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2. Literature review and problem statement

The first study of the relationship between the growth of 
harmonic functions of the three-dimensional space and the 
behaviour of the coefficients of the expansion of these func-
tions in series by adjointed Legendre polynomials is present-
ed in [3]. By means of the integral Bergman representation 
of a harmonic function in ℝ3 by an entire function of a com-
plex variable and a real parameter the order of the harmonic 
function and the type of the axisymmetric harmonic func-
tion in ℝ3 are expressed in terms of expansion coefficients of 
these functions by the adjointed Legendre polynomials. This 
result is refined and generalized in [4, 5]. In [6], formulae 
are obtained for generalized and lower generalized orders of 
a harmonic function in ℝn in terms of the coefficients of the 
expansion of this function in the Fourier series. The formu-
lae for the order and type and also for generalized and lower 
generalized orders of harmonic functions in ℝn through the 
norm of the gradient at the origin are given in [7, 8], respec-
tively. Paper [9] is devoted to researching the growth of a 
J-universal harmonic function in the space.

In [10], the necessary and sufficient conditions under 
which a harmonic function in the ball of a three-dimensional 
space continues to the entire harmonic one are established. 
Also, the order and type of an entire harmonic function in 
ℝ3 are expressed in terms of an approximation error of the 
continued function by harmonic polynomials. A similar issue 
is studied in [11] for the (p, q) orders and types of harmonic 
function in ℝ3. The results obtained in [10, 11] are general-
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1. Introduction

Harmonic functions, being a natural generalization of 
linear functions of one variable, are in some sense the sim-
plest functions of several variables. At the same time, the 
range of such functions is very rich and varied.

Harmonic functions are closely related to such funda-
mental sections of analysis as the theory of analytic func-
tions, the theory of potential, and differential equations with 
partial derivatives of the elliptic type [1]. Moreover, these 
functions are widely used in mathematical physics [2]. This 
is due to the fact that the potentials of the most important 
vector fields considered in physics are harmonic functions 
and any harmonic function can be considered as the poten-
tial of a certain field.

Often, harmonic functions in space ℝn are given by the 
series in Laplace spherical functions, and in the three-di-
mensional space, in addition, by the series of adjointеd Leg-
endre polynomials. This requires a study of the relationship 
between the growth of these functions and the behaviour of 
the coefficients of such expansions. The need to take into 
account the growth of functions arises in the theory of series, 
differential equations, and approximation.

Therefore, it is important to express the generalized 
growth characteristics of harmonic functions in the space 
ℝn in terms of the uniform norm of spherical Laplace func-
tions that are included in the expansions of such functions in 
series as well as to establish an analog of the classical Borel 
theorem for harmonic functions of the n-dimensional space.
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ized in [12] onto the n-dimensional space. To characterize 
the growth of entire harmonic function in ℝn, generalized 
characteristics introduced in [13] are used.

Article [14] is devoted to the study of uniform approx-
imation of generalized axisymmetric potentials by polyno-
mials. The order and type of potentials are expressed by 
the error of approximation. In [15], approximation of entire 
solutions of the Helmholtz equation by Chebyshev polyno-
mials is studied, and some estimates are given on the growth 
parameters of these solutions in terms of coefficients and 
the approximation error with respect to the sup norm. In 
[16], research continues on the basis of [15]. Paper [17] is 
devoted to the study of generalized and lower generalized 
q-types of solutions of the usual elliptic differential equation 
with partial derivatives. Approximation of entire solutions 
of the Helmholtz equation in Banach spaces B(p, q, m) by 
Chebyshev polynomials is considered in [18]. Expressions 
for the order and type of solutions of some linear differen-
tial equations with partial derivatives in terms of the error 
of axisymmetric harmonic polynomial approximation and 
Lagrange interpolation are obtained in [19]. In [20], slow 
growth and approximation of pseudoanalytic functions on a 
disk are studied.

