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1. Introduction

Geometric modeling is one of the tools for investigation 
of objects, phenomena and processes. The task of geomet-
ric modeling is to determine properties of an object being 
modeled using characteristics of a geometric model. Output 
data are geometric images assigned by a set of points. Their 
location reflects properties of the examined object. Geo-
metric characteristics of a discretely represented geometric 
image (line or surface) can be given at the output points. 

We can obtain output by calculations or measurements at 
physical objects.

There are difficulties in modeling discretely presented 
curves and surfaces because we know characteristics of 
curves at the output points only. It is possible to determine a 
character of a change in characteristics between the output 
points using additional information about properties of the 
object of modeling.

One of the methods of modeling based on discrete sets is 
interpolation. The task of interpolation is to restore an un-
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Запропоновано метод формування 
одновимірних обводів виходячи з заданої 
точності інтерполяції. Максимальна абсо-
лютна похибка інтерполяції визначається 
з урахуванням геометричних властивос-
тей вихідної кривої лінії. Розглядається 
два різновиди похибки. По-перше, похиб-
ка, з якою сформована дискретно пред-
ставлена крива, що інтерполює вихідний 
точковий ряд, представляє вихідну криву. 
По-друге, похибка, з якою інтерполююча 
крива представляє будь-яку криву з зада-
ними геометричними характеристиками
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Предлагается метод формирования 
одномерных обводов исходя из заданной 
точности интерполяции. Максимальная 
абсолютная погрешность интерполяции  
определяется с учетом геометрических 
свойств исходной кривой линии. Рас- 
сматривается две разновидности погреш-
ности. Во-первых, погрешность, с которой 
сформированная дискретно представлен-
ная кривая, интерполирующая исходный 
точечный ряд, представляет исходную 
кривую. Во-вторых, погрешность, с кото-
рой интерполирующая кривая представля-
ет любую кривую с заданными геометриче-
скими характеристиками
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known function (curve) by the value of ordinates given on a 
discrete set of points with a given accuracy [1]. In the general 
case, it is impossible to restore an original curve accurately. 
An important step in solution of the task is a choice of inter-
polation methods that provide the required accuracy. There 
are two components of the error occurrence: sampling error 
and interpolation error.

A sampling error occurs as a result of representation of 
a source object by a discrete set of points. A sampling error 
is inevitable, it does not depend on a method chosen for 
further interpolation, and we cannot eliminate it during 
the modeling. A sampling error increases with unsuccessful 
location of the output points on a geometric image, when 
a point series does not reflect presence of special areas 
(change of convexity-concavity, reversal of stroke, etc.). 
Such error reduces in case of increase in the number of 
output points of a discrete set. An increase in the number 
of output points increases an aggregate measurement error, 
a volume of calculations, and may increase a calculation 
error. It is expedient to select a distance between output 
points (sampling step) as large as possible, but it should sat-
isfy requirements for the accuracy of the modeling. Known 
interpolation methods do not make it possible to determine 
a sampling step based on the given accuracy of representa-
tion of an output curve.

We can estimate an interpolation error by a deviation of 
a model from the original geometric image. Reduction of a 
sampling step reduces an interpolation error when forming 
a model with methods characterized by convergence and 
stability. The development of interpolation methods that 
provide the given accuracy is an important task of modeling.

2. Literature review and problem statement

The most developed interpolation methods at the mo-
ment are based on analytically given functions (continuous 
interpolation methods). The methods include methods of 
global modeling and methods of piece-smooth approxima-
tions. The methods of global modeling determine a geo-
metric image with one equation. For example, papers [2, 3] 
describe a contour by algebraic Hermitian and Newton’s 
polynomials, and paper [4] ‒ by a trigonometric function. 
The methods of piece-smooth approximations form a con-
tour of sections of analytically given curves, which link 
up at output points. Sections of curves of the second order 
form a contour in a work [5], Beziers curves – in work [6], 
B-splines – in paper [7].

The accuracy of a formed model represents the original 
object. We evaluate it as a deviation of a model from a known 
function that interpolates the same point series.

