References

1. Kuts Yu., Shcherbak L. Statistical phasometry. Ternopil, 2009. 383 p.

2. Lapiga I. Circular statistics application for accuracy improvement of ultrasonic thickness measurement // “Proceedings of IX Con-
ference Polit-2009”. Kyiv: NAU, 2009. P. 60.

3. King FE W. Table of selected Hilbert transforms // Hilbert Transforms. Cambridge: Cambridge University Press, 2009. P. 453-533.
doi: 10.1017 /cbo9780511735271.011

4. Bendat J. S., Piersol A. G. Random Data: Analysis and Measurement Procedures. 4th ed. Hoboken: John Wiley & Sons, Inc., 2010.
640 p. doi: 10.1002,/9781118032428

5. High Frequency Ultrasonic Non Destructive Evaluation of Additively Manufactured Components / Karthik N., Gu H., Pal D., Starr
T, Stucker B. // 24th Annual Int. Solid Freeform Fabr. Austin, TX, 2013. P. 311-325.

6. Including frequency-dependent attenuation for the deconvolution of ultrasonic signals / Carcreff E., Bourguignon S., Idier J., Simon
L., Duclos A. // Proceedings of Meetings on Acoustics. 2013. Vol. 19, Issue 1. P. 055029. doi: 10.1121,/1.4800850

7. Tucker B.J., Diaz A. A., Eckenrode B. A. Advanced ultrasonic measurement methodology for non-invasive interrogation and identi-
fication of fluids in sealed containers // Nonintrusive Inspection, Structures Monitoring, and Smart Systems for Homeland Security.
2006. doi: 10.1117/12.660439

8. Hilbert-Huang transform and its Applications /N. E. Huang, S.S. P. Shen (Eds.). CRC press, 2005.324 p. doi: 10.1142/9789812703347

9. The Hilbert-Huang transform in Engineering / N. E. Huang, N. O. Attoh-Okine (Eds.). CRC Press, 2005. 328 p. doi:
10.1201,/9781420027532

10. Lu Y., Oruklu E., Saniie J. Application of Hilbert-Huang transform for ultrasonic nondestructive evaluation // 2008 IEEE Ultra-
sonics Symposium. 2008. doi: 10.1109/ultsym.2008.0365
11. Derhunov O., Kuts Yu. Sposib adaptyvnoi mediannoi filtratsiyi impulsnykh syhnaliv: Pat. No. 103513 UA. MPK GO6F 7,02 /

zaiavnyk ta patentovlasnyk Nats. aviats. un-t. No. u201504262; declareted: 30.04.2015; published: 25.12.2015, Bul. No. 24.

u] =,

IIpononytomoca yuxaiuni K00u, WO imepamuéHo 0exooyromsy-
¢, 1 AKI MOJICHA po3ensdamu sAK anvmepHamugy mypoo-xooam
ma LDPC-xodam. I[i xoou ocnoeani na xackaonomy noeonammi
060x piznux uuraiunux xooie Xemminea. /lna (n, k) -xooy eunpae-
aAa0mvea 6¢i nomuaxu kpamnocmi do (n—k). Kooosa weuoxicmo
UK nabauncaemocs 00 o0unuuyi 3 pocmom 008xCUHU KOOY.
Bukxopucmogyiomvcsi misoKu HCOPCMKL PluleHHsl, 3A60AKU UOMY
docsizaemoves 6UCOKA WBUOK00Is Ma nPOCMA Anapammo-npozpamHa
peanizauis xodepa i dexodepa

Kmouosi crosa: imepamugie dexooyeanis, Wukaiuni koou, koou
Xemminza, miniina nocaioosnicna cxema, nepemencyeanis

T]

IIpeonazaromcs umepamueno dexooupyemovie yuxaurecKue Koot
(HAIIK), xomopbie MONCHO paccmampueamv Kax aibmepHamuey
myp6o-xodam u LDPC-xodam. Imu xo0bt ocrosamnvl na xacxkao-
HOM COeOuHEeHUU 08YX PANUMHBIX UUKIUUECKUX K0008 XoMmuHaa.
Hnsa (n, k) -xoda ucnpasasiomcsa eéce owudxu xpammocmu 0o (n—k).
Koodosas cxopocmv HIIK npubausxcaemcs k¥ edunuye ¢ pocmom
Onunvt koda. Hcnonvsyromes moavko jcecmrue peuwenus, oaazo-
dapsa uemy odocmuzaemcs 6vicoKoe Ovbicmpodeiicmeue u npocmas
annapamno-npozpammnas peaiuzauus kooepa u dexodepa

Knouesvle croea: umepamuenoe dexoouposanue, yuxaiuvecKue
K00bl, K006t XaMMUuHea, TUHEUHAS NOCAE008AMETbHOCMHAS CXeMA,
nepemejcenue

u 0

|DOI: 10.15587/1729—4061,2018.123207|

ITERATIVE
HARD-DECISION
DECODING OF
COMBINED
CYCLIC CODES

V. Semerenko

PhD, Associate Professor

Department of computer technique
Vinnytsia National Technical University
Khmelnytske highway, 95,

Vinnytsia, Ukraine, 21021

E-mail: VPSemerenko@ukr.net

1. Introduction

The vast majority of error correction codes, which are
widely applied at present, were developed in the 50’s and
60’s of the last century, immediately after the publication of
the seminal paper by C. Shannon on coding theory [1]. These
codes did not require any sophisticated algorithms for trans-
forms, which is why they were relatively easily implement-

ed. The only exception was the low-density parity-check
(LDPC) codes: the level of development of computer tech-
nology in those years did not allow their implementation [2].

Over the following decades, the theory of error correc-
tion coding evolved and developed without much innova-
tion. The next significant achievement was the invention
of turbo codes [3]. The key innovation to these codes was
the idea of iterative decoding, which, in a slightly different

form, had been employed in LDPC codes. The improved ca-
pabilities of digital technology have made it possible to fully
implement the principles of LDPC encoding.

Since the mid 90-ies of the past century and up until our
time, turbo codes and LDPC codes have been widely using
in various data transmission systems; in fact they have prov-
en to be the leading codes.

It was only natural that these codes have attracted
attention of specialists around the world. Detailed studies
have shown that LDPC codes and turbo codes, in addition
to their indisputable advantages, have numerous imperfec-
tions, which did not allow them to push aside the previously
developed codes.

This means that the theory of error correction coding
did not end on LDPC codes and turbo codes. Still relevant
is the task on developing new methods for encoding and
detection of errors, as well as their effective practical imple-
mentation in different areas of science and technology. New
scientific results will also help known codes to eliminate
their drawbacks.

2. Literature review and problem statement

In the theory of error correction coding, almost any new
idea will be definitely is compared to the current leaders of
publications: LDPC codes and turbo codes. Therefore, we
shall start analysis of the scientific literature with these codes.

Almost all publications on LDPC codes and turbo codes
necessarily contain a reminder of the main achievement of
the specified codes: maximal proximity to the theoretical
Shannon limit (border) (for example, [4]). The current
record for LDPC codes is 0.0045 dB, and 0.2 dB for turbo
codes [5]. This is unconditionally an important character-
istic of codes indicating their maximum utilization of com-
munication channel capacity. But is such an achievement a
sufficient reason to consider that these codes are the best?
For example, the Reed-Solomon codes are far from the Shan-
non limit, which is not an obstacle for their wide application
in different spheres.