Consequently, the characteristics of the growth of har-
monic functions of the three-dimensional or n-dimensional 
spaces have been expressed in terms of the errors of approxi-
mation or interpolation of these functions by different poly-
nomials in relation to different norms, as well as through the 
expansion coefficients of harmonic functions into series by 
the adjointed Legendre and Chebyshov polynomials or the 
norm of the gradient at the origin. The issue that is still open 
for studying is the description of the growth of the harmonic 
function of the n-dimensional space by applying the uniform 
norm of Laplace spherical functions in the expansion of this 
harmonic function in a series.

In studying entire functions of one complex variable, the 
important question is the connection between the maximum 
modulus of such functions and the maximum term of their 
power series; in particular, the Borel theorem is known for 
entire functions of finite order in the plane [21]. An analog 
of the classical Borel theorem for harmonic functions of the 
three-dimensional space, which are decomposed in series by 
adjointed Legendre polynomials, is obtained in [5]. There is 
no analog for harmonic functions in the case of the n-dimen-
sional space, which are decomposed into series by Laplace 
spherical functions.

3. The aim and objectives of the study

The aim of the work is to establish an analog of the 
Borel classical theorem for entire harmonic finite-order 
functions in space ℝn and obtain formulae for the most 
general characteristics of the growth of entire harmonic 
functions in the n-dimensional space in terms of the uni-
form norm of Laplace spherical functions in the expansion 
of these functions in series. This will help investigate the 
growth of the harmonic function of the n-dimensional 
space directly by the coefficients of the expansion of this 
function in a series.

To achieve this aim, the following tasks are solved:
– to determine the relation between the maximum terms 

of entire finite-order functions in the plane, the coefficients 
of which satisfy certain conditions;

– to estimate from above the maximum modulus of the 
entire harmonic function in ℝn by a maximum modulus of 
some entire function in the plane whose coefficients of the 
power series are expressed in terms of the uniform norm of 
the Laplace spherical functions;

– to estimate from below the maximum modulus of the 
entire harmonic function in the space ℝn by the maximum 
term of the power series of some entire function in the plane 
whose coefficients of the power series are expressed in terms 
of the uniform norm of the Laplace spherical functions.

4. The relation between the maximum terms of entire 
functions in the plane 

Let the entire function f in the plane be given by a power 
series

( )
∞

=

= ∑
0

.k
k

k

f z c z   (1)

Let us denote through 

( )
≥

µ =
k 0

,f max k
kr c r  

the maximum term of series (1) in the circle }{ ∈ =� : ,z z r  
and through ( )ν ,r f  the largest number of the maximum 
term of this series, which is called the central index.

Theorem 1. Let

( )
∞

=

= ∑1
0

,k
k

k

f z b z  ( )
∞

=

= ∑2
0

k
k k

k

f z d b z

be, the entire functions in the plane of the finite orders ρ1 
and ρ2, respectively, with bk>0, 

( ) ( )≤ ≤
1

,kd h k
h k

 

where h is a non-decreasing positive function. Then there 
exists a constant K>0 such that

( ) ( ) ( )ρµ − µ ≤2 1ln , ln , lnhr f r f Kr

for all r>0 and { }ρ = ρ ρ1 2max , .
Proof. Suppose ( )ν1 ,r  ( )ν2 r  are the central indexes of the 

power series of the functions ( )1 ,f z  ( )2f z , respectively. Then

( )
( )

( )
( )ν ν

ν ν≥1 2

1 2
,r r

r rb r b r

( ) ( )
( )

( ) ( )
( )ν ν

ν ν ν ν≥2 1

2 2 1 1
.r r

r r r rd b r d b r

Let us multiply the first inequality by ( )ν2
.rd  Taking 

into account the conditions imposed on the coefficients 
dk, we obtain

( )
( )( ) ( ) ( )( ) ( )µ

≤ µ ≤ ν µ
ν

1
2 2 1

1

,f
,f ,f .

r
r h r r

h r
  (2)

Since the central index is a positive and non-decreasing 
function, on the basis of the known relation [22],

( ) ( )ν
µ − = ∫0

0

,
ln ,f ln d

r t f
r c t

t
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that takes place for the function f given by (1), we have 

( ) ( )

( ) ( )

