sulting stationary temperature profiles (<CBA). The charts
(Fig. 2, a—c) were complemented with straight line segments
(solid black line), constructed based on this assumption.
The character of position of these lines allows us to draw a
conclusion on the legality of their use as the approximation
of trajectory of the temperature “minimum” displacement
along a sloping section. Based on the revealed features, we
built a model and chose an algorithm for estimating the pro-
cess of nonstationary heat transfer.

At symmetrical and asymmetrical heating of the
plate, its longitudinal cross-section, along which the
temperature minimum moves, can be considered a kind
of thermally insulated wall. Heat flow from one part to
another part of the plate is not transferred through this
cross-section. Therefore, the model for each of the parts
is composed only of a preservation equation (6) and the
boundary condition of the third kind at the surface of the
plate (7). For the case of nonstationary heat transfer, the
pattern is different. As was the case in chapter 5.2, the
coordinate system is connected to the temperature “min-
imum” (Fig. 1, b). Although the temperature “minimum”
in section DK also moves along a particular cross-section,
the heat flow passes through it. The plate, similarly to the
previous cases, is considered to consist of two parts, but,
in this case, not “thermally-insulated” from each other.
Using the same approach applied in chapter 5.1, a model
for each part can be written in a similar form, but consid-
ering that the plate is composed of parts. In addition to
correcting equations in the form (6), (7), it is required to
complement them with a boundary condition of the fourth
kind at the border of the composite plate. As a result, the
model of the first part, for example, takes the form:

do
c-p~V1d7T1:
A ~ A~
=Sy —(0,,-0,)-5,~—(8,-6,), (20)
wt — X X,
A -
Sb.x = '(9”1_91):0‘1’517'(9“—9n1), (21)
ni 1
Ao A N
Sb~j~(91—9()=Sb-j-(96—92). (22)
Xy X,
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Fig. 2. A change in temperature O along plate thickness X
at nonstationary heat transfer at different points in time Fo:
a — process of energy accumulation from initial state B/;=0,

Bih=100; b — process of energy accumulation from initial
state Bi1=1, B,=100; ¢ — energy release from initial state

Bii=4, B»b=100; d — estimated scheme

Here: 8, is the averaged temperature in the examined
part of the body; 6, is temperature at the surface of the
plate; 0, is temperature a current point of its “minimum”;
8, is the averaged temperature in the second, conjugate
part of the body; 0, is temperature of the environment,
which washes the surface of the examined part of the
body; x,1 is the distance from the coordinate origin, lo-
cated in the temperature “minimum” to the surface of the
plate (thickness of the part under consideration); ¥, is the
distance from the coordinate origin to the point of appli-
cation of the averaged temperature in the examined part
of the body; Zx, is the distance from the coordinate origin
to the point of application of the averaged temperature in
the second part of the body; Sp is the area of the lateral
surface of the plate.

We consider an infinite plate (S,=w). The magnitude
Sy is recorded for the completeness of the model. It is sub-
sequently reduced. All magnitudes of temperatures and
dimensions are used in the nondimensionalized and normal-
ized form.

Equation (20), as well as equation (6), reflects the law of
energy preservation. The left side of the equality describes the
energy, accumulated in the examined part of the body due to
its heat capacity. In the right side, the first term marks the
energy that arrives from the surface into the plate body due

to a temperature difference at the surface and inside the plate.
The second term marks the energy that leaves the examined
body part through the border that passes through the tem-
perature “minimum”. The record of equation (21) assigns the
boundary condition of the third kind. It expresses the equality
of energies transmitted from the environment to the surface of
the body and directed from the surface inside the body. The
record of equation (22) assigns the boundary condition of the
fourth kind. This equation expresses the equality of energies
transmitted from the examined body part to its internal bor-
der and directed away from this border to the second part of
the body. The model for the second part of the plate from a
cooling side is recorded in the similar fashion.

The approach implemented in chapter 5.1, allowed us to
obtain a solution in the examined case as well. For example,
temperature at its “minimum” point is determined from
relation:

6, = 4,1, Biy-[1-exp(~Ho,)], (23)
where
1 1
o A v, B B o
[1+(1-x,,)-Bi,] 25)

", -(Bi, +Bi, +Bi, Bi,)

Here Hoq is the extended number of homochronicity
(similar to the magnitude determined in chapters 5.1 and
5.2); k is the coefficient that determines location of the point
of application of the averaged temperature; Bij, Biy are the
Biot criteria from the respective sides of the plate.

