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1. Introduction

2. Literature review and problem statement

Harmonic functions, being a natural generalization of
linear functions of one variable, are in some sense the sim-
plest functions of several variables. At the same time, the
range of such functions is very rich and varied.

Harmonic functions are closely related to such funda-
mental sections of analysis as the theory of analytic func-
tions, the theory of potential, and differential equations with
partial derivatives of the elliptic type [1]. Moreover, these
functions are widely used in mathematical physics [2]. This
is due to the fact that the potentials of the most important
vector fields considered in physics are harmonic functions
and any harmonic function can be considered as the poten-
tial of a certain field.

Often, harmonic functions in space R™ are given by the
series in Laplace spherical functions, and in the three-di-
mensional space, in addition, by the series of adjointed Leg-
endre polynomials. This requires a study of the relationship
between the growth of these functions and the behaviour of
the coefficients of such expansions. The need to take into
account the growth of functions arises in the theory of series,
differential equations, and approximation.

Therefore, it is important to express the generalized
growth characteristics of harmonic functions in the space
R" in terms of the uniform norm of spherical Laplace func-
tions that are included in the expansions of such functions in
series as well as to establish an analog of the classical Borel
theorem for harmonic functions of the n-dimensional space.

The first study of the relationship between the growth of
harmonic functions of the three-dimensional space and the
behaviour of the coefficients of the expansion of these func-
tions in series by adjointed Legendre polynomials is present-
ed in [3]. By means of the integral Bergman representation
of a harmonic function in R? by an entire function of a com-
plex variable and a real parameter the order of the harmonic
function and the type of the axisymmetric harmonic func-
tion in R3are expressed in terms of expansion coefficients of
these functions by the adjointed Legendre polynomials. This
result is refined and generalized in [4, 5]. In [6], formulae
are obtained for generalized and lower generalized orders of
a harmonic function in R™ in terms of the coefficients of the
expansion of this function in the Fourier series. The formu-
lae for the order and type and also for generalized and lower
generalized orders of harmonic functions in R" through the
norm of the gradient at the origin are given in [7, 8], respec-
tively. Paper [9] is devoted to researching the growth of a
J-universal harmonic function in the space.

In [10], the necessary and sufficient conditions under
which a harmonic function in the ball of a three-dimensional
space continues to the entire harmonic one are established.
Also, the order and type of an entire harmonic function in
R3 are expressed in terms of an approximation error of the
continued function by harmonic polynomials. A similar issue
is studied in [11] for the (p, ¢) orders and types of harmonic
function in R3. The results obtained in [10, 11] are general-




ized in [12] onto the n-dimensional space. To characterize
the growth of entire harmonic function in R", generalized
characteristics introduced in [13] are used.

Article [14] is devoted to the study of uniform approx-
imation of generalized axisymmetric potentials by polyno-
mials. The order and type of potentials are expressed by
the error of approximation. In [15], approximation of entire
solutions of the Helmholtz equation by Chebyshev polyno-
mials is studied, and some estimates are given on the growth
parameters of these solutions in terms of coefficients and
the approximation error with respect to the sup norm. In
[16], research continues on the basis of [15]. Paper [17] is
devoted to the study of generalized and lower generalized
g-types of solutions of the usual elliptic differential equation
with partial derivatives. Approximation of entire solutions
of the Helmholtz equation in Banach spaces B(p, g, m) by
Chebyshev polynomials is considered in [18]. Expressions
for the order and type of solutions of some linear differen-
tial equations with partial derivatives in terms of the error
of axisymmetric harmonic polynomial approximation and
Lagrange interpolation are obtained in [19]. In [20], slow
growth and approximation of pseudoanalytic functions on a
disk are studied.

Consequently, the characteristics of the growth of har-
monic functions of the three-dimensional or n-dimensional
spaces have been expressed in terms of the errors of approxi-
mation or interpolation of these functions by different poly-
nomials in relation to different norms, as well as through the
expansion coefficients of harmonic functions into series by
the adjointed Legendre and Chebyshov polynomials or the
norm of the gradient at the origin. The issue that is still open
for studying is the description of the growth of the harmonic
function of the n-dimensional space by applying the uniform
norm of Laplace spherical functions in the expansion of this
harmonic function in a series.

In studying entire functions of one complex variable, the
important question is the connection between the maximum
modulus of such functions and the maximum term of their
power series; in particular, the Borel theorem is known for
entire functions of finite order in the plane [21]. An analog
of the classical Borel theorem for harmonic functions of the
three-dimensional space, which are decomposed in series by
adjointed Legendre polynomials, is obtained in [5]. There is
no analog for harmonic functions in the case of the n-dimen-
sional space, which are decomposed into series by Laplace
spherical functions.