  ν
µ ≥ ≥  

≥ ν = ν

∫

∫

0

,1
ln ,f d

d
, , .

er

r

er

r

t f
er t

c t

t
r f r f

t

Consequently, for the functions f1 and f2, we get 

( ) ( )( )ν ≤ µln ,f ,i i ir K er

where i=1, 2, 

=1
0

1
,K

b  
=2

0 0

1
.K

d b  

Taking into account the obtained inequalities and also 
the fact that the function h is non-decreasing, we find from 
inequalities (2) that

( )
( )( )( ) ( )

( )( )( ) ( )

µ
≤ µ ≤

µ

≤ µ µ

1
2

1 1

2 2 1

,f
,f

ln ,f

ln ,f ,f .

r
r

h K er

h K er r   (3)

From the finiteness of the orders ρ1,  ρ2  of functions f1 
and f2, respectively, it follows that there exists a constant 
K>0 such that

( )( ) ρµ ≤ln ,f ,i iK er Kr

where = 1,2,i  { }ρ = ρ ρ1 2max , .  Hence using (3), we get 

( )
( ) ( ) ( ) ( )ρ

ρ

µ
≤ µ ≤ µ1

2 1

,f
,f Kr ,f .

Kr

r
r h r

h

With the logarithm of the resulting inequality, we arrive 
at the assertion of Theorem 1.

Consequence 1. If ( ) ( )= ,xh x o e  → ∞,x  then

( ) ( ) ( )ρµ = µ +2 1ln ,f ln ,f ,r r o r  → ∞.r

Consequence 2. If ( ) α=h x x , α > 0 , then

( ) ( ) ( )µ = µ +2 1ln ,f ln ,f ln ,r r O r  → ∞.r

5. The relationship between the maximum modulus  
of an entire harmonic function in ℝn, n≥3, and  

the maximum term of a series of some entire function  
in the plane 

Let { }= ∈ =� : 1n nS x x  be a unit sphere in ℝn centered 
at the origin, and 

22

2

n

n n
π

ω =
 Γ   

 

is its surface area, where Г denotes a gamma function.
A spherical harmonic or a Laplace spherical function of 

degree k, 

{ },0,1, 2,...k Z+∈ =  

denoted by Y(k), is called a restriction of a homogeneous har-
monic polynomial of degree k on the unit sphere Sn n≥2. [23].

A set of spherical harmonics of degree k can be consid-
ered as a sub-space of the space L2(Sn) of real-valued func-
tions with the scalar product

( ) ( ) ( )1
, d ,

nn S

f g f x g x S= ∫ω

where dS is the element of the surface area on the sphere Sn. If 

( ) ( ){ }γ1 ,...,
k

k kY Y  

is an orthonormal base in this subspace, then 

( ) ( ){ }
∞

γ
=
∪ 1

0

,...,
k

k k

k

Y Y  

will be an orthonormal base in the space L2(Sn). Here

is the quantity of linearly independent spherical harmonics 
of degree k.

Let u be an entire harmonic function in ℝn, that is, the 
harmonic function over the whole space ℝn. Then it expands 
into a Fourier-Laplace series [1] 

( ) ( ) ( )
∞

=

= ∑
0

; ,k k

k

u rx Y x u r  ∈ ,nx S   (4)

where

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )γ γ= + + +1 1 2 2; ... ,
k k

k k k k k k kY x u a Y x a Y x a Y x

( ) ( )( )= , ,k k
j ja u Y  = γ1, ,kj

( )( ), k
ju Y  is the scalar product in L2(Sn).
For n=2, the spherical harmonics are reduced to ordi-

nary trigonometric functions of an angle. For n≥3, they have 
a more complicated structure and are expressed in terms of 
polynomials of a special form.

Let us assume that d2=1 and dn=n–2 at n>2 and 

2
.