For example, paper [2] proposes a method for the deter-
mination of polynomial equation Pn(x). It interpolates the 
entire point series, which belongs to a discretely represented 
geometric image. An output function is known and has a 
continuous n+1-у derivative. Authors evaluate an interpola-
tion error as a maximum deviation of the resulting polyno-
mial Pn(x) of the output f(x) function.
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where x0, x1,… xn are the abscissas of points of the output 
discrete set; n is a number of points of the initial discrete set; 
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is the maximum value of n+1-th deriv-

ative of f(x) function on the investigated segment.
In work [3], authors estimate an error of interpolation by 

the value of a maximum deviation of polynomial Pn(x), which 
interpolates n+1 point, from the polynomial Pn-1(x), which in-
terpolates n points that are included in the point series, which 
defines the polynomial Pn(x). If the value of the deviation does 
not exceed the given ε value, then we consider that the polyno-
mial Pn(x) represents the output curve with ε error.

One can use the mentioned methods for estimation of 
interpolation error to solve test cases in order to verify ef-
fectiveness of the interpolation method. There is an assump-
tion that the order of error will be the same as in solution of 
test cases when solving other problems. In the general case, 
when an output function is unknown, such an assumption 
may be incorrect. The interpolation method should ensure 
convergence and stability of the solution in order to set 
an interpolating curve representing an output curve with 
given accuracy [8]. The interpolation polynomial is stable 
if small errors in the output data lead to a small change in 
the result. The use of stable interpolation methods reduces 
requirements for the accuracy of determination of the output 
data and enables their correction if conditions of the task 
lets it. The use of stable interpolation methods reduces the 
error resulting from inaccurate determination of the output 
point series. Most interpolation polynomials are unstable at 
solution of practical problems.

The convergence of interpolation is to reduce the inter-
polation error when the number of output points increases 
[1]. In the general case, methods of global modeling do not 
ensure the convergence of the interpolating function and the 
output curve at interpolation of a point series of arbitrary 
configuration, which consists of a large number of nodes.

An example is the Runge’s function in the form:
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Fig. 1 shows its graph. Work [9] investigates the phenom-
enon of Runge. The polynomial P5(x), which interpolates 
a point series belonging to R(x), does not reflect a change 
in the convexity-concavity of the output curve between  
points 3 and 9. It is possible to refine the solution in this 
section due to an increase in the number of points belonging 
to the output curve. This increases a degree of interpolating 
polynomial, which leads to an increase in its deviation from 
the output function in other sections. For example, the devi-
ation of the polynomial P10(x) from the output function R(x) 
on the edges of the segment [−1; 1] exceeds the deviation 
from R(x) of the polynomial P5(x) (Fig. 1).

Fig. 1. Investigation of the convergence of interpolation
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The deviation of curve line from its initial position ap-
pears as a result of the change in the position of the output 
points or the increase in the number of points due to the un-
controlled occurrence of special points of the curve. Uncon-
trolled occurrence of special points is inevitable with the in-
crease of a parametric number of the curve. For a polynomial 
curve line, they are, above all, points of inflection. Stability 
and convergence are not possible in the case of interpolation 
by polynomials, a degree of equation of which depends on the 
number of outlets directly.

The method of interpolation based on trigonometric 
functions developed in a paper [4] can prevent uncontrolled 
occurrence of points of inflection (occurrence of oscilla-
tions). The disadvantage of the method is that it is designed 
to interpolate a small number of points. This feature of the 
method reduces the area of its practical application. In 
addition, the method does not provide for the control of 
regularity of a change of a curvature along sections of the 
contour.

The absence of oscillations at the interpolation of any 
number of output nodes provides methods of piece-smooth 
approximations. Separate sections, which are linked up at 
the output points, form the interpolating curve.

Oscillation on sections of curves of the second order is 
impossible at formation of contours by the method proposed 
in work [5]. The main disadvantage of the method is viola-
tion of regularity of values of the curvature at the linking 
points. A second degree of the equation of the curve deter-
mines this defect.

The method developed in paper [6] makes possible to en-
sure regularity of values of the curvature along the contour. 
The method involves a use of Bezier curves of the third or 
higher order. The main disadvantage of formation of con-
tours based on Bezier splines is that they do not provide a lo-
cality of control of the shape of the curve in contour sections.

Authors of work [7] developed a method for the forma-
tion of contours based on B-splines. The use of the B-spline 
provides the maximum locality of control of curve shape 
in comparison with other known methods of continuous 
geometric modeling. The locality of the control of a shape 
of B-spline decreases with an increase in the degree of the 
alignment of the curve in order to improve a quality of joints 
of sections of a contour. The control of a shape of a polygon, 
which a spline sets, provides prevention of oscillation at the 
use of Bezier and B-splines.

