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1. Introduction

Over the past decade, a number of fundamental results
have been obtained in the theory of continuous optimal set
partitioning problems (OSP). Methods and algorithms for
solving multi-product, linear and nonlinear, stochastic and
dynamical problems of optimal set partitioning problems
with specified and unspecified coordinates of centers of
subsets were developed. In addition, solutions to applied
problems from the field of monitoring of ecology of industrial
regions, territory planning of service spheres and control
of social sphere, were obtained. The problems of control of
technological processes and the problems, associated with
construction of the elements of artificial intelligence systems
were united in one direction [1, 4].

A variety of initial data, including information about
properties of a set, restrictions on particular parameters of
a problem and quality criteria, determines a wide range of

applied partitioning problems. This, in turn, makes it possi-
ble to speak about the relevance of subsequent research both
aimed at the development of the theoretical base, and at the
search for solutions to specific problems. The problems of
optimal partitioning of a plane curve, which are particular
cases of a continuous OSP problem with placement of sub-
sets’ centers, are of special interest.

2. Literature review and problem statement

The theory of continuous OSP problems is based on
a unified approach, which lies in reducing original in-
finite-dimensional optimization problems via Lagrange
functional to non-smooth, as a rule, finite-dimensional
optimization problems. For numerical solution of such
problems, effective methods of non-differentiable optimi-
zation are used.




We can distinguish the following main directions of
development of the theory of continuous OSP problems. By
now, some of them have been sufficiently explored, such as
linear OSP problems, nonlinear OSP problems, OSP prob-
lems under conditions of uncertainty [1].

Development of these results include studying problems
of optimal coverage of continuous sets by balls [2], dynam-
ical problems of optimal set partitioning with and without
placement of subsets’ centers, problems of sets’ boundaries
control [3—5]. Solutions to the problems of distributed
systems control, which are special cases of continuous dy-
namical problems of optimal set partitioning, were obtained.

A fuzzy problem of optimal sets partitioning without
restrictions was studied in paper [6].

One of the examples of conceptualizing of the OSP theo-
ry may be considered paper [7], which explored the problem
how and when a discrete problem can be reduced to a con-
tinuous problem.

Application of the theory of optimal sets partitioning
was found in the problems of artificial intelligence: image
recognition, analysis and identification of systems, control
of distributed systems, in which a permissible control region
is determined by partitioning of a certain set into a finite
number of subsets.

It is necessary to emphasize the studies based on sets
partitioning, which typically use the Voronoi diagrams
[8—10]. The theory of optimal partitioning considers the
Voronoi diagrams as a particular case of OSP problems.
Substantiation of theoretical fundamentals of plotting of
the Voronoi diagram by using the methods of optimal sets
partitioning is shown in a series of papers [11].

In [12], a generalization of the Voronoi partitioning, called
EBVP (effectiveness-based Voronoi partitioning) by intro-
ducing the concept of node functions for distance measuring
was proposed. With EBVP, a generalized environment for
statement of optimal placement problems was proposed.

An example of development of algorithms for solving par-
titioning problems can be paper [13]. Application of multi-
agents was proposed in [14].

Modern applied results in the fields of medicine, technol-
ogy and logistics are explored in works [15-17].

Despite a considerable number of theoretical and applied
works for optimal partitioning, all of them are based on anal-
ysis of only one class of sets. There are examples of partition-
ing of the segment and examples of application of the OSP
apparatus for the search for the minimum of the function.
Accordingly, an interest arises from the point of view of the-
oretical prospects and practical application of partitioning of
segments of a plane and a spatial curve.

3. The aim and objectives of the study

The aim of present research is to state and research
one-dimensional problems of the theory of optimal sets par-
titioning, when a set is represented in the form of a curve on
a plane with geometrical characteristics of the curve taken
into account. This will make it possible to construct the
models of elements of transport systems with detailed refer-
ence to the terrain.