2
n −

ν =  

Then

( ) ( ) ( ) ( ) ( )ν+ ν
 =  ω ∫( ) 2

; , d ,
n

k k
k

n n S

k
Y x u r C x y u ry S y

d

where +∈ ,k Z  ∈ ,nx S  ( )⋅ ⋅,  is the scalar product in ℝn, and ν
kC  

denotes the Gegenbauer polynomial of degree k and order ν 
[23], which are determined from the relation

( )
( )

∞
ν

ν+
=

− τ + ν
= + τ

− τ + τ
∑

2

12
1

1
1 2 .

1 2

k
k

k n

k
C t

dt
,

where ≤ 1,t  ≤ τ <0 1.

( )( )2 2 3 !

!( 2)!k

k n k n

k n

+ − + −
γ =

−



Mathematics and cybernetics – applied aspects

7

Let us consider the function

( ) ( )
∈

=,u max ,
mx S

M r u rx  > 0,r

with the help of which we shall measure the growth of an 
entire harmonic function u in the space ℝn, n≥3.

The most commonly used characteristics of the growth 
of the function u are the order ( )ρ u  and the lower order ( ),uλ  
which are determined, respectively, by the relations

( ) ( )( )
→∞

ρ =
____ ln ln ,u
lim ,

lnrr

M r
u

and

( ) ( )( )
→∞

λ =
ln ln ,u

lim ,
lnrr

M r
u

but in the case of 0 ,< ρ < ∞  the type is ( )σ u :

( ) ( )
ρ→∞

σ =
____ ln ,u
lim .

rr

M r
u

The generalization of the order and type produces the 
proximate order ( )ρ r  [24] and the type ( )u∗σ  of the relative-
ly proximate order ( )ρ r , which is determined by the relation

( ) ( )
( )

∗
ρ→∞

σ =
____ ln ,u
lim .

r rr

M r
u

In the case of entire harmonic functions in ℝn of infinite 
and zero orders, we shall use more general scale of growth 
introduced in [13].

Let the function γ be defined and differentiable on the 
interval [ )+∞;a  at some a≥0 strictly monotonically increas-
ing, with → ∞  going to ∞. According to [13], it belongs to 
the class L0, if for any real function ψ  such that ( )ψ → 0t  as 

→ ∞,t  the following equality holds 

( )( )
( )

1
lim 1,
t

t t

t→∞

 γ + ψ  =
γ

and it belongs to the class Λ if for all c, < < ∞0 ,c

( )
( )→∞

γ
=

γ
lim 1.
t

ct

t

We note that Λ ⊂ 0,L  but according to the example of the 
function ,mt  m>0, Λ ≠ 0.L

Using the functions α and β of the classes L0 and Λ, by 
analogy with [13], we introduce the generalized and lower 
generalized orders of the entire harmonic function u in ℝn 
by the equalities 

( ) ( )( )
( )

____ ln ,u
lim
r

M r
u

rαβ →∞

α
ρ =

β

and

( )( )
( )αβ

→∞

α
λ =

β
ln ,u

(u) lim .
r

M r

r

We note that from these growth characteristics, with the 
appropriate choice of the functions α and β, we can obtain 

all the above-mentioned characteristics of the growth of the 
entire harmonic function in ℝn.

We put 

( )
( )

( )ν ∈

ν
=

+ ν
( )2 ! 1

max ; .
2 2 n

k
k

x S
B Y x u

k
  (5)

Theorem 2. If u is an entire harmonic function in the 
space ℝn, n≥3, given by series (4), then the function

( )
∞

=

= ∑
0

,k
k

k

g z B z   (6)

is entire and in the case of finiteness of the order of the func-
tion u, the true equality is

( ) ( ) ( )= µ +ln , ln ,g ln ,M r u r O r  → ∞.r   (7)

Theorem 2 is an analog of the classical Borel theorem 
[21], which establishes a connection between the maximum 
modulus of the entire finite-order function in the plane and 
the maximum term of its power series.

To prove Theorem 2, we shall use the following lemma.
Lemma 1. For the entire harmonic function u in ℝn, n≥3, 

given by series (4), the following inequalities holds

( ) −≤ , k
kB M r u r   (8)

for all +∈k Z  and r>0.
The proof of this lemma is given in [5]. We note that 

inequalities (8) are analogous to Cauchy’s inequalities for 
entire functions of one complex variable.