The fundamental laws of nature and technology have
repeatedly demonstrated that any advantages are balanced
by certain shortcomings. If LDPC codes and turbo codes
have managed to approach such close to the Shannon lim-
it, at what cost was this achieved? It is known that error
correction codes have many other characteristics that are
important from a practical point of view. These include code
redundancy, detecting and error-correcting capabilities,
complexity of software and hardware implementation, code
length, delay in obtaining the decision, the possibility of
parallelization of computations, etc.

That is why, as indicated in [6], “the Shannon limit is an
interesting border from a theoretical point of view, but it is
not a practical objective.”

In order to correctly estimate the error correction codes,
we shall return to the origins of their theory, contained in
the well-known theorems by C. Shannon [1]. The distinctive
feature of these theorems is that they are based on the idea
of random encoding. According to Shannon, the best code is
the code that sends a message over an infinitely long time,
forming at each point in time random bits of code words.
An infinitely long message transmission time is equivalent
to its very large length. It is this principle that underlies the
creation of LDPC codes and turbo codes.

Then the first distinctive feature of the considered codes
becomes comprehensible — the use of codes with huge lengths
(up to 107 and longer) with the weight distribution, close to
the distribution of random variables. In practice, such great
lengths are often not needed. For example, in the ATM
packet transmission protocols is used the check of the head-
lines that are 5 bytes long, and the check 48 bytes of useful
information [7].

In addition, there are problems related to processing
huge arrays of encoded data, complex hardware implemen-
tation, low error correction capacity of (n, k)-codes at an
average speed of code of k/n=0.5, a long delay in decoding.
Each code has its own specific drawbacks too.

That is why most researchers continue to examine and
improve classic procedures for decoding turbo codes and
LDPC codes. In [8], authors proposed a modification of the
bidirectional iterative Viterbi algorithm with a probabilistic
solution (BI-SOVA) for decoding the turbo codes. Paper
[9] estimated the effectiveness of several techniques for
creating a sparse matrix of H of LDPC code for the probabi-
listic Sum-Product Algorithm (SPA) when transmitting by
Gaussian channel.

However, it is the irregular structure of the H matrix
that is responsible for most of the drawbacks in classic
LDPC codes. The main efforts of researchers are aimed now
at developing regular (algebraic) LDPC codes [10]. Most
often, quasi-cyclic LDPC codes act as algebraic codes [11].
The main distinctive property of these codes is that the
following code word is obtained by the m-bit cyclic shift of
another code word, where m is an integer. This type of code
is known as a circulant code defined by a circulant polyno-
mial. Thanks to the property of a cyclic shift, it is possible
to use for encoding and decoding very simple shift registers
and to accelerate the process of encoding. As a result, many
algebraically-constructed LDPC codes were adopted as in-
dustry standards, specifically (64800, 48600)-LDPC code is
applied in the digital TV standard DVB-S2 [12].

In contrast to the turbo-codes, it is possible to efficiently
utilize the parallel processing for LDPC codes, which sig-
nificantly enhances their performance [13].

Close in its ideology to LDPC encoding and turbo
encoding is the multithreshold decoding (MTD) based on
the majority-logic correction procedures [14]. The advan-
tages of MTD include high-speed performance at minimum
hardware cost. However, the application of MTD is limited
to the codes with a low correction capability, which is why
it is possible to apply it as a basic algorithm, for example, in
concatenated codes.

The theory of iterative encoding based on various math-
ematical apparatus (finite fields, finite geometry, combinato-
rial methods) continues to develop intensively. [15]. Results
obtained for binary Galois fields can be generalized for the
nonbinary Galois fields [16].

Despite the noted positive properties of regular LDPC
codes, there are also drawbacks to these codes. The most
significant problem of algebraic (quasi-cyclic) codes that
have high code distance is their poor iterative convergence
[10]. That is why such codes are recommended only for small
lengths of codes (7<350).

Continuing a research in this in direction it is possible
to do a conclusion about the appropriateness of using classic
cyclic codes in iterative decoding. Indeed, such codes have
been investigated in recent years. But the paradox is that
traditional iterative approaches to finding errors are applied

to the cyclic codes. For example, soft decisions for Hamming
codes [17], improvement of irregular LDPC decoder using
CRC codes [18], two-step algorithms with majority logic for
cyclic codes with the finite geometry [19].

In the end, most of the earlier identified drawbacks of
these codes are still there: high functional complexity (at
soft decoding), low code rate, low correcting capability, the
“error floor” effect.

It is obvious that the very ideology of LDPC codes and
turbo codes imposes restrictions on those code characteris-
tics that are important for practical application. Therefore,
it is necessary to apply other algorithms of code transforms
for cyclic codes while remaining on the platform of iterative
(multistage) decoding.

3. The aim and objectives of the study

The aim of present work is the development of determin-
istic iterative decoding of block (cyclic) codes with high per-
formance efficiency and minimal hardware costs based on
the mathematical apparatus of linear finite-state machines
(LESM).

To accomplish the set aim, the following tasks must be
solved:

— to explore the essence of iterative decoding of LDPC
codes and turbo codes and show the possibility of alternative
iteratively decodable code;

— to show the possibility of iterative decoding of cyclic
codes based on hard decisions and the theory of LFSM;

— to develop a generalized iterative decoding algorithm of
cyclic codes and estimate its time and resource complexity;

— to propose means that would be effective for practical
implementation of the iterative decoding of cyclic codes.

4. Substantiation of trends in the development of error
correction codes

The Shannon theorems warrant the existence, under cer-
tain conditions, of such a encoding procedure, which enables
data transfer at an arbitrarily small error probability. At the
same time, the theorems do not specify the methods to build
specific codes to ensure such a perfect data transfer. The
theorems only help calculate a mathematical code efficiency
criterion by the following principle: the closer a code to the
Shannon border (limit), the better the code.

First error correction codes were far from the assigned
ideal. An opinion that had gradually formed implied that
should such a perfect code exist in theory, it could not be
implemented in practice.

The first significant breakthrough from this situation
was the idea of concatenation, that is, combined application
of several, typically two, codes. Concatenated codes [20]
have made it possible to obtain very long codes, with a rela-
tively high correcting capability. However, in this case, the
compromise meant a code rate reduction and a larger com-
plexity of the decoding process.

The second, very important, innovation in error-correct-
ing coding theory was the iterative (multistage) decoding.
This encoding technique simplified computations, however,
at the expense of a substantial delay of decoding procedure.

The idea of iterative decoding is complex for practical
implementation. That is why the first iteratively decodable

codes (LDPC codes) had been postponed for three decades
before they attracted attention of engineers. The iterative
approach as it is was initially applied only to convolutional
codes (Viterbi algorithm), or at separate stages of decoding
of block codes (for example, Berlekamp-Massey algorithm in
the procedure of algebraic decoding of cyclic codes).

A logical result of the further development of error cor-
rection codes was the union of iterative decoding and con-
catenation in the new class of codes, known as “turbo-codes”.
Quite unexpectedly, the turbo-codes had proven to be very
close to the desired Shannon limit.

The LDPC codes had been almost immediately recalled;
the progress of microelectronics has allowed their practical
implementation. These codes became several orders of mag-
nitude closer to the Shannon limit.

However, every step towards this border contributed to
increasing the time of encoding-decoding and to complicat-
ing the structure of encoder and decoder.