To accomplish the set goal, the following tasks must be
solved:

— to state and solve the optimal partitioning problem for
a particular case, when a distance is assigned by the length

of the radius-vector from the center to a point on a curve, to
explore behavior of its solutions;

— to state and solve the optimal partitioning problem for
a particular case, when a distance is assigned by the length of
the path from the center to a point on a curve and to explore
behavior of its solutions;

— to state and solve the optimal partitioning problem for
aparticular case, when a distance is assigned by the length of
the path from the center to a point on a curve the curvature
of the curve is taken into account as an additional parameter,
to explore behavior of solutions.

4. Methods and results of research

Consider the basic problem of optimal sets partitioning
with placements of centers [1]:

Problem A2. Let Q be a bounded, measurable by Lebes-
gue set in n-dimensional Euclidean space E,. We will desig-
nate through Py(Q) the class of all possible partitions of set
Qinto N sub-sets

ﬁN(Q):{cT):(QI,...,QN): Q. cQ i=1N;

N -
L:Jlgi =Q mes(Q,NQ)=0,i#j; i,j =1,N}.
It is required to determine partitioning ®*e f’N (Q) and
a set of “centers” of subsets 1=(1y, 19,..., Ty)EQY, giving the
minimum value to the functional

N

F@1)=Y [(c(at,)+a,)p(a)dx.

i=1 Q;

Here c(x, 1;) are real, bounded, determined on Qx€Q, mea-
surable by x at any fixed ©,eQ (Vi=1,..., N) functions; p(x)
is the bounded, non-negative, measurable on Q function; a;
(Vi=1,.., N) are the assigned non-negative magnitudes.

Let functions c¢(x, 1;) be one or another metrics in space
E?, a;=0 (Vi=1,.., N). Informally, we can state problem A2
in the following way. It is required to find such partitioning
of the original set into an assigned number of sets and such
coordinates of the centers of these subsets, at which the sum
of weighed distances from the points of the set to the corre-
spondent center should be minimal.

In physical problems, the minimized integral is treated
as work, performed by a point (a physical body) at moving
along the trajectory, leading from the center to each point
of the subset. From the economic point of view, the quality
criterion of problem A2 is a summary cost of transition to the
center (or backwards) of the whole resource that is at each
point of set Q.

The aim of the present research is to study problem A2,
when set Q is a part of a plane curve, described by depen-
dence y=f(x) on an assigned segment. A segment of a curve,
assigned both analytically and in a tabular way (the latter in
the process of solving the problem is interpolated), can serve
as analyzed areas. In addition, from practical considerations,
the function is restricted by continuity and differentiability.

In a general form, the first problem (let us call it problem
A2R) will be stated as follows. Suppose there is a segment
of a plane curve. It is required to place an assigned number
of sources on a resource on it and to link each point of the
curve to a particular source. In this case, it is necessary to
minimize costs of transportation of the whole resource from
the sources to corresponding points of the curve along the



shortest path. Function of value in this case will be considered
proportional to the radius-vector, connecting point (v, /(1; )),
the source of resource, with the point of the corresponding
subset (v, f(x)), so that cp(x, ©)=((x—1)*+(f(x)~f(w)H)'/
(Fig. 1). Obviously, coordinates of the so-called “centers”
of subsets have the form (;, f(1;)) and, in general, are deter-
mined by points 1€ [a, b].

f(x

a T b X
Fig. 1. Geometric interpretation of sub-integral function of
problem A2R

Problem A2R. Let Q={(x, y): a<x<b; y=f(x)}, where f(x) is
the real, bounded, differentiable determinable on [a, b] func-
tion. It is required to find partitioning ®* € P, () and a set of
“centers” of subsets, determined by the points of segment [a, b]
T*=(14, 19,..., TY)EQY, giving minimal value to the functional.

F@1)=3, [ (et +(f(x)- £6))) d.

=1 g,

Once the basic problem has been stated, it is required to re-
fine the problem, based on assumption that it is possible to take
into consideration geometrical characteristics of the curve in
this statement. Subsequently, it is necessary to show what geo-
metrical characteristics correspond to the subject area.

The next stage is the solution itself with the help of the
known methods and interpretation of results.