Proof of Theorem 2. The fact that the function g defined 
by (6) is entire follows directly from Lemma 1. Indeed,  
 
choosing >

ε0

2
,r  we obtain

( )
≤ < = ε

ε ε

0, 2
2 2

k
k

k

M r u
B

for all k≥k0, that is

→∞
=lim 0,k

kk
B

which means that the function g is entire.
Let us prove relation (7). From the decomposition of (4) 

and the definition of the numbers Bk, it follows that

( ) ( ) ( ) ( )( )

0 0

2
, max ; 2 .

2 !m

k k k
k

Sk k

M r u Y u r k B r
∞ ∞

ν

ξ∈= =

≤ ξ = + ν
ν∑ ∑   (9)

Let us consider the function

( ) ( ) ( )
∞

ν

=

= + ν
ν∑1

0

2
2 .

2 !
k

k
k

g z k B z   (10)

Obviously, function g1 is entire and has a finite order.
Indeed, it follows from Lemma 1 that

( ) ( )µ ≤ln ,g ln , ,r M r u   (11)

where we obtain ( ) ( )ρ ≤ ρg u .  The orders of the functions g 
and g1 are equal on the basis of the Hadamard formula [24] 
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for finding the order of the entire function of one complex 
variable in terms of the coefficients of its power series. 
Therefore, ( ) ( )ρ £ ρ1g u ,  and since the order of the function 
u is finite, the order of function g1 is finite, too.

Then from inequality (9) and the classical Borel theorem 
[21], it follows that 

( ) ( ) ( ) ( )£ = µ +1 1ln , ln ,g ln ,g ln ,M r u M r r O r  → ∞.r

Taking into account the consequence of 2, we find

( ) ( ) ( )£ µ +ln , ln ,g ln ,M r u r O r  → ∞.r   (12)

By combining inequalities (11) and (12), we arrive at the 
statement of Theorem 2.

Consequence 3. If the entire harmonic function in ℝn has 
the order ρ,  < ρ < ∞0 ,  then its type ∗σ  with respect to the 
proximate order ( )ρ r  is determined by the equality

( ) ( )ρ∗

→∞
σ ρ = ψ

___1
lim ,k

kk
e k B    (13)

where ( )= ψr t  denotes a function inverse to ( )ρ= .rt r
Proof. It follows from Theorem 2 and the classical Borel 

theorem [21] that

( ) ( )( )

( )( ) ( )( ) ( )

→∞

→∞ →∞

ρ = =

µ
= = = ρ

____

____ ____

ln ln ,u
lim

lnr
ln ln ,g ln ln ,g

lim lim .
lnr lnr

r

r r

M r
u

r M r
g

By analogy, we have

( )
( )

( )
( )ρ ρ→∞ →∞

=
____ ____ln ,u ln ,g
lim lim .

r rr rr r

M r M r

From this, we obtain that the proximate order ( )ρ r  of 
the function u is a proximate order of the entire function g in 
plane and vice versa. It is also obvious that the types of the 
relatively well-defined order ( )ρ r  of the functions u and g 
are the same. Therefore, for the function g, using the formula 
[24] to determine the type of the relatively proximate order 
through the coefficients of its expansion into a power series, 
we obtain equality (13).

If ( ) ρψ =
1

,t t  then relation (13) produces

( ) ρ ρ

→∞
σρ =

1___
1

lim .k
kk

e k B   (14)

Formula (14) defines the type σ  of the entire harmonic 
function u in ℝn.

6. Generalized and lower generalized orders of the entire 
harmonic function in ℝn

Let us assume that

( ) ( )( )−= β α1, ,F t c c t   (15)

where −β 1  is a function inverse to β.
Theorem 3. Let u be a harmonic function in ℝn, n≥3, with 

Bk defined by relation (5). If for all c, < < ∞0 ,c  one of the 
conditions is satisfied:

а) 
( ) ( )α β ∈Λ =

ln ,
, , 1 ,

ln

d F t c
O

d t
 → ∞;t

b) 
( )

→∞
α β ∈ =0 ln ,

, ,lim ,
lnt

d F t c
L p

d t
 < < ∞0 ,p

where the function F(t, c)  is determined by relation (15), 
then the generalized order ( )αβρ u  of the entire harmonic 
function u in ℝn is determined by the equation

( ) ( )
( )αβ −→∞

α
ρ =

β

___

1/
lim ,

p kk
k

pk
u

e B

and, in the case, condition (a) is satisfied, the number p is 
considered to be an arbitrary positive one.