That is why, since the mid-1990s, intensive research were
began for resolving this problems. The first problem is relat-
ed to the complexity of computations: LDPC codes involve
complex encoding, turbo codes — complex decoding.

Note that there are many error correction codes with
theoretically substantiated methods that accurately detect
and correct the errors. However, the number of errors which
corrected by the precise methods of correction (that is,
using the hard decision) is very limited. According to [21],
the correction of more than six errors in a single code word
of the Reed-Solomon code at a speed of 40 Mbps is almost
unrealize in practice.

That was the reason for the emergence of probabilistic
models and soft computing. Soft computing makes it possible
to improve the accuracy of decoding, but under condition of
the availability of statistical characteristics of the commu-
nication channel. Probabilistic data processing is associated
with the use of real variables which require complex proces-
sor calculations. This is the main reason for the complexity
of computations in LDPC codes and turbo codes.

Soft computing uses an additional (non-mathematical)
“prompt” on the state of the transmitted code word. Such
a “prompt” can be information from a demodulator on the
reliability of decoding of separate symbols of the code
word. The implementation of such a technique for decoding
is based on the most important principle of classic theory
of error correction coding, the concept of Maximum Like-
lihood.

A strategy of maximum likelihood decoder is to produce
a list of possible codewords and selecting the most “likeli-
hood able”, that is, at a minimum code distance from the
transmitted code word (Chase Algorithm [5]). However,
this choice is performed only by using soft computing.

The Chase algorithm, as well as similar methods, make
use in one form or another of the assumption that random
errors with less multiplicity are more likely, “likelihood able”,
than the errors with greater multiplicity. However, this ar-
gument is correct for very simple models of channels only.

During early development of error correcting coding
theory when both hardware and temporal resources were
limited, the concept of Maximum Likelihood was optimal.
When resources became available, and it is necessary to
reduce the number of incorrect decoder decisions, then it is
possible to “allow” it to check more variants before making a
final decision. This is where additional iterations may come
in handy.

Two types of errors most often occur in code words.
“Random” errors are evenly distributed along at full length
of a word and are statistically independent from each other.
“Burst errors” are concentrated in one region and are statis-
tically dependent. Only random errors were initially con-
sideration, those can be placed at full length of a code word,
while burst errors considerated only as a set of random
errors. Such a model of errors was typical for the satellite
communication in 50s and 60s of the 20th century.

These positions underlie the creation of the error correct-
ing coding theory, beginning from the Shannon theorems
and the concept of minimum code distance.

When different error correction codes emerged, there
was a need to compare their capabilities. The most popular
criterion for estimating codes was the magnitude of distance
to the Shannon limit (E;,/Ny=—1.6 dB) on the BER (bit er-
ror rate) curves that show dependences of the probability P,
of the emergence of an erroneous bit in a code word on the
ratio of bit energy Ej, to the Noise Spectral Density ratio Ny:
E;/Ny (Fig. 1). This characteristic is rather good for com-
paring error-correcting capabilities of codes, but only for the
class of random errors: the more of such errors corrected, the
closer the code’s curve to the Shannon limit.

Very typical is the situation with the Fire cyclic codes
at BER curve. Fig. 1 shows curves only for three Fire codes,
though one could show them for all other codes for a given
class, but the overall pattern would remain unchanged:
all curves merge almost in one line. Each Fire (n, k)-code
at a growth of parameters n and % corrects an increasing
number of erroneous bits of a code word, but it does not
affect the decreasing distance to the Shannon limit. The
explanation to this phenomenon is simple: in the Fire codes
only the length of corrected burst errors increases while
the number of corrected random errors is limited only by
single errors [22].

100 ¢

(35,27)-code Fire
e (105,94 }-code Fire
(279 265)-code Fire

g4
m 10

10°€

108
0 2 4 6 8 0 12 14 16 18

E, /N, (dB)

Fig. 1. Decoding error probability for the Fire codes

This is the essence of the strategy for correcting of errors
by Shannon — to eliminate burst errors and reduce various
distortions only to the statistically independent (random)
errors. It is for this purpose interleavers often employ in the
error correcting coding. LDPC codes are also based on the
statistically independent (random) errors.

However, the burst errors should not be avoided, at least
for two reasons.

First, burst errors are not the compact grouping of sev-
eral erroneous bits of a code word only. The paradox is that
such type of errors are much easier to detect and correct
than separate erroneous bits far locate from each other. The
exception is only very long burst errors (with a length great-
er than n—k).

Second, burst errors are the most accurate mathematical
model of distortions, characteristic of wireless and mobile
communications [6].

Thus, the reasons for most of the problems related to
LDPC codes and turbo codes are that these codes are largely
oriented towards the features of the development of the com-
munication of the middle of the mid-20th century.

Therefore, it is necessary to develop the new approaches
to error correction decoding that would improve perfor-
mance and error-correcting capabilities at minimal hard-
ware costs. Solving these tasks is possible on the platform
of the iterative decoding of concatenated codes, which has
proven its indisputable advantages.

5. Theoretical fundamentals of cyclic code decoding
based on the automaton models

A key provision of the Shannon communication theory is
the use of random codes, the probabilistic mode of encoding
and decoding. This approach requires considerable time and
hardware costs.

It is possible to eliminate these problems based on inte-
ger arithmetic, that is, by employing hard computing in the
Galois fields. We shall confine ourselves to the binary Galois
fields, yet the results obtained are easily generalized to the
nonbinary Galois fields as well.

Computation in such fields immediately eliminates the
problem on performance and hardware costs: shift registers
in cyclic codes have long been proven to be effective. Also
resolved is the requirement for super large lengths of codes:
work results are therefore produced faster.

We shall apply as a mathematical model of cyclic codes
the automaton model [23], which is based on the theory
of linear finite-state machine (LFSM). According to [24],
LFSM is a linear automaton with / inputs, m outputs and r
memory cells, which is determined by the state (transition)
function

St+1)=AxS(t)+BxU(t), GF(2) ¢))
and by the output function

Y(t)=CxS8(t)+DxU(t), GF(2),

where
A:|a_, B:|b C:|C..
Glpsr? T’ Ylmxr
and
D=|d,
Ylmxi

are the characteristic matrices of LFSM;

S()=ls,

is the word of state;

U(t)=|u],

is the input word,;

Y()=ly,,

is the output word.
We shall subsequently apply the following matrices as
characteristic matrices of LFSM in (1):

00 0 ... g 1
10 0 ... g 0
A=0 1 0 g |, B=|0],
00 0 1t g 0
c=[0o .. 0 1, D=|o| (2)

The entries of the last column of matrix A in (2) repre-
sent coefficients of the generator polynomial of a cyclic code:

gX)=g, +gx+gx’ +-+g ¥ +gx", GF(2). (3)

Selection of characteristic matrices of the r-dimensional
LFSM is performed based on requirement for 7-controllabili-
ty of LESM. As proven in [24], LEFSM will become 7-control-
lable if the rank of 7>r-matrix

L =[A"'xB, A”xB, . AxB, B %)
will be equal to 7. For matrices (2), the L, matrix contains “1”
only in the secondary diagonal:

00 .. 0 1
00 .. 10
L= o .)
01 .. 00
1t 0 .. 0 0

We shall distinguish between the analytical and the
graph models of the automaton model.