By applying the same procedure, we can derive ex-
pressions for determining other magnitudes employed in
a mathematical model of the form (20)—(22). The form of
expression (23) is similar to expression (14), used also when
solving a problem on asymmetrical heating. Coefficient % is
determined using a comparison of results of the numerical
and analytical calculations by achieving the minimum of
their mismatch.

Let us consider, for example, determining, depending
on time, a magnitude and location of temperature “mini-
mum” 0.:

1. At the initial stage, solution algorithm is based on
the same approach as was employed in chapter 5.2. For sec-
tion D-K (Fig. 2, d), we determine its coordinate. In other
words, we determine the location of temperature “minimum”
temperature — x,; and, respectively, x,2. Next, knowing the
magnitude of angle o (KCBA), we construct a section of
straight line AK until its intersection with DK at point K.
Path A-K-D is the approximation of trajectory of tempera-
ture “minimum” displacement.

2. At the initial moments of the process of nonstationary
heat transfer, temperature dependence on time 0(t) is deter-
mined using dependence (23) by solving the inverse prob-
lem. By assigning any abscissa x,1 (point M), we determine
through point L the point corresponding to its ordinates
(point N). By using these data, we determine the point of
time (Fo) corresponding to them from relation (23).

3. After passing point K, we solve a direct problem in
section K-D. Knowing the magnitude of x, (a coordinate of
section K-D), and by assigning some magnitude t, we deter-
mine 0, from (23).



By applying the algorithm proposed, we performed a
series of computations and assessed their adequacy by com-
paring with the results of numerical study.

We determined positions of vertical plots in the trajecto-
ries of motion of temperature “minimum” for three variants
(Fig. 2, a—c). Based on the comparison, among the examined
variants of results of numerical and analytical calculations
we chose the value of magnitude £=0.67, which ensures their
minimum divergence. All subsequent calculations were per-
formed employing a given magnitude. Comparison of results,
based on a relative error, with the results of numerical calcu-
lations are given in Table 3. The margin of error is defined
relative to the thickness of the plate, which is equal to 1.

Table 3

Comparison of results of determining a position of the
temperature “minimum” along a vertical section

Calculation technique | Fig. 2, a Fig. 2, b Fig. 2, ¢
X1 analytically 0.32 0.36 0,28
X, numerically 0.32 0.4 0.22

g, % 0 4% 6 %

Next, we determined ordinates of the intersection points
of the vertical, calculated analytically, and the sloping
sections of trajectories of displacement of the temperature
“minimum”. Thus, for the variants shown in Fig. 2, a and
Fig. 2, b, which reflect the process of energy accumulation,
these magnitudes are equal to, respectively: 69=0.212 and
0°=0.451.

The next step of the algorithm at the sloping section of
trajectory (A—K, Fig. 2, d) was the selection of abscissa equal
to x,1=0.2 for the examined variants of energy accumula-
tion. Ordinates 6,=0.133 and @, =0.451. correspond to
them. By using these data, from relations (25) and (24), we
determine magnitude Ay and then Hoy. Employing the latter
magnitude, we derive Fo — nondimensionalized time. In
order to estimate error in determining dependence 6=6(Fo)
using such a technique in relation to similar numerical cal-
culations, the latter [11] were performed for the found time
points Fo. Results of comparison are given in Table 4. The
margin of error is defined relative to the range of change in
the nondimensionalized normalized temperature, which is
equal to 1.

Table 4

Comparison of results of determining temperatures along a
sloping section of the trajectory of their “minimum”

Calculation technique Fig.2,a Fig. 2, b
0 analytically 0.133 0.451
0 numerically 0.140 0.491
g % 0.7 % 4%

By solving a direct problem (23) for the analytically
computed values for the coordinate of position of vertical
section K-D (Fig. 2, d) of the trajectory of displacement
of temperature “minimum” temperature x,; (Table 3) for a
certain nondimensionalized time point (Fo) we determined
the value of temperature “minimum” 0,. The same magnitude
and at the same value of Fo was determined by numerical
calculations [11]. For calculations, we accepted Fo=0.52.
Results of their comparison are given in Table 5. Here, simi-
lar to previous cases, ¢ is the relative error.