For the case when the condition of oscillation prevention 
does not provide the given accuracy of the modeling, it is 
necessary to impose more strict additional requirements to 
the law of change of geometrical characteristics along the 
formed contour. This can be a monotonous change in values 
of the curvature, rounding, radii of spheres in contact. Meth-
ods of piece-smooth approximations, which make possible to 
control a nature of a change of indicated geometric charac-
teristics along the interpolating curve and give possibility to 
determine a number of output points required to provide a 
given accuracy of interpolation, are unknown.

The considered methods of piece-smooth approximation 
assume provision of the quality of joints of curve sections at 
the output points (presence of a joint point of a total tangen-
tial, static circle, etc.). The solution of the problem requires 
imposition of additional requirements for curves of lines, 
which form sections of the contour. The quality of joining 
sections of the contour is an important condition at solution 
of a number of practical problems (designing surfaces of 

working bodies of agricultural machines, blades of turbines, 
channels of internal combustion engines) [10].

For an unknown curve, it is possible to determine the 
area of a possible location based on the predicted properties 
of the curve only. Such properties can be the regularity and 
the direction of monotonic growth along sections of the 
characteristic curve: curvature, rounding, radii of spheres 
in contact, presence of special points. Considered methods 
for estimation of interpolation error do not define a limited 
area of space, within definitely contained curve line, on 
which the output point series is set. The implementation of 
the approach to the estimation of accuracy of interpolation 
requires development of methods for analyzing a point series 
on the possibility of forming contours according to given 
geometric conditions.

It is possible to solve the problem using approaches based 
on the methods of differential discrete geometric modeling 
[11–13]:

– discrete presentation of output data and modeling 
result;

– locality of formation;
– prevention of oscillation;
– step-by-step control and correction of the solution.

3. The aim and objectives of the study

The aim of present study is to develop a method for the 
formation of a flat one-dimensional contour with provision 
of the control of the maximum absolute error of inter- 
polation.

The following tasks must be solved to achieve the ob-
jective:

– development of a method for determination of the area 
of possible location of a monotone curve line that interpo-
lates a given point series based on its characteristics: absence 
of oscillations, a monotonous change in values of curvature 
along a curve;

– development of a method for the formation of one-di-
mensional contours, which interpolate a discrete set of 
points and belong to a given area of a possible location of a 
monotonous curve line.

4. Materials and methods to study the interpolation of a 
discrete set of points

The formation of a model based on a discrete set of points 
based on the given absolute interpolation error requires 
determination of boundaries of possible location of linear 
elements of a model. The forming curve is represented by an 
ordered set of points, which belong to it, and by geometric 
characteristics of a curve. The characteristics must be pro-
vided in the modeling process. We will call such a curve a 
discretely represented curve. The curve is formed on the 
basis of any point series in sections along which it is possible 
to provide a monotonous change in values of the curvature. 
The monotonous sections link up with the given order of 
smoothness.

Condensation, which involves determination for the 
output point series of intermediate points, forms the curve. 
Condensation points are assigned inside the section of pos-
sible location of a monotone curve. In the process of conden-
sations of the point series, the section of the curve is sequen-
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tially localized. After reaching the given accuracy, nodes of 
the formed point series join each other with chords. The final 
solution has the form of an accompanying broken line, which 
consists of any numbers of chords, the distance from which 
to the curve of the line with given geometric characteristics 
does not exceed a predetermined any small value.

We build the geometric model on the assumption: if there 
is a curve line without special points that interpolates the 
point series, then there are no special points in the output 
object. Such points include points of inflection, changes in 
the direction of growth along the curve of values of the cur-
vature, the rounding, etc.

We divide the output point series into areas, which may 
interpolate with the curve line along which the value of geo-
metric characteristics monotonically increases or decreases. 
We define the area of space, where all curve lines with given 
geometric properties are located. We determine the maxi-
mum absolute error of interpolation on the base of a size of 
the area of a possible solution.

4. 1. Methodology for determining an error of presen-
tation of the output curve line

The output flat curve is an ordered set of points, which 
belong to it. We determine the maximum absolute error, with 
which the curve interpolating the point series represents the 
output curve line, in the first approximation based on the 
absence of oscillation curves.