We apply the procedure of solving continuous OSP
problems [3, 5]. Then we introduce characteristic A1("),...,
An() of subsets Qy,..., Qy, and pass from problem A2R to the
equivalent problem of infinitely-dimensional programming.

I(A(),7)=
DI [ RERCHE G
where

N
Ay ={x) = (A (), by (1)) DA () =1
i=1
almost everywhere in xeQ; A, (x)=0v1; almost every-
where for xe€Q; i=1N}.
Analytic expression for the first component A*(-) of op-
timal solution (A*(-),7*) of problem (1) can be obtained for
each fixed t*=(14, 19,..,, Ty) in the form

1, \/(X_Tz')2 +(f(x)_f(1i)2 =
A @={miny(e -5, ) + (/- /@), i=1N

0, in other cases,

To find the second component T*=(ty, Ta,..., Tv)€QY of the
optimal solution (1), it is necessary to solve the finite-dimen-
sional optimization problem in the form

b
G = miny(x-,) +H/0=f(w)) pede = min, ()

the objective function of which is in the general case
multi-extreme and non-differentiable. Solution to the prob-
lem (2) can be obtained, for example, using an algorithm, a
part of which is r-algorithm by N. Z. Shor.

A detailed analysis of the properties of optimal solutions
and properties of the minimized function G(t) for a partic-
ular case of problem A2R, when f(x)=const, was studied
earlier. It was shown that the problem (2) is multi-extreme.
However, on each of the subsets of set [a, b]V, formed by
specifying of different relations of the order of sequence of
centers Ty, Ty,..., Ty on segment [a, b]:

a) function is one-extreme and convex by 1, Ts,..., Tv;

b) has the point of a local minimum.

Minimal values of the function in points of a local mini-
mum, each of which belongs to a subset of set [a, b]V, formed
by its relation of the sequence order of centers Ty, To,..., Ty on
segment [a, b], coincide.

It is obvious that from the practical point of view it is
interesting to study and solve the problem of partitioning
of the segment of a special curve, modeling a real system.
For example, when talking about road construction, there
arises a problem of optimal placement of warehouses, work
towns, asphalt factories along the construction route. It is
required that costs of transportation of labor or material re-
sources along the construction site should be minimal. That
is why for computational experiments, we selected curves of
the form f(x)=x2, f(x)=x3, f(x)=In(x), f(x)=sin(x/T), [(x)=
=Asin’(Qx), A, t, Qe Z. The last is of particular interest, since
it is known that any continuous function on the interval
[0,2%t] can be represented in the form of a trigonometric
series. Therefore, the properties of optimal solutions to prob-
lem A2R for any continuous functions, as well as applicabili-
ty of the above algorithm, will be determined by the proper-
ties of problems A2R, functions of the form f(x)=Asin‘(Qx)
at different parameters with precision of decomposition in
trigonometric series are considered as a curve.

Fig. 2 shows examples of surfaces of minimized functions
G(1y, T2), to which problems A2R at N=2, [a, b]=[0,1] are
reduced (it is possible to visualize the surface, assigned by
the minimized function, only for two centers). As Fig. 2,
a—d, shows, problems A2R can be conditionally divided into
two classes. The first class includes the problems, in which
objective function G(ty,Ty) has two minima, symmetric
relative to the diagonal of a square, corresponding to area
Q and beginning at point (0; 0). Moreover, the values of
the function at points of a minimum are the same. We will
note that this class of problems includes those, in which the
function, monotonous on [a, b], serves as f(x). The second
one includes multi-extreme functions with a large number of
local extrema that can have values close to optimal. In the
case when the number of subsets is more than two, the num-
ber of local minima increases significantly. For functions
from the first class, an optimum can be obtained by applying
algorithm A2. For the second class of problems, algorithm
A2 can lead to any point of a local extremum, not necessar-
ily to the point where objective function of the problem has
a global minimum. Therefore, in order to solve problems of



the second class, it is possible to apply heuristic algorithms
of search for a global extremum. Experience in application of
genetic algorithms, in particular for similar functions, makes
it possible to talk about their effectiveness.