3. The aim and objectives of the study

The aim of the work is to establish an analog of the
Borel classical theorem for entire harmonic finite-order
functions in space R" and obtain formulae for the most
general characteristics of the growth of entire harmonic
functions in the n-dimensional space in terms of the uni-
form norm of Laplace spherical functions in the expansion
of these functions in series. This will help investigate the
growth of the harmonic function of the n-dimensional
space directly by the coefficients of the expansion of this
function in a series.

To achieve this aim, the following tasks are solved:

— to determine the relation between the maximum terms
of entire finite-order functions in the plane, the coefficients
of which satisfy certain conditions;

— to estimate from above the maximum modulus of the
entire harmonic function in R" by a maximum modulus of
some entire function in the plane whose coefficients of the
power series are expressed in terms of the uniform norm of
the Laplace spherical functions;

— to estimate from below the maximum modulus of the
entire harmonic function in the space R" by the maximum
term of the power series of some entire function in the plane
whose coefficients of the power series are expressed in terms
of the uniform norm of the Laplace spherical functions.

4. The relation between the maximum terms of entire
functions in the plane

Let the entire function /in the plane be given by a power
series

f(z)zickzk. (1

k=0

Let us denote through
u(rf)=max]e,|r*

the maximum term of series (1) in the circle {hze(C:|z| = r},

and through v(r,f) the largest number of the maximum

term of this series, which is called the central index.
Theorem 1. Let

h (Z): Zbkzk, 1 (Z) = gdkbkzk

k=0

be, the entire functions in the plane of the finite orders p,
and p,, respectively, with 5,>0,

1

msdksh(k),

where % is a non-decreasing positive function. Then there
exists a constant K>0 such that

|1nu(r,f2)—lnu(r,f1)| < lnh(Kr")

for all 7>0 and p=max{p,,p,}.
Proof. Suppose v, (r), v, (r) are the central indexes of the
power series of the functions f,(z), f,(z), respectively. Then

) ()
by ™ 2 by "

vy (r) vi(r)
i by 2, ) by 1™

Let us multiply the first inequality by d,0 Taking
into account the conditions imposed on the coefficients
dy, we obtain

7u(r,f1)< rf,)<h(v, (r))u(r
i, (7))—u( £)<A(v, ()n(r.f). @)

Since the central index is a positive and non-decreasing
function, on the basis of the known relation [22],

lnu(r,f)—ln|co|=j@dt
0



that takes place for the function f given by (1), we have

[ erf]ZTMdtZ
|0| r t

de
>v(r,f) j —=
Consequently, for the functions /i and f5, we get
v,(r)<In(K; u(er.t)),
where i=1, 2,

K1=bi, K=
0 070

Taking into account the obtained inequalities and also
the fact that the function % is non-decreasing, we find from
inequalities (2) that

w(r.f)

h(ln(K1 p.(er,ﬂ))) Hird)<
< h(ln(K2 u(er,fz)))u(r,ﬁ). 3)

IN

From the finiteness of the orders p,, p, of functions f;
and f5, respectively, it follows that there exists a constant
K>0 such that

ln(Ki u(er,fl.))SKr",

where i=1,2, p=max{p,,p,}. Hence using (3), we get

w(r.f)

h(Krp)

Su(r,fQ)sh(Kr")u(r,fl).

With the logarithm of the resulting inequality, we arrive
at the assertion of Theorem 1.
Consequence 1.1f h(x)= o(e’"), X — oo, then

Inp(rf,)= lnu(r,f1)+o(r"), 7 — oo,

o

Consequence 2. 1f h(x)=x", >0, then

Inp(rf,)=lnp(rf)+0(In7), r—eo.

5. The relationship between the maximum modulus
of an entire harmonic function in R", #>3, and
the maximum term of a series of some entire function
in the plane

Let "= {x eR":|x|= 1} be a unit sphere in R" centered
at the origin, and

n
2m?

is its surface area, where I' denotes a gamma function.
A spherical harmonic or a Laplace spherical function of
degree &,

kez,={0,1,2.},

denoted by Y® is called a restriction of a homogeneous har-
monic polynomial of degree & on the unit sphere S" n>2.[23].