Table 5

Comparison of results of determining temperatures along a
sloped section of the trajectory of their “minimum”

Calculation technique Fig. 2, a Fig. 2, b
0 analytically 0.456 0.516
0 numerically 0.420 0.475
g, % 3.6 % 4.0 %

The results of calculations given in Tables 3—5 allow us
to argue about the applicability of the developed method for
determining temperature inside a flat wall in the process of
nonstationary heat transfer. An error of calculation does not
exceed, or close to permissible, magnitude for engineering
calculations, 5 %.

6. Discussion of the study results: special features of the
developed method of approximate solution to a problem
on nonstationary heat transfer

Heat transfer process is inherently a distributed process.
An attempt to use a solution for the examined problem in
a concentrated statement is common. The approach that
implies dividing an object (a plate) into several layers is also
known. One of the special features of the proposed method
is dividing the plate in two layers only. The acceptability
of such an approach is noted in [11] for numerical calcu-
lations. In the case under consideration, it was applied for
analytical calculations. Moreover, the previously considered
cases involved layer splitting based on various geometrical
considerations. In the method in question, this occurs on a
physical basis. The border of layers is located at an extre-
mum of temperature when heating (cooling) a plate and its
coordinate is calculated. Furthermore, when calculating
during heat transfer process at the initial point in time of
change in the temperature field, the boundary between
layers (temperature “minimum”) moves and its coordinate
is calculated. It should be noted that in papers [2, 3], in the
reported solutions to symmetrical heating of a plate, the bor-
der of the examined region was also located at an extremum
of the temperature profile. But it was substantiated only by
the symmetry of the problem.

The approach to solving a set problem was chosen based
on an analysis of results of numerical studies. They served
not only for the purpose of identifying the qualitative pat-
tern of the course of analyzed process. Analytical solutions
were obtained with an accuracy to a certain coefficient “k”,
which combines all the unaccounted-for features. Numerical
solutions received preliminary have allowed us to determine
optimal magnitude for this coefficient.

Errors of all the obtained solutions given in Tables 1-5
do not exceed the permissible limits of engineering accuracy
(<5 %) or are close to them. This is significantly less than
the possible errors, considered previously, in determining
the source data (heat transfer coefficients), which may reach
50 %. Although the proposed method is approximate, it
makes it possible to obtain analytical solutions, acceptable
from an engineering point of view, in all of the cases exam-
ined, in the absence of their precise forms.

In order to create effective control systems, it is required
to have tools for the calculation of temperature fields and
accumulating properties of the elements of heat power equip-
ment under non-stationary conditions of heat exchange. At



the design stage, when setting up control systems, results of
analytical studies are important. The availability of results
of analytical studies becomes even more relevant when us-
ing fuel of variable composition, characterized by a sharp
increase in the number of transition processes. This explains
the relevance and usefulness of the present research.

7. Conclusions

1. Using a problem on symmetrical heating of a plate
as an example, which has an exact analytical solution in a
distributed statement, we estimated error in the proposed
approximate analytical solution in concentrated statement.
The acceptability of the obtained result within the precision
of engineering calculations is shown. A special feature of the
proposed method is the possibility of its application as an
integral part when solving the problems on nonstationary
heat transfer.

2. By using a numerical study, we revealed the character
of displacement of the minimum of temperature profile for

thickness of the plate for the case of its asymmetric heating.
This made it possible, when employing the proposed approx-
imate analytical method, to obtain a solution to the problem
on asymmetric heating of the body. A special feature of the
solution is the devised approach to determining the mini-
mum of temperature for thickness of the plate. Such an ap-
proach might be used as another constituent part for solving
a problem on nonstationary heat transfer.

3. A nonstationary heat transfer through a flat wall was
considered as a transition process between two stationary
states, described by temperature profiles in the form of straight
lines: initial and resulting. Numerical study allowed us to iden-
tify a characteristic point in the varying temperature profile.
Its current position is determined by the maximum distance
from a given point to the resulting stationary profile. Nu-
merical study also enabled us to determine the trajectory of
motion of this point, which we named, for the continuity of
terminology, the “minimum” of temperature. Based on these
data and applying the developed method, we demonstrated the
possibility of approximate analytical solution to the problem
on nonstationary heat transfer through a flat wall.
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