G(11,12)

Fig. 2. Surfaces, constructed by values of function G(t4, T3).
The set to be partitioned is a segment of a curve:
a— flx) =const; b— Rx) =In(x); c — Ax) =22
d— fx)=sin(nx /2); e — f(x)=sin(Znx); f— Rx)=sin(4nx);
xe[0, 1]. Values of F are normalized

Problem A2R is applicable in practice, when it is possi-
ble to get from the center to any point of the area along the
corresponding radius vector. This situation is possible, for
example, when developing the reservoir, deforestation or
work on an assembly line.

Let us specify the model and state the following problem
of optimal partitioning of a plane curve (let us call it problem
A2L). Let us impose additional restrictions on the movement
trajectory. It is obvious that in the case of transport commu-
nications, movement of resources will be implemented only
along them. For example, materials supply on the constructed
road is most likely to be implemented on its ready segments.

Let us state the problem in a general form. It is neces-
sary to minimize the costs for transportation of the entire
resource to each point along the curve at a specified segment
from a predetermined number of sources along the same
curve. In this case, it is required to find an optimal place-
ment of the sources.

Problem A2L. Let Q={(x, y): a<x<b; y=f(x)}, where f(x) is
the real, bounded, differentiable function, dfztermined on [a, b].
It is necessary to find partitioning ®*e P, (Q) and a set of
“centers” of subsets, determined by the points of segment [a, 0]
T*=(T4, Ty,...,Ty)€QY, giving minimal value to the functional.

F@o=Y [|f \/1+f’2(§)p(x)d§‘dx,

i=1 Q|1

where
]‘ 1+ f2(E)dx

is the length of the curve’s arc from center 1; to point x, p(x)
is the assigned real function, bounded on [a, b] (hereinafter,
consider without loss of generality that p(x)=1).

Evidently, for f(x)=const, problems A2R and A2L co-
incide.

Depending on the choice of f(x), objective function for
problem A2L will take a particular form. For example, if

J(x)=x2, then

TAl+17 /2+ln|tl.+./1+1:i2
—xv1+a? /2+ln|x+\/1+x2

respectively, for f(x)=In(sin(x)), we obtain

/2=
/2

c(x,T,)=

c(x,t) =[In(tg(x/2),/tg(ti/2))|

Examples of surfaces, formed by values of function F, const-
ructed for set Q={(x, y): 0.02<x<1; y=/(x)}, are shown in Fig. 3.

Fig. 3. Surface of objective function F of problem A2L,
depending on T4, T2€ [0, 1]. A set to be partitioned is a
segment of a curve: @ — Ax)=const, b — Ax)=x,
¢ — x)=sin(x), d— Ax)=sin(2x)

For problem A2L with placement of two centers on the
interval [0; 1], solution can be obtained in analytical form,
previously assuming that f(x) is a monotonous function,



T7;<Ty. We open module and rewrite the functional of problem
A2L in the form

E(prtyt)= | [T P @Eede+ | [T 7 @dede +

Y

+ j j Vit fAE)ded + | f1/1+ 17(&)dEdx.

Ty Ty

Write down the necessary conditions of an unconditional
extremum for function F(p,t,,7,) (calculation of partial
derivatives of function F(p,t,,1,) is performed from the
Leibniz formula for integral differentiation by the parameter):

y VRO NEYRIOTE

3

A [ e 7@ [ @z

%:j 1+f'2(§)d§—f 1+ /*(£)dg =0.

Among the stationary points, we will choose the ones
that will satisfy conditions: 0<T<p<t,<1.

Analyzing system (3), it is possible to make a conclusion
that point (p, f(p)) is the boundary between areas Q; and Q,
and lies on curve y=f(x) so that the distances from this point
along the curve to points (74, f(t1)) and (19, f(t2)) are the
same. Point (7, (1)) is in the middle of the distance along
the curve between (0, f(0)) and (p, f(p)), and (Ty, f(12)) is in
the middle of the distance along the curve between (p, f(p))
and (1, f(1)).