The automaton-analytical model is based on the charac-
teristic matrices of LFSM. Based on it, it is possible to give
a new definition for a cyclic code.

Definition 1. A set of all binary sequences M of length =,
which transform LFSM from any initial state Sj.4(¢) back to
state Speq(t) creates a cyclic (n, k)-code Q over Galois field
GF(2). Each such sequence M is a code word Z of the cyclic
(n, k)-code.

One can choose, as an automaton-graphical model of a
cyclic code, the state transition diagram Gry of LFSM.

Definition 2. Sequence M of n unidirectional edges in the
Gy graph, in which the i-th edge corresponds to bit z; of code
word Z over field GF(2), is termed the code path n of graph
GFA (Zi EZ, 1:1—n)

Definition 3. A set of all code paths n of length n,
which originate and end in the initial vertex vy of the Gy
graph, generates a cyclic (n, k)-code Q over Galois field
GF(2).

We shall consider the essence of operations of systematic
encoding and syndrome decoding of cyclic codes based on
the automaton models.

From the perspective of systematic encoding, n-bit code
word Z contains in & high position an information word 1,
and in 7 (r=n—k) low position — a check word ¥:

Z=1¥Y=4y1,..L, Y\V,..., =22,...2,. (6)

When data are transmitted over a communications
channel, various disturbances may lead to the distortion of
1 positions of code word Z, and then a code word Z,,, may be
obtained with a multiplicity error .

A decoder must sequentially perform two tasks:

—to establish the absence or presence of errors in the
accepted code word (decoding task);

— in case there are errors, to identify distorted positions
of the code word and perform the appropriate correction
(error correction task).

Both tasks will be implemented based on the analysis of
syndromes [25]. A syndrome in the automaton-analytical
model refers to the state that will be reached by LFSM
from the initial state (we shall accept it being equal to zero
S(0)) under the influence of the code word of a cyclic code.
Computing the syndrome is performed during »n cycles
according to formula (1), in which the code word acts as
input word U(%).

If state S(n) turns out to be zero (S(n)=5(0)), this would
indicate the absence of errors in the accepted code word
within the code’s correcting capability. If the decoder input
receives a distorted code word Z,,, then the n-th state of
LFSM will be the syndrome of occurred error (S(n)=S,,,(n)).

We shall introduce the concept of check window as a
continuous cyclic sequence of 7 positions of the code word
(6) (Fig. 2). We shall denote the check window as X@ if its
rightmost position is the i-th position of code word Z:

X0 =5

[y U

2,2, z;€Z,

j=i+(i—-r+1)modn, i=1+n

z; |z | z3 z

Fig. 2. Check window X" of code word (v=i—r+ 1)

Similarly, we shall denote the check window as X, if
its rightmost position is the i-th position of code word Z,,,
and there may occur errors in some positions:

XD =z z .z, z2.€Z

err i—rl 0t i S J err?
j=i+(i-r+1)modn, i=1+n

The task on error correction in code word Z,,, will be
considered in two variants: error correction within one Z,,,
r-bit check window, and error correction within the entire
code word.

We shall prove the following theorems.

Theorem 1. If codeword Z,,, contains errors within check
window X, then in order to correct such errors and ob-
tain check window X®) it is necessary to perform a bitwise
operation

X® = X0 +(=S,, (n), GF(2), %)

err

where the sign () means inverting the word S,,,(n), that is,
mutual permutation of its positions in line with rule:

S, =S

i Or-i0

s;€8,,(n), i=1+r.

Proof. As shown in [23], under systematic encoding,
LFSM from the initial zero state under the influence of word
I passes at the k-th step into intermediate state

S(ky=A*xS(0)+L,xI, GF(2),
then, under the influence of word ¥, passes into final state
S(n)=A"xS(k)+L, x¥, GF(2). ©)

If there are no errors, the state S(n) is equal to zero
(S(n)=5(0)), and equality (8) can be written in the follow-
ing form

A" xS(ky=L x¥, GF(2).)

Assume there are errors in some positions of the check
word: we shall denote this word as ¥,,,. Then, at the n-th step,
one obtains a non-zero error syndrome, that is, S(n)#S(0),
and equality (8) takes another form

S(n)=S, (n)=A"xS(k)+L, x¥, , GF(2). (10

After substituting in (10) the value of A”xS(k) from (9),
we obtain equality:

err?

S, (m)y=L x¥Y+L x¥, =L (¥+¥,,), GF(2).
One can record with respect to matrix L,:

~S. (n)=¥+¥,, GF(2). 1)
Because the 7-bit check words ¥ and ¥,,, occupy posi-
tions from z,_,+7 to z,.in code words Z and Z,,,, respectively,
hence they are located in check windows X®™ and X,
Hence, the desired equality (7) follows from equality (11).

Consider a general case when a check window of length »
can be located in any place of a code word.

Theorem 2. If code word Z,,, contains errors within check
window X, then, in order to correct such errors and ob-
tain check window X, it is necessary to perform a bitwise
operation

XD =X 4(=8, (n+i)), GF(2). 12)

Proof.

The proof of Theorem 2 is continuation of the proof to
Theorem 1.

Multiply all terms of equation (11) by the i-th degree
(i=1+n) of matrix A:

A'X(=S,,(n)=A"xX¥P+ A x¥

GF(2). (13)

Multiplier A*x(-S.,,.(n)) denotes condition —S,,(n+i),
which LFSM will transit from state —S,,,(n) after i zeros
will be entered to its inputs. Multiplier Ax¥ denotes a
cyclic subword, which occupies positions from z, to z; in
code word Z,,,, that is, it is in check window X® (o=(i—r+1)
modn). Multiplier A’x¥,,, denotes a check window X in

the same positions, but some of the positions may contain
an error.
Then equation (13) can be written in the following form

=S, (n+i)=XD+ X

e’

GF(2)

hence, the desired equality (12).

6. Permutation decoding of cyclic codes

The main idea of the decoding method, considered in the
previous chapter, is to find in the check window a configura-
tion of error that matches the syndrome of this error. Such an
algorithm is also termed an “error-trapping” algorithm [26].
A given algorithm is easy to implement in practice, however,
it is only applicable for codes of small length and low multi-
plicity of errors. Such codes are called in [23] the easily de-
codable codes, and the syndromes of an error that match the
configuration of the error — the regular states. In a general
case, a cyclic code contains both regular and irregular states
of an error; the latter in much larger quantity.

A simple and effective technique for finding a match be-
tween syndrome S,,,(n) and the erroneous bits of code word
Zeyr is the power permutation decoding.

It is known [27] that for any integer v cyclic codes are
invariant relative to the permutations of symbols of form

i—(i+v)modn, GF(q"), (14)

i—(2*)ymodn, GF(q™). (15)

In other words, if a generator polynomial g(x) of the
cyclic code divides code polynomial f(x), then it will also
divide the polynomial f(x7) whose symbols are rearranged in
accordance with rule i—g'. Therefore, polynomial f(x?) will
also be a code polynomial, and, if no errors occur, as a result
of dividing f(x9) by g(x), we shall obtain a zero syndrome.
But in the case when there are errors, the result of dividing
Jf(x) by g(x) will yield a single configuration of erroneous
positions of the code word, and the result of dividing f(x9) by
g(x) is a completely different configuration. In [28], such a
technique for permutations is referred to as the “decimation”.