A set of spherical harmonics of degree k& can be consid-
ered as a sub-space of the space L?(S") of real-valued func-
tions with the scalar product

(.8)=— 1 J(x)g(x)ds

where dS is the element of the surface area on the sphere S". If

{Y;(k),...,Y(k)}

Yk

is an orthonormal base in this subspace, then

Ty k
Upe,..r)
0
will be an orthonormal base in the space L?(S"). Here

B (2k+n—2)(k+n—3)!
T -2

is the quantity of linearly independent spherical harmonics
of degree k.

Let u be an entire harmonic function in R", that is, the
harmonic function over the whole space R™. Then it expands
into a Fourier-Laplace series [1]

u(rx):iY(k)(x;u) r xeS", %)

k=0

where

Y(k)(x;u):afk)lj(k)(x)+a£k)Y( )( x)+.. +aPy ® (x),

aﬁk) = (u’Yf(k))’ 7=,

(u,Yj(k) is the scalar product in L?(S").

For n=2, the spherical harmonics are reduced to ordi-
nary trigonometric functions of an angle. For n>3, they have
a more complicated structure and are expressed in terms of
polynomials of a special form.

Let us assume that d»=1 and d,=n—2 at n>2 and

n-—2
v= .
2
Then
2(k+v
Y ()t :%fcz [(x,y)]u(ry)dS(y),
n—"n g"

where ke Z,, xeS", (-) is the scalar product in R", and C}
denotes the Gegenbauer polynomial of degree & and order v
[23], which are determined from the relation

k+v
=1+2 —CV
(1 21t +1° )V+1 Z d,

1-12

where [¢]<1, 0<t<1.



Let us consider the function

M(r,u)= max|u |, r>0,

xes”

with the help of which we shall measure the growth of an
entire harmonic function u in the space R®, n>3.

The most commonly used characteristics of the growth
of the function u are the order p(u) and the lower order A(u),
which are determined, respectively, by the relations

71n InM(r,u
roe or
and
In(In M (7,
M) = lim (M (1)
P Inr

but in the case of 0<p<es, the type is o(u):

o{u)= HlnM(ru)

r—eo T

The generalization of the order and type produces the
proximate order p(7) [24] and the type 6" (u) of the relative-
ly proximate order p(r), which is determined by the relation

o o))

r—eo r

In the case of entire harmonic functions in R" of infinite
and zero orders, we shall use more general scale of growth
introduced in [13].

Let the function y be defined and differentiable on the
interval [a;+e) at some a>0 strictly monotonically increas-
ing, with — oo going to . According to [13], it belongs to
the class L, if for any real function y such that y(¢)—0 as
t — oo, the following equality holds

v[(t+w(e)]

lim——————==1,
t—oeo 'Y(t)

and it belongs to the class A if for all ¢, 0 < ¢ <oo,

We note that A c I, but according to the example of the
function ¢", m>0, A= L.

Using the functions o and B of the classes L? and A, by
analogy with [13], we introduce the generalized and lower
generalized orders of the entire harmonic function # in R"
by the equalities

Hoc(lnM( ))
Paﬁ( u)= IHM B(r)
and
Aoy = lim oc(lnM(r,u))

- B(r)

We note that from these growth characteristics, with the
appropriate choice of the functions a and B, we can obtain

all the above-mentioned characteristics of the growth of the
entire harmonic function in R".
We put

|
B,= (zv)'#maxw(’“) xu)| 5)
2 (k+2v)" a=

Theorem 2. If u is an entire harmonic function in the
space R", n>3, given by series (4), then the function

Bkzkv (6)

is entire and in the case of finiteness of the order of the func-
tion u, the true equality is

InM(r,u)=Inp(r,g)+0(In7), r— . 7

Theorem 2 is an analog of the classical Borel theorem
[21], which establishes a connection between the maximum
modulus of the entire finite-order function in the plane and
the maximum term of its power series.

To prove Theorem 2, we shall use the following lemma.

Lemma 1. For the entire harmonic function » in R, 7n>3,
given by series (4), the following inequalities holds

B,<M(ru)r™ ®

forall keZ, and r>0.

The proof of this lemma is given in [5]. We note that
inequalities (8) are analogous to Cauchy’s inequalities for
entire functions of one complex variable.

Proof of Theorem 2. The fact that the function g defined
by (6) is entire follows directly from Lemma 1. Indeed,

. 2 .
choosing r,>—, we obtain
€

\/7 M (r,u) KM ro,u

/—\

=&

m\w

<2
2
€

for all 2>k, that is
%im 4B, =0,
which means that the function g is entire.

Let us prove relation (7). From the decomposition of (4)
and the definition of the numbers By, it follows that

(r,u) 2max|Y" Eu |r —2

70 55"

k+2v Byt (9)

Let us consider the function

(k+2v)' B,2". 10)

=\ (2v)!