In the case when f(x) is periodic, or the number of the
located centers is more than two, analytical solution to the
problem is virtually impossible to obtain. In these cases,
problem A2L is multi-extreme. Examples of the surfaces,
formed by objective functions of the problem are shown in
Fig. 3, ¢, d.

For the numerical solution, it is possible to apply algo-
rithm A2 [3] or any other heuristic approach.

Further, we will refine the model, for optimization of
which problem A2L is solved. Until now, it was assumed
that costs are proportional to the length of the trajectory
between the center and each point on it. Now let us take into
account the fact that movement along the curve is complicat-
ed by its form, or rather curvature, which causes additional
costs, therefore, we will add the costs in proportion to a cur-
vature indicator to the full costs. Let us consider two cases:

1. We will take into account the effect of a curvature on
the costs of moving through each intermediate point, then the
total costs will be determined by a weighted sum (B4, By >0,

Bi+PB2#0):

c(x,7,) =, +B,

T 1+ £ (x)dx

where f”(x)/(yJ1+ f*(x))’ is the curvature in point x.
Problem A2(L+K). Let Q={(x, y): a<x<b; y=f(x)}, where
f(x) is the real, bounded, differentiable, determined on [a, b].

[ £/ (i £ @)Y i=1,m,

It is necessary to find partitioning ®* eISN(Q) and a set of

“centers” of subsets, dejgermined by points of segment [a,b]

T =(1,,Ty... Ty) €[a,b]", giving minimal value to the func-
F(o,7) =

tional
3] ( Nt e de

As in the previous case, for each function f(x), we will
obtain specific function c(x, ;).
Separately, we will integrate the second summand:

Koo [ F70) /4 /72 (20)) dac =
= [/ /1 ) = 1) /1 ()

then:

+

[ 7@ /(e @y de

N +

F(®,7) =z'f

i=1 Q;
+

[V /7@t
PN @) = 1@ 1 )

As an example, we will consider the type of objective
function for the problem with two centers, when f(x)=x2/2,
xe[0, 1].

Integral of the length of this curve in this case:

L= NI @0 =11 /24
+1n|ri + 1412/ 2-V1+2° /2+ln|x+\/1+x2

then the function will take the form:

/2

7 P
F={(Lioy+ Koo+ [(L, o+ K, ,)dr+
0 T

Ty 1
Ly + K)o+ [ (L, + K, ,y)dr.
P

Ty

For the case, when f(x)=const, f(x)=x, the second deriv-
ative is equal to zero, that is why the problem is reduced to
problem A2R or A2L. Examples of surfaces, formed by func-
tion F for the problem with two centers at different kinds of
function f(x), are shown in Fig. 4.

For f(x)=x? on the interval [0; 1], the curvature decreases
monotonously and an increment of the function by the unit
of length increases monotonously. Function F reaches a min-
imum at point t)=(0.03, 0.24) and at point T®=(0.24, 0.03),
symmetric to it relative to straight line y=x. The boundary
between the subsets corresponds to value p=0.1215.

This problem can be generalized in the case
of the curve lying on the surface (the model of a
road segment). Considering a curvature in this
case may occur due to both lateral and vertical
deviations.

2. Let us assume that delivery costs are proportional to
the length of the curve and curvature at each point (curva-
ture acts as density function):
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a b

Fig. 4. The surface of objective functions F of problem
A2(L+K), depending on. 11,To€ [0, 1]. A set to be partitioned
is a segment of the curve: a — Ax)=x%, b — Ax)=sin(x),
x€[0, 1]

Problem A2(L-K). Let Q={(x, y): a<x<b; y=f(x)}, where
/(%) is the real, bounded, differentiable, determined on [a, b]
function. It is necessary to find pair,

(®*,1) e P (Q)x[a,b]",

giving minimal value to the functional

Flor) =Y [ |1+ /20 £ / i+ £ () da e,

=gy

Let us integrate sub-module expression:

N1+ 172y )/ 1+ () de =

=arctg(/"(1,)) —arctg(f"*(x));

then
F{Q,,..Q\ )=
= Z J. |arctg(f’2(ri))farctg(f'z(x))|dx.