We shall apply a cyclic power permutation of the form
i—(2%)modn (or i—(2%)modn), which is equivalent to
multiplying the corresponding exponent by 2? or 2% In
the simplest variant, power permutation implies that first
one records the odd positions of code word Z, and then the
even-numbered (it is possible to start with the even posi-
tions). As a result, we obtain the new code word Z, (Fig. 3).

The essence of the method for correcting multiple errors
employing a method of power permutation is to build, at
each step, the new variant of permutation of the form (14) or
(15), to compute the new syndrome, and to detect errors in
check windows. Upon error correction in the code word with
permutation, it is necessary to perform the inverse power
permutation of the word to produce the original code word.

Because a given computation process is repeated many
times, in fact we observe here iterative decoding: each itera-
tion has its own variant of permutations.

It is not difficult to realize the meaning of cyclic power
permutation. First, the central bits of a code word are shifted
towards the edges, and the extreme positions — towards the
center. Next, the motion direction changes. Except for the

first position (or two extreme positions at even n) only, all
other positions are mixed. As a result, the distorted positions
of word Z,,, are caught during one of the iterations in the
check window and are detected.

Z= 1z |22] 25| 2

7 =

U z; | z3 z, | z; | z4 z

n—1

Fig. 3. Power permutation of code word Z (at odd-number n)

Such an operation can also be called the interleaving. In
contrast to traditional interleaving when positions of one code
word are redistributed by several code words, here the inter-
leaving occurs within a single code word. This allows saving
the time for the preparation of transmitted data, since the data
transmission party is not involved in the interleaving.

The task of an interleaver in a traditional iterative code
(for example, turbo-code) is to replace burst errors with ran-
dom errors. In the proposed interleaver, the opposite task is
performed — random errors are grouped into packets (burst
error) in order to get into a decoding window at one of the
interleaving steps.

Another important distinguishing feature implies that
there is no difference between random and burst errors, since
at each iteration of interleaving their role changes with all of
them processed by one algorithm.

7. Generalized algorithm for iterative decoding of
cyclic codes

Source data for the generalized algorithm for iterative
decoding are the accepted n-bit code word Zj, consisting of
k-bit information word I and r-bit check word ¥/, and refer-
ence checksum X, If the check word is intended to correct
errors, the checksum is used to establish the presence or
absence of errors.

Two different LFSM are used on the sender and the re-
ceiver sides. The first (master) LFSM is applied for encoding
and decoding (with error correction) a code word. The sec-
ond (slave) LFSM acts to confirm the presence or absence of
an error. Accordingly, the master and slave cyclic codes are
used with two different generator polynomials (3).

The essence of the generalized algorithm is an iterative
forming, using master LFSM, of all possible variants of code
words, and in searching for an error-free word among them
by employing slave LFSM.

Stage 1. The actual checksum is computed as the state
S(k) to which slave LESM passes from the initial zero state
S(0) when a word Iy enters its input. According to (1), the
following actions must be performed for i=1,... ,k:

S(i+1)= A, xS(i)+B,x2(i), GF(2), z(i)el,,

where A, and B» are the characteristic matrices of slave
LFSM.

Then = =S(k).

A match between the actual checksum X, and the ref-
erence checksum X, can be regarded as a sufficient basis
to confirm the absence of errors in word Ir and termination
of the algorithm. Otherwise, the data are prepared to begin

an iterative error search: the iteration number is set as w=1,
permutation power as v=0, and code word Zyis accepted as
the current code word Z{:

70=7,

Stage 2. The actual error syndrome S,,,(n) is computed
as the state S(n), which master LFSM enters from the initial
zero state S(0) when the current code word Z89. enters its
input. According to (1), the following actions must be per-
formed for i=1,..., n:

S(i+1)=A xS(i)+ B, x2(i), GF(2), 2(i)eZ™,
where Ay and By are the characteristic matrices of master
LFSM.

Then S,,(n)=S(n). If there are errors in Z“), state
S,r+(n) would be nonzero.

Stage 3. The error words Ef"'),...,E:L”’) are formed for p
possible configuration of errors at multiplicity from 1 to .
The following computations are performed for this purpose

57(0)=S,,,(n),

S"(n+iy=AxS"(n+i-1), GF(2), i=1,..n-1. (16)

Word E{™ is equal to the sum of the n-bit zero word O
and 7-bit state S”(j) of LFSM, which should be located,
relative to word O, in a cyclic interval from the i-th position
to the ((i—r+1)modn)-th position:

E® =0+5"(j), GF(2), j=l,1.

One more condition: word $”(j) must contain “1” in the
same position as the matrix B, then word E}”") will contain
“1” in the i-th (i=1+n) position (which is easy to check).
Such conditions are fulfilled by p=(n+1)/2 error words if we
choose a primitive polynomial as the generator polynomial
of the master code.

Stage 4. p variants of the current word correction Z{
are computed:

70 =70 4 E®, GF(2), j=1.u. A7)

Stage 5. If we have previously completed power permuta-
tion 2Y>1 of code word Z'“), then a reverse power permuta-
tion 27 is performed for all corrected code words from (17).

Stage 6. The correctness of correction of code words
from (17) is checked by computing a checksum X for
each word Z{.

Stage 7.1t for one value of j the checksum = coincided
with reference value £,.; then word Z{* is the correct value
(within the correcting capability of a cyclic code) of the ac-
cepted code word Zy. This completes the algorithm.

Otherwise, if one has not exhausted the limit of power
permutation quantity for a given code, the iteration number
is increased (w=w+1), as well as the power of permutation
(v=0v+1), and a new current code word Z'* is created:

cur

(w) _ 7(w-1)
7w=z

cur,p-1?

where Z®“™ is the power permutation 2° of word Z®“™ at

cur,o-1 cur

the (w-1)-th iteration. Next, one returns to stage 2.
The end.

8. Example of iterative decoding

We shall employ as an example of iterative decoding
the master cyclic (15,11)-code by Hamming with generator
polynomial gs(x)=1+x+x", and a slave cyclic (31,26)-code
by Hamming with generator polynomial gj(x)=1+x>+x",
These polynomials are matched with master LESM with
matrices

000 1
1001
A= :
0100
0010
1

0
B, =| |,

0

0

and slave LFSM with matrices

>
N

1]
S OO = O
S O~ O O
(= = =]
-0 O O O
S = o O -

=2
S
Il
S o o o~

Assume that the encoder on the sender side formed
a code word Z. Due to interference in the communica-
tion channel, the receiver received codeword Z; with
errors:

71=171297...215=100000101001110. 18)

The receiver also received the reference checksum which
computed for 11 correct information bits (bits z12523...211) of
code word Z using slave LFSM:

(19)

ref

™
Il
S OO = O

Starting with word (18) and further the starting erro-
neous positions and their displacements in the execution of
the generalized algorithm are shown in red.The decoder, of
course, is “not aware” of this fact.

According to the generalized algorithm, first the actual
checksum X, is computed. This check parameter is equal to
state S(11) of slave LFSM when information bits z1z523 ... zy1
from (18) enter to its inputs.

oS O O o O

S(0)={0};
0 1
0 0
S()=A,xS(0)+B, xz, =A,x|0|+B,x[1]=]0|... .
0 0
0 0

As a result, we obtain the actual checksum

T, =S(11)=

)

S O = = -

which does not match the referen ce checksum (19). There-
fore a transition to the procedure of error correction in the
code word (18) is carried out.