Proof of Theorem 3. Let the entire functions g and g1 of 
the complex variable z be given respectively by relations (6) 
and (10). Then on the basis of inequalities (8) and (9), we 
obtain

( ) ( ) ( )µ £ £ 1,g ; ,g .r M r u M r   (16)

From here,

( ) ( ) ( )αβ αβ αβρ £ ρ £ ρ 1 .g u g   (17)

Using the known formula [13] that expresses the gener-
alized order of the entire function of one complex variable in 
terms of the coefficients of its power series, we have

( ) ( )
( )αβ −→∞

α
ρ =

β

___

1/
lim ,

p kk
k

pk
g

e B

( ) ( )
( )( )( )αβ −→∞

α
ρ =

β +

___

1 1/
lim .

1 1 p kk
k

pk
g

o e B

Since, under the condition of the theorem 3, the function 
β  belongs to the class L0 or Λ, then 

( ) ( )αβ αβρ = ρ 1 ,g g

which together with (17) completes the proof of Theorem 3.
We note that from Theorem 3 for the entire harmonic 

function u in ℝn we can obtain the following:
1) at ( ) ( )α = β = lnt t t , the formula for the order ρ(u):

( ) −→∞
ρ =

___

1

ln
lim ;

lnBk
k

k k
u

2) at ( )α = ,t t  ( ) ρβ = ,t t  =
ρ
1

,p  where ρ  is the order of  
 
the function u, formula (14) for the type ( )σ u ;

3) at ( )α = ,t t  ( ) ( )ρβ = ,tt t  where ( )ρ t  is the proximate 
order of the function u, formula (13) for the type ( )∗σ u  rel-
atively to the proximate order ( )ρ .t

Theorem 3 is complemented by the following theorem.
Theorem 4. Let u be an entire harmonic function in ℝn, 

³ 3,n  with Bk, F(t, c) determined by relations (5) and (15), 
respectively. If β ∈ 0,L  and α  is such that ( )α ∈ 0,te L  and for 
all c, < < ∞0 ,c  the following condition is satisfied

( ) ( ) 
=  

ln ,
ln ln ,

ln

d F t c
o t

d t
 → ∞,t
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then the generalized order ( )αβρ u  of the entire harmonic 
function u in ℝn is determined by the equality

( ) ( )
( )αβ −→∞

α
ρ =

β

___

1/
lim .

kk
k

k
u

B

We note that if ( )α ∈ 0,te L  then ( )α ∈Λ.t  However, as 
is shown by the example of the function ( )α = ln ,tt e  the 
inverse statement is not valid.

In the case of entire harmonic functions of zero order, a 
more precise growth characteristic is given by the following 
theorem.

Theorem 5. Let u be an entire harmonic function in ℝn, 
n≥3, with Bk defined by relation (2), α ∈Λ,  

( ) ( )( )−Φ = α α1,t c c t  

and for all c, < < ∞0 ,c  at sufficiently large t, the true in-
equality is

( ) ( )ΦΦ
£ £ 2 ,

1

,
0 ,A t cd t c

A e
dt

where A1 and A2 are such constants that 0<A1<∞ and 
0<A2<∞. Then

( )( )
( )

( )
→∞ →∞

−

 
 α α =  α    α       

___ ___

1

ln ln , ln
lim max 1,lim .

ln ln 1
ln lnB

k k

k

M r u k

r
k

By the function α satisfying the conditions of Theorem 5, 
it is possible to choose 

( )α = ln ,jx x  

where ³ 1,j  а =1ln ln ,x x  ( )−= 1ln ln lnj jx x  means a j-th iter-
ation of the logarithm.