Obviously, function gj is entire and has a finite order.
Indeed, it follows from Lemma 1 that

Inp(r,g)<InM(r,u), (11)

where we obtain p(g)<p(u). The orders of the functions g
and g are equal on the basis of the Hadamard formula [24]



for finding the order of the entire function of one complex
variable in terms of the coefficients of its power series.
Therefore, p(g,)<p(u), and since the order of the function
u is finite, the order of function gy is finite, too.

Then from inequality (9) and the classical Borel theorem
[21], it follows that

InM(r,u)<InM(r,g,)=Inp(r,g,)+0(Inr), r—ce.
Taking into account the consequence of 2, we find

InM(r,u)<Inp(r,g)+0(Inr), r— . (12)
By combining inequalities (11) and (12), we arrive at the
statement of Theorem 2.
Consequence 3. If the entire harmonic function in R has
the order p, 0<p<eo, then its type ¢ with respect to the
proximate order p(7) is determined by the equality

(o'pe)” = lim (k)§B, (13)

where 7=(¢) denotes a function inverse to ¢=7r"".
Proof. It follows from Theorem 2 and the classical Borel
theorem [21] that

i ln(ln M(r,u))

Pl =l ==

_ H ln(lnu(r,g)) _ B ln(lnM(ryg)) _ p(g)
roe nr o nr

By analogy, we have

= In M (r,u) i lnM(r,g).

r—eo rp(r) roe rp(r)

From this, we obtain that the proximate order p(r) of
the function u is a proximate order of the entire function g in
plane and vice versa. It is also obvious that the types of the
relatively well-defined order p(r) of the functions u and g
are the same. Therefore, for the function g, using the formula
[24] to determine the type of the relatively proximate order
through the coefficients of its expansion into a power series,
we obtain equillity (13).

If w(t)= ¢°, then relation (13) produces
1
/ T 1p
(000" ~ 4.

Formula (14) defines the type o of the entire harmonic
function u in R™.

(14)

6. Generalized and lower generalized orders of the entire
harmonic function in R"

Let us assume that

F(t,c)=p" (C(x(t)),

where B is a function inverse to P.

Theorem 3. Let u be a harmonic function in R", >3, with
By, defined by relation (5). If for all ¢, 0<c<oo, one of the
conditions is satisfied:

(15)

dInF(t,c)

A -o( o

a) a,PeA, T O(1), t—es;

b) oc,BeLO,limM:p, 0< p<oo
== dlInt

where the function F(t, ¢) is determined by relation (15),
then the generalized order p,,(u) of the entire harmonic
function u in R" is determined by the equation

— o(pk)
Pag (1) = E}E;}W’

and, in the case, condition (a) is satisfied, the number p is
considered to be an arbitrary positive one.

Proof of Theorem 3. Let the entire functions g and g; of
the complex variable z be given respectively by relations (6)
and (10). Then on the basis of inequalities (8) and (9), we
obtain

w(rg)<M(ru)<M(r.sg,). (16)
From here,
Pop (8)<Pus (1) <pys(&))- (17)

Using the known formula [13] that expresses the gener-
alized order of the entire function of one complex variable in
terms of the coefficients of its power series, we have

Since, under the condition of the theorem 3, the function
B belongs to the class L? or A, then

Pap (g) =Pap (g1),

which together with (17) completes the proof of Theorem 3.
We note that from Theorem 3 for the entire harmonic
function » in R" we can obtain the following:
1) at a(¢)=B(¢)=Int, the formula for the order p(u):

P(“)ﬂﬂ{}@’

2) at oc(t)zt, B(t)z ¢, pzl, where p is the order of
p

the function u, formula (14) for the type o(u);

3)at a(t)=t, B(t)=t"", where p(¢) is the proximate
order of the function u, formula (13) for the type ¢ (u) rel-
atively to the proximate order p(¢).

Theorem 3 is complemented by the following theorem.

Theorem 4. Let u be an entire harmonic function in R",
n>3, with By, F(t, ¢) determined by relations (5) and (15),
respectively. If BeI’, and o is such that oc(e’ el’, and for
all ¢, 0 <c< oo, the following condition is satisfied

dInF(t,c))
ln(‘ilntJ— O(lnt), t—> oo,



then the generalized order p,,(u) of the entire harmonic
function « in R" is determined by the equality

u)= EM
Paﬁ( ) L‘”B(B,;W)‘

We note that if (x(e‘)eLO, then oc(t)eA. However, as
is shown by the example of the function a(¢)=e™, the
inverse statement is not valid.