The problem degenerates, if f(x)=const, f(x)=x (Fig. 5, a).
In the general case, the scheme of the solution remains the
same. Examples of surfaces, made up by objective functions
of problem A2(L-K) for the problem with two centers at var-
ious f(x), are shown in Fig. 5, b—d. It is not difficult to notice

that the properties of objective functions for some problems
A2(L-K) coincide with the properties of objective functions
of problems A2(L+K), A2L (at the same assignments of
Jf(x)). That is why algorithms of solutions to these problems
are the same.

5. Discussion of results of one-dimensional OSP problems

The basic results of the theory of continuous sets parti-
tioning, such as problem statements, methods of their solu-
tion and substantiation, were obtained for the case when a
set is plane. Different methods of calculating the distances
between points on a plane are used as metrics. This makes
it possible to construct optimization models for economic
and social problems. Taking into account geometric prop-
erties qualitatively complicates the basic problems, because
instead of using the Euclidean or Manhattan metrics, the
distance along the curve is used. Consequently, carrying out
numerical computation itself also gets complicated. But this
approach gives new possibilities for modeling, in particular
introduces in consideration the topography of placement of
centers T and points of the placement of a given resource. It
is obvious that in the case of road transportation, delivery
costs depend on the distance between destinations, which is
measured along the road. The second component of the costs
is non-unified fuel consumption, set by the engine operation
modes, which in turn depends on the relief of the road.

The studies were performed for problems of lesser dimen-
sionality, unlike the known ones, which is caused by complex-
ity of analysis of solutions for the curves in space. In addition,
visualization of solutions’ surfaces is possible only for a one-di-
mensional case with two centers. Consideration of properties
of the curves adds one more stage of searching for a solution to
the known scheme. As a result, it appears that within the basic
problem, we obtain a particular problem, requiring a separate
solution, for every case of consideration. The classic method
for solving OSP problems in general case allows us immedi-
ately to apply the algorithm of global search for a minimum,
which simplifies the search for a solution.

Exploration of the properties of stated problems showed
that it is possible to obtain analytically a solution of some
problems of partitioning of curves into two subsets with
placement of the centers, using the necessary optimality
conditions. If the number of subsets, and consequently, the
number of centers is more than two, in order to solve these
problems, it is necessary to apply the algorithms of solutions
of continuous OSP problems or the heuristic methods. In the
case, where f(x)=const, results of the studies coincide with
the known results for a single interval of a real straight line.
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Fig. 5. Surfaces, constructed by values of function F of problem A2(L-K). Partitioned set is the segment of a curve:
a— flx)=const, b — Ax)=x2, c— Ax)=sin(x/3), d— Rx)=sin(x), x€[0,1]



The proposed problems can be stated for n-dimensional
Euclidean space, as well as for complex non-linear spaces,
modeling economic and physical structures. A generaliza-
tion of these problems is the problems of partitioning of
surface curves or the surface itself, assigned by the function
of n-variables. Such problems will make the object for sub-
sequent studies, because they have a wide range of practi-
cal applications (in construction, economy, geodesy, and
transport technologies). An interesting continuation of the
studies will be consideration of the ability of the centers to
move along the assigned relief with the problem of optimiza-
tion of the influence spread area of each of the centers with
minimal costs. This will require, first and foremost, creation
of new software with support for geo-information and data
on modes of objects’ motion.

6. Conclusions

1. We stated the problem A2R of optimal partition-
ing of a continuous set, assigned by function f(x) for the
case, when the distance is assigned by the length of the
radius-vector from the center to the point on the curve.
Functions of the form f(x)=Asin’(x) at different parameters

with precision of decomposition in a trigonometric series
were considered as a curve. It was shown that for problems
with placements of two centers on the interval [0; 1], it is
possible to obtain a solution in the analytical form. In the
case, where there are more than two centers, the search for
a more exact solution becomes difficult, that is why it is
proposed to use heuristics.