Theorems 4 and 5 directly follow from inequality (16) 
and similar results for the entire functions of one complex 
variable [13].

Theorem 6. Let u be an entire harmonic function in ℝn, 
n≥3, with Bk defined by relations (5) while α and β are func-
tions of the classes L0, Λ, 0<p<∞. Then

( )
( )αβ −

→∞

α
λ ³

β 1/
( ) lim .

p k
k k

pk
u

e B
  (18)

If, moreover, the ratio 
+1

k

k

B
B

 is a non-decreasing function  
 
of k and one of the conditions – (a) or (b) – of Theorem 3 is 
satisfied, then inequality (18) transforms into the equality.

The proof of this theorem is similar to the proof of The-
orem 3.

Consequence 4. Let u be an entire harmonic function in 
ℝn, n≥3. Then

−
→∞

λ ³ 1

ln
( ) lim .

lnBk k

k k
u

The inequality becomes an equality when the ratio 
+1

k

k

B
B   

 
is a non-decreasing function of k.

Consequence 4 is derived from Theorem 6 if to choose 
that ( ) ( )α = β = ln .t t t

7. Discussion of the results of studying the growth of 
harmonic functions in the space ℝn

The study has determined a relation between the max-
imum terms of entire functions of finite order in the plane 
given by power series

∞

=
∑

0

,k
k

k

b z  
∞

=
∑

0

,k
k k

k

d b z

the coefficients of which satisfy the conditions

> 0,kb  ( ) ( )£ £
1

,kd h k
h k

where h is a non-decreasing positive function.
The result is the estimation of the maximum modulus of 

the entire harmonic function of several variables through 
the maximum modulus of some entire function of a complex 
variable in which coefficients of the power series are some-
what connected with the coefficients of the expansion of the 
harmonic function in a series by Laplace spherical functions. 
This finding has made it possible to obtain an analog of the 
classical Borel theorem for harmonic functions of finite order 
in the space ℝn.

Besides, the research has helped determine the most 
general characteristics of the growth of the harmonic func-
tion in ℝn in terms of the uniform norm of Laplace spherical 
functions in the expansion of this function in a series. This 
allows estimating the growth of a harmonic function direct-
ly by the behaviour of the coefficients of its expansion in a 
series, which is important in the theory of series, differential 
equations, and approximation.

The results obtained in the case of n=3 can be used in 
geodesy, where it is natural to have Laplace series, in partic-
ular for describing the gravitational field of Earth, the form 
of Earth, relief or other values that are given in the form of a 
map on spherical surfaces.

Other areas in which further research can be carried 
out are the use of norms other than uniform, the estab-
lishment of formulae for the generalized characteristics of 
the growth of harmonic functions for the case when the 
space is exhausted by some complete regions, and also the 
improvement of the condition of finiteness of order in the 
analog of the Borel theorem for harmonic functions in an 
n- dimensional space.

7. Conclusions

1. We obtain a relation between the maximum terms of 
entire finite-order functions in the plane given by power 
series whose coefficients are somewhat connected. This 
has made it possible to determine how the logarithms of 
the maximum terms of entire functions in the plane differ, 
depending on the coefficients of the expansion of these 
functions in the power series; the finding was used to prove 
the analog of the classical Borel theorem for entire harmonic 
finite-order functions in ℝn.

2. An estimate for the maximum modulus of an entire 
harmonic function of several variables through the maxi-
mum modulus of some entire function of one complex vari-
able has been obtained. This has made it possible to prove 
the analog of the classical Borel theorem for entire harmonic 
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functions of finite order in ℝn and express the generalized 
characteristics of the growth of harmonic functions in the 
space in terms of the uniform norm of Laplace spherical 
functions in the expansion of harmonic functions in series.

3. An estimate has been made for the maximum mod-
ulus of the entire harmonic function of several variables 

through the maximum term of some entire function of 
one complex variable. This made it possible to express 
the generalized characteristics of the growth of harmonic 
functions in the space through the uniform norm of La-
place spherical functions in the expansion of harmonic 
functions in series.
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