In the case of entire harmonic functions of zero order, a
more precise growth characteristic is given by the following
theorem.

Theorem 5. Let u be an entire harmonic function in R",
n>3, with By, defined by relation (2), a.e€ A,

o(t,c)=a" (coc(t))

and for all ¢, 0<c<eo, at sufficiently large ¢, the true in-
equality is

dq)(t,c) Ay(t.0)
0<—=< 2
i e

)

where A; and A, are such constants that 0<A;<co and
0<Ay<oo. Then

—oflnlnM -
imia(n " (nu)):max 1,lim o(Ink)

o (x(lnlnr) . a[ln(lln3k1)] |
k

By the function a satisfying the conditions of Theorem 5,
it is possible to choose

ofx)=In;x,

where j>1,aIn, x=Inx, lnj x= ln(lnH x) means a j-th iter-
ation of the logarithm.

Theorems 4 and 5 directly follow from inequality (16)
and similar results for the entire functions of one complex
variable [13].

Theorem 6. Let u be an entire harmonic function in R",
n>3, with By, defined by relations (5) while a and B are func-
tions of the classes L%, A, 0<p<co. Then

Dy (1) lim— P8)

s ) )

B
. T . .
If, moreover, the ratio —— is a non-decreasing function
k+1

of k£ and one of the conditions — (a) or (b) — of Theorem 3 is
satisfied, then inequality (18) transforms into the equality.

The proof of this theorem is similar to the proof of The-
orem 3.

Consequence 4. Let u be an entire harmonic function in
R"™ n>3. Then

M) > lim 212 f .

koo DBk

B

k+1

The inequality becomes an equality when the ratio

is a non-decreasing function of %.
Consequence 4 is derived from Theorem 6 if to choose

that a(¢)=B(¢)=1Inc.

7. Discussion of the results of studying the growth of
harmonic functions in the space R"

The study has determined a relation between the max-
imum terms of entire functions of finite order in the plane
given by power series

ozt Sdbz,
5=0

k=0

the coefficients of which satisfy the conditions

be>0, L _<d, <h(k)

h(k)

where £ is a non-decreasing positive function.

The result is the estimation of the maximum modulus of
the entire harmonic function of several variables through
the maximum modulus of some entire function of a complex
variable in which coefficients of the power series are some-
what connected with the coefficients of the expansion of the
harmonic function in a series by Laplace spherical functions.
This finding has made it possible to obtain an analog of the
classical Borel theorem for harmonic functions of finite order
in the space R".

Besides, the research has helped determine the most
general characteristics of the growth of the harmonic func-
tion in R™ in terms of the uniform norm of Laplace spherical
functions in the expansion of this function in a series. This
allows estimating the growth of a harmonic function direct-
ly by the behaviour of the coefficients of its expansion in a
series, which is important in the theory of series, differential
equations, and approximation.

The results obtained in the case of n=3 can be used in
geodesy, where it is natural to have Laplace series, in partic-
ular for describing the gravitational field of Earth, the form
of Earth, relief or other values that are given in the form of a
map on spherical surfaces.

Other areas in which further research can be carried
out are the use of norms other than uniform, the estab-
lishment of formulae for the generalized characteristics of
the growth of harmonic functions for the case when the
space is exhausted by some complete regions, and also the
improvement of the condition of finiteness of order in the
analog of the Borel theorem for harmonic functions in an
n- dimensional space.

7. Conclusions

1. We obtain a relation between the maximum terms of
entire finite-order functions in the plane given by power
series whose coefficients are somewhat connected. This
has made it possible to determine how the logarithms of
the maximum terms of entire functions in the plane differ,
depending on the coefficients of the expansion of these
functions in the power series; the finding was used to prove
the analog of the classical Borel theorem for entire harmonic
finite-order functions in R

2. An estimate for the maximum modulus of an entire
harmonic function of several variables through the maxi-
mum modulus of some entire function of one complex vari-
able has been obtained. This has made it possible to prove
the analog of the classical Borel theorem for entire harmonic



functions of finite order in R™ and express the generalized
characteristics of the growth of harmonic functions in the
space in terms of the uniform norm of Laplace spherical
functions in the expansion of harmonic functions in series.
3. An estimate has been made for the maximum mod-
ulus of the entire harmonic function of several variables

through the maximum term of some entire function of
one complex variable. This made it possible to express
the generalized characteristics of the growth of harmonic
functions in the space through the uniform norm of La-
place spherical functions in the expansion of harmonic
functions in series.
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