2. The problem A2(L+K) of optimal partitioning for
the case, where the distance is assigned by the length of the
path from the center to a point on the curve, was stated. For
problem A2(L+K) with placement of two centers on the in-
terval [0; 1], the solution was given in the analytical form, in
the case, where f(x), solution is a monotonic function. It was
shown when the problem degenerates. The surfaces, formed
by solutions to the problem, were constructed.

3. We stated the problem A2(L-K) of optimal partition-
ing for the case, where the distance is assigned by the length
of the path from the center to a point on the curve and the
curvature of the curve is taken into account as an optional
parameter. The properties of objective functions for some
problems A2(L:K) coincide with the properties of objective
functions A2(L+K), A2L (at the same assignments of f(x)).
That is why the algorithms of solutions to these problems
are the same.
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3anpononosano memod Gopmyeanns
00HO0BUMIpHUX 00600i6 6UX00aMU 3 3a0aHOT
mounocmiinmepnonsuii. Maxcumanoha adco-
JOmMHa NOXUGKA IHMePnoaAUii 6USHAMAEMbCS
3 YpaxyeamHsm 2e0MemMpuMHUX 6JACMUBOC-
meil euxionoi xpueoi ainii. Pozensdaemovcsa
dsa piznoeudu noxuoxu. Ilo-nepwe, noxuoé-
Ka, 3 axoto copmosamna ouckpemmno npeo-
cmaenena Kpuea, wo iHmepnoaioe GUXionuil
mouKo6ull psod, npeocmasne UXiony Kpuey.
Io-0dpyee, noxubxa, 3 axoro inmepnoaioroua
Kpuea npedcmaese 6yov-aKy Kpuey 3 3aoa-
HUMU 20 MEMPUMHUMU XAPAKMEPUCTUKAMU

Kmouoei cnoea: noxubxa inmepnonsuii,
YnopaoKoeana MHONCURA MOYOK, OCUUNAUILL,
Monomonna 3mina oudepenuianvro-zeome-
MPUMHUX XAPAKMEPUCMUK

=, u |

IIpeonazaemca memoo ¢opmuposanus
00HOMepHbIX 0060006 UCX0051 U3 3A0AHHOU
mounocmu unmepnoaayuu. Maxcumanvnas
abcontomnas nozpewHocms UHMEPRONAUUU
onpedensiemcs ¢ yuemom 2e0Mempu*ecKux
ceolicme ucxoonou xpueou aunuu. Pac-
cmampusaemcs 0ée pazHoOBUOHOCMU NOZPeul-
Hocmu. Bo-nepeuix, nogpemnocmo, ¢ xomopoii
copmupoeannas ouckpemno npedcmasien-
HAs Kpueas, UHMePnOIUPYOWAs UCX00HbLI
moueunvlii psod, npedcmasasem UCXOOHYIO
Kpueyro. Bo-emopwix, noepewnocmo, ¢ xomo-
POl UHMEPNOIUPYIOWASL KPUBASL NPEOCMABA-
em 100Y10 Kpusyo ¢ 3a0aHHbIMU 2e0MempuHe-
CKUMU XAPAKMEPUCTUKAMU

Kntouesvie cnoga: noepewocms unmepno-
NAUUU, YROPAOOUEHHOE MHOICECMBO MOUEK,
OCUUNNAUUSL, MOHOMOHHOE UIMeHeHue Oug-
Pepenyuanvio-zeomempuneckux xapaxme-
pucmux

1. Introduction

Geometric modeling is one of the tools for investigation
of objects, phenomena and processes. The task of geomet-
ric modeling is to determine properties of an object being
modeled using characteristics of a geometric model. Output
data are geometric images assigned by a set of points. Their
location reflects properties of the examined object. Geo-
metric characteristics of a discretely represented geometric
image (line or surface) can be given at the output points.
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We can obtain output by calculations or measurements at
physical objects.

There are difficulties in modeling discretely presented
curves and surfaces because we know characteristics of
curves at the output points only. It is possible to determine a
character of a change in characteristics between the output
points using additional information about properties of the
object of modeling.

One of the methods of modeling based on discrete sets is
interpolation. The task of interpolation is to restore an un-