At the second stage of the error correction procedure,
an error syndrome S,,,(15) is computed as the value of state
S(15) of master LFSM when a 15-bit code word (18) enters
to its inputs. The result is the following error syndrome:

0
1
5,,(15)=5015)=| |

1

At stage 3 of the algorithm, the following computations
are performed (16):

)

5"(15)=54)(15) =

_ = O

1
1

S"(16)= A, xS"(15)=| ..
1

All computed words of states §”(i) and the error words
that correspond to them are given in Table 1 (blue color de-
notes check windows). To decoding it will suffice to use only
those error words that contain “1” in the i-th bit. Remaining
error words (denoted as E) are not involved in further calcu-
lations because they are the shifted copy of other error words.

At stage 4, it is necessary to compute 8 variants of the
corrected current word Z) according to (17). Results of
computations are given in Table 2. Table 2 shows that the erro-
neous position did not appear in any of eight check windows.
Therefore, the decoder could not correct them, moreover, it
introduced more errors after correction (shown in green).

Table 1

Calculated error words at iteration 1

Z®=100110100000011. (20)

Next, all steps of the algorithm, starting at stage 2, are

State | Numeri- Error words repeated, but for the code word (20). One can see from (20)
words | calvalue | ;_ { 93 4 56 7 8 9101112131415 that all erroneous positions are placed in a 4-bit check win-
dow. It only remains to shift this window and correct the
S7(5)) 0111 |E,=000000000004 110 code words, as shown in Table 3.
, Next, one performs reverse power permutation 2! for all
5”16 E® = ’ . .
a6 1111 |E"-410 0 0 00000 0 0 0 R corrected code words, as shown in Table 4. In conclusion,
S”A7)| 1011 |E=0 100000000000 11 correctness of the correction of code words is checked by
- " computing checksum ¢ for each word Z{* from Table 4.
S718)| 1001 |E’=00 1000000000001 The check is successfully finished for code word Z;?f), which
$7(19)| 1000 [E*=10 00 100000000000 is the correct code word Z.
57(20)| 0100 [E,= 00 0100000000000 Table 3
. Variants of corrected code words at iteration 2
$721)| 0010 [E,=0 001 00000000000
Error words Corrected code words
$7(22)| 0001 [E,=0004 00000000000 E® z2=101 0110100000001
§7(23) 1100 |[E°=0 0000041 10000000 E® ZP=00 1110100000011
§724)| 0110 [E,;=000000 110000000 EP |ZP=101000100000011
” @ @ _
57(25)| 0011 [E,;=0 000004 140000000 Ei Z7=10 O 00000011
,, E® Z»=1001011100000T11
$7(26)] 1101 [E"=000000010L10000 : >
- E® Z®=10011141010000T11
$727)| 1010 [E'=000000000101000 ’ :
E? |Z%=10011040010001°1
S5”(28 E, =
28) 0101 »=00000000O0/L01O0O0O E® ZP=100110100000 101
S729) 1110 |[E°=0000000000041 110
Next, it is necessary to check correctness of the per-))) Table 4
formed corrections by computing the checksum similar to Variants of restored code words at iteration 2
the procedure for computing an error syndrome. In this case, Corrected code N dond deod 1
the checksum X is equal to the state in which slave LFSM words estored and corrected code words
transitions from the ipiti_al zero state S(0) when words Zj.“ z® Z2=001000101000110
from Table 2 enter to its inputs.
7 Z2=000010101001110
Table 2 Z0 ZO = 100010000001110
Variants of the corrected code words at iteration 1))
zt Z®=100000000011010
Error\jvords 1 Corrected code words 7 Z2 = 1000001000 11111
E® ZO%=000000101001001 - -
1 - zy Z,=110000101011110
E{ ZP=1 1000010100110 1 ; 5
1 A Z®=100100101001110
ED ZP=11 0 1000101001111
E" Z’=14 00 100101001110 Note that by using the considered algorithm we were able
B Z9= 10000000 1001110 to detect aI}d correct the error of mgltlphmty =3 applying
two Hamming codes. To this task, it took two of the four
EY ZP=100000 144 1111 10| possibleiterations for the Hamming (15,11)-code.
ED ZP=100000101 100110
)) _
Es Zy=10000010 100707070 0 9. Discussion of the algorithm for iterative decoding

Computations reveal that none of the calculated check-
sums matches the assigned reference value (19). This con-
firms incorrect corrections of the code word (18). The
decoder takes note of this fact and proceeds to the second
iteration of decoding.

For the second iteration, one performs power permuta-
tion 27 of the obtained code word Zs. As a result, the code
word will be obtained and will be declared to be the current
code word Z® for the second iteration:

cur

We shall consider main distinctive features of the pro-
posed algorithm for iterative decoding.

1. First, we shall analyze the obtained coding gain G, as a
result of iterative decoding of cyclic codes. For this purpose,
it is possible to employ either known BER curves from the
mathematical software MATLAB, or approximate analyti-
cal estimate [21]:

G, =10 Ig[R(t +1)],

where R=k/n is code rate of (n, k)-code; ¢ is the number of
corrected errors.

In both cases, the magnitude of coding gain G, will
increase in proportion to an increase in the number of itera-
tions and the number of corrected errors, which is equivalent
to approaching the Shannon limit (it is inherent for iterative
decoding of any codes). And although the proposed iterative
code under actual conditions will not be very close to the
Shannon limit, it has a code rate, which, with an increase in
the length of code, approaches one. This makes it possible to
increase by almost two-fold the volume of transmitted useful
data per time unit, and requires an insignificant improve-
ment in bandwidth. We remind that turbo codes and LDPC
codes have code rate R=0.5 which requires either a two-fold
bandwidth expansion or double transmission rate [6].

2. The length of the proposed code can be arbitrary: both
small and large. This significantly extends the scope of its
application.

3. In contrast to the decoding algorithm of turbo codes
and LDPC codes which use the soft decisions, the proposed
algorithm is based only on hard decisions. The advantages of
a given approach is the high speed and simple hardware-soft-
ware implementation of encoder and decoder.

4. Instead of “likelihood able” assumptions about the
error positions in code word within the minimum code dis-
tance, the generalized algorithm checks all possible variants
of the errors with a multiplicity (n—k) of the cyclic (n, k)-code
and finds exact solutions.

5. Power permutation performs interleaving inside sin-
gle code word only, and this operation is carried out on the
side of the receiver only.

6. For the objectively compare the proposed and the
known iterative decoding algorithms, we shall estimate com-
plexity of these algorithms regarding time and hardware
implementation.

First, we shall consider the hardware implementation of
encoder for the proposed algorithm (Fig. 4). An encoder of
the generalized algorithm consists of two elementary encod-
ers (LFSM 1 and LFSM 2), which are implemented as linear
feedback shift registers (LFSR) based on generator poly-
nomials, respectively, gi(x) and go(x). First, we send by the
channel a k-bit information word I, then a r,-bit checksum X
and, finally, a 74-bit check word ¥ (Fig. 4). The total number
of encoding cycles is n:

n=k+2ry, if ri>ry, or n=k+ry+ry, if ri<r.

Thus, the time complexity of encoding for the proposed
method is linear, that is f"(n)=0(n). Since the bit capacity
of LFSM 1 and LFSM 2 with an increasing of code length
grows very slowly, the complexity of hardware implementa-
tion of the encoder for the proposed iterative algorithm is
constant: f"(n)=0(1). The complexity of hardware imple-
mentation of the decoder is more complex — quadratic, that
is £/ (n)=0(n").

It is widely accepted that known iterative codes have
similar mathematical functions of complexity: from linear
to quadratic. This does not mean, however, that all three
analyzed iterative codes have circuit implementation of the
same complexity. For example, to represent a single code
bit in the proposed method, we use one bit of shift register,
while LDPC codes employ a processor element. Accordingly,
known codes require increased physical time of decoding,
the need for large capacity of main memory grows, there are

problems in circuit implementation. For example, a decoder
of LDPC code is hardly possible to execute based on modern
FPGA as they lack hardware units for computing of stan-
dard mathematical functions [29].

— 5 |
LFSM 2

- 0 4
LFSM 1 _ v |

Fig. 4. Structure of the encoder for iterative decoding of
cyclic codes

7. The process of decoding using the proposed method
can be easily parallelized, in this case parallelization can be
applied at multiple levels. First, all iterations can be performed
simultaneously. Second, stages 3—6 within each iteration can
be carried out in a pipelined manner when at each step of the
pipeline one processes one code word. Parallel processing is
not only possible, but also very desirable, as it eliminates the
need to store a large volume of intermediate data in memory.

8. The proposed method of decoding employs a new prin-
ciple for the combine of codes. In the known systems, one code
(internal) is fully embedded into another code (external), in
our case, both block codes are mutually independent with
each performing its own task: first, a master code detects er-
rors, then, with the “help” of a slave code, corrects them.

We shall consider substantiation of code selection for
such combining.

Number of syndromes of corrected errors should be pro-
vided by the number 7 of check bits in (12, £)-code (ri=ni—k:):

21 2ic,‘;1.

Among traditional cyclic codes, inequality (21) holds
as the equality for a Hamming code, single errors (t=1) and
for all ;.

At iterative decoding, all errors inside the check window
X9 must be corrected, that is t=ry. The total number of

err’

error syndromes within a check window is equal to

2y

Nmzicg.

A large number of error words inside the check window
are the shifted copy of each other; to decode, it will suffice
to use only one of them, for example, containing a “1” in a
high position. In case LFSM 1 uses a primitive polynomial
as polynomial (3), then such LFSM will generate a binary
sequence of maximum period: 7=2"'—1. In this sequence, “1”
is evenly spaced and found exactly 2! times [24].

At r1>32, when number N, of error syndromes is large
enough, then it is possible to limit the multiplicity of cor-
rected errors.

From the standpoint of polynomial representation of cyclic
codes, the primitive generator polynomial has the Hamming
code. When using a given code, at any code length, decoding
will require only half of the error words (Table 1). Therefore,
it is best to choose a cyclic Hamming code as the (ny, k)-code.

Next, we shall consider substantiation for choosing

(ny, k)-code.

The purpose of this code is to check correctness of error
correction in code word Z,,, by the first code. The probabili-
ty pm that the (19, k)-code-assistant makes the wrong choice
is equal to p,=2"®%®_To reduce p,,, one should choose a
cyclic code with primitive generator polynomial go(x) as
the (ny, k)-code, that is, also a cyclic Hamming code. Good
enough validation properties are demonstrated also by the
Abrahamson code with generator polynomial (1+x)ga(x).

Thus, both codes can be cyclic Hamming codes, but nec-
essarily with different generator polynomials (g1(x)#g2(x)).
Powers of polynomials gi(x) and go(x) should be sufficiently
large: 16, 24, 32, 64. And these parameters are characteristic
of CRC codes.

From the positions of CRC check, the CRC (ny, k)-code
will act as a cyclic redundancy check, while the CRC (n4, k)-
code — as a cyclic redundancy code, possibly shortened.
The differences between these interpretations of CRC are
described in detail in [30].

Such cyclic codes can also be called the iteratively decod-
ed cyclic codes (IDCC).

10. Conclusions

1. We investigated the essence of iterative decoding of
LDPC codes and turbo codes and demonstrated that the

main criterion for the optimality of error correction codes
has been over many years the degree of proximity of the de-
coding error probability to the theoretical limit (border) by
Shannon. At an iterative (multistage) method of decoding,
it is really possible to come maximally close to this limit,
however, much will have to be sacrificed: increased length of
codes, complexity of encoders and decoders, longer decoding
time, emergence of other problems.

2. A theoretical substantiation is given for the iterative
decoding of cyclic codes using the automaton representation
of these codes. Rather than traditional soft decoding of iter-
ative codes, we propose employing hard, that is exact, deci-
sions, which would make it possible to accelerate the process
of encoding and decoding at simultaneous minimization of
resource Ccosts.

3. We have developed a generalized iterative decoding al-
gorithm for cyclic codes based on power permutation of bits
in the code word, as well as the software model and circuits
for codecs using linear feedback shift registers.

4. A new type of combined codes is proposed — itera-
tively decoded cyclic codes (IDCC). IDCC-codes could
be recommended for use in systems where CRC control is
applied: it will suffice to add a CRC check word to the em-
ployed CRC checksum. As a result, it is possible, by using a
software means, not only to detect, but also correct errors of
large multiplicity.

References

. Shennon K. Raboty po teorii informatsii i kibernetike. Moscow: Izd-vo inostr. lit., 1963. 829 p.
2. Gallager R. G. Low Density Parity-Check Codes. Cambridge: M.I.T. Press, 1963. 90 p.
Berrou C., Glavieux A., Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 // Proceedings
of ICC ‘93 — TIEEE International Conference on Communications. 1993. doi: 10.1109/icc.1993.397441
4. Vargauzin V. Vblizi granitsy Shennona // Telemul'timedia. 2005. Issue 6. P. 3—10.

5. Morelos-Saragosa R. Iskusstvo pomekhoustoychivogo kodirovaniya. Metody, algoritmy, primenenie. Moscow: Tekhnosfera,
2006. 320 p.
6. Sklyar B. Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie. 2-¢ izd., ispr. Moscow: Izd. dom «Vil'yams», 2004. 1104 p.
7. Stollings V. Komp'yuternye sistemy peredachi dannyh. 6-e izd. Moscow: Izdatel’skiy dom «Vil'yams», 2002. 928 p.
8. Topalov V. V. The modification the bi-directional Soft Output Viterbi Algorithm for decoding of turbo product codes // Technology
audit and production reserves. 2014. Vol. 6, Issue 3 (20). P. 62—-65. doi: 10.15587,/2312-8372.2014.34592
9. Novikov R. S., Astrahantsev A. A. Vybor parametrov LDPC kodov dlya kanalov s ABGSH // Systemy obrobky informatsiyi.
2014. Issue 1 (117). P. 195-199.
10. Error-Correction Coding and Decoding. Bounds, Codes, Decoders, Analysis and Applications / Tomlinson M., Tjhai C. J., Ambro-
ze M. A., Ahmed M., Jibril M. // Springer International Publisher. 2017. 522 p. doi: 10.1007,/978-3-319-51103-0
11. Mankar M. V,, Asutkar G. M., Dakhole P. K. Quasi Cyclic Low Density Parity Check Decoder Using Min-sum Algorithm for [IEEE
802.11n // IOSR Journal of VLSI and Signal Processing. 2016. Vol. 06, Issue 04. P. 01-07. doi: 10.9790,/4200-0604020107
12. ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and
modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2).
European Telecommunications Standards Institute, Valbonne, 2005.
13. Revathy M., Saravanan R. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications // The
Scientific World Journal. 2015. Vol. 2015. P. 1-8. doi: 10.1155/2015/327357
14. Zolotarev V. V., Zubarev Yu. B., Ovechkin G. V. Mnogoporogovye dekodery i optimizatsionnaya teoriya kodirovaniya. Moscow:
Goryachaya liniya — Telekom, 2012. 239 p.
15. LDPC Code Designs, Constructions, and Unification / Li J., Lin S., Abdel-Ghaffar K., Ryan W. E., Costello D. J. J. Cambridge
University Press, 2016. doi: 10.1017,/9781316780152
16. Kim S., Sobelman G. E. Scaling, Offset, and Balancing Techniques in FFT-Based BP Nonbinary LDPC Decoders // IEEE Transac-
tions on Circuits and Systems II: Express Briefs. 2013. Vol. 60, Issue 5. P. 277-281. doi: 10.1109/tcsii.2013.2251959
17. Fedorenko S., Kolesnik V. Multi-step decoding of the iteration of Hamming codes // Proc. of the Seventh Joint Swedish-Russian
International Workshop on Information Theory. Saint Petersburg, 1995. P. 80—83.
18. Cross-Layer Iterative Decoding of Irregular LDPC Codes using Cyclic Redundancy Check Codes / Yang Z., Li S., Feng H., Ho-
nold T, Yu G. // 2009 IEEE Wireless Communications and Networking Conference. 2009. doi: 10.1109/wcnc.2009.4917653

19. Zhang L., Huang Q., Lin S. Tterative decoding of a class of cyclic codes // 2010 Information Theory and Applications Workshop

(ITA). 2010. doi: 10.1109/ita.2010.5454113
20. Forni D. Kaskadnye kody. Moscow: Mir, 1970. 207 p.

21. Klark ml. Dzh., Keyn Dzh. Kodirovanie s ispravleniem oshibok v sistemah tsifrovoy svyazi. Moscow: Radio i svyaz’, 1987. 392 p.

22. Semerenko V. P. Estimation of the correcting capability of cyclic codes based on their automation models // Eastern-European
Journal of Enterprise Technologies. 2015. Vol. 2, Issue 9 (74). P. 16-24. doi: 10.15587/1729-4061.2015.39947
23. Semerenko V. P. Teoriya tsyklichnykh kodiv na osnovi avtomatnykh modelei: monohrafiya. Vinnytsia: VNTU, 2015. 444 p.

24. Gill A. Lineynye posledovatel'nostnye mashiny. Moscow: Nauka, 1974. 288 p.
25. Semerenko V. P. Parallel Decoding of Bose-Chaudhuri-Hocquenghem Codes // Engineering Simulation. 1998. Vol. 16, Issue 1.

P. 87-100.

26. Teoriya kodirovaniya / Kasami T., Tokura H., Ivadari E., Inagaki Ya. Moscow: Mir, 1978. 576 p.
27. Prange E. Cyclic error-correcting codes in two symbols. Air Force Cambridge Research Center, 1957. 26 p.

28. Kognovitskiy O. S. Dvoystvenniy bazis i ego primenenie v telekommunikatsiyah. Sankt-Peterburg: Link, 2009. 411 p.
29. Hlynov A. A. Issledovanie printsipov realizatsii LDPC kodeka na PLIS // Materialy mezhdunar. nauch.-tekhn. konf. “INTERMAT-

IC - 2012”. Moscow, 2012. P. 150—156.

30. Semerenko V. P. Theory and practice of CRC codes: new results based on automaton models // Eastern-European Journal of Enter-
prise Technologies. 2015. Vol. 4, Tssue 9 (76). P. 38—48. doi: 10.15587/1729-4061.2015.47860

o o

3anpononosano i 0emanvHo ONUCAHO OpU2i-
HAbHY KOHCMPYKUi0 OUHAMIMHOZ20 2IPOKOMNA-
CY HA ONMUUHUX 2IPOCKONAX ma Memod 1020
euxopucmannsi. Pospoéneno anzopumm 3zacmo-
CYBAHHA MAK020 2IPOKOMNACYBAHHA Y 6UNAO-
KY, Koqu eibponidcmasxa 1a3eprozo 2ipockony
eidcymns. [loeedeno eucoxy mounicmo podomu
maxkoeo zipoxomnacy. B ymosax iiozo euxopu-
CMAaHHA MONCHA 3HUBUMU PiBEeHb WYMY NA3EPHO20
2ipockona. 3ae0saxu 00epmannio 3HaUHO Komnen-
CYEMbCA 6NAUE NOBLILHO MIHAUE020 Opelipy ma
Maznimna ckaadosa opetidpy

Kniouosi caosa: zipoxomnacyseanus, nasep-
HUll 2ipockon, axcenepomemp, opeid, kym xypcy,
Hasizayilina cucmema, Kepysanns pyYyxom

= yu

IIpeonoscena u demanvno onucana opueu-
HANbHAS KOHCMPYKUUS OUHAMUUECKO20 2UPOKOM-
naca Ha ONMUMECKUX 2UPOCKONAX U Memood e20
ucnoavzoeanus. Paspaboman anzopumm npume-
HEHUsT MaKoz0 2uPOKOMNACUPOBAHUS 8 Cayuae,
K020a 6uOponodcmasKa Ja3epHozo 2upocKona
omcymcmeyem. /lokaszana 6bicokas mouHocmo
pabdomovr maxozo eupoxomnaca. Ilpu ycarosusx ezo
UCNOIb306AHUS MONCHO CHU3UMD YPOBEHL WYMA
nasepnozo zupockona. Baazooaps epawenuio
3HAMUMENLHO KOMNEHCUPYemCs GaAUsHUe nepe-
MenH020 Opelipa u mazHuMHASL COCMABNAIOWAS
opeiicha

Kntouesvte caosa: eupoxomnacuposanue,
JlasepHblil 2upocKon, axceaepomemp, opeug,
Y20J1 KYpca, HABUAUUOHHASL cucmeMa, ynpase-
Hue deudicenuem

0 0

1. Introduction

One of the urgent tasks of creating and improving
motion control systems for modern aerospace objects is
improving the accuracy of their information subsystems in

|DOI: 10.15587/1729-4061.2018.1 19735|

DEVELOPMENT

OF METHOD AND
ALGORITHM

OF DYNAMIC
GYROCOMPASSING FOR
HIGH-SPEED SYSTEMS
OF NAVIGATION AND
CONTROL OF MOVEMENT

V. Uspenskyi

Doctor of Technical Sciences, Professor®
E-mail: uspensky6 1@gmail.com

l. Bagmut

PhD, Associate Professor*

E-mail: ivan.bagmut@gmail.com

M. Nekrasova

Associate Professor*

E-mail: slava2007@gmail.com
*Department of Computer Modeling of
Processes and Systems

National Technical University

«Kharkiv Polytechnic Institute»
Kyrpychova str., 2, Kharkiv, Ukraine, 61002

general and navigation equipment, in particular. The main
direction of solving this problem is the use of redundant
information coming from inertial sensors and a receiver of
satellite navigation signals. This explains why the issues of
rational combination of information in such systems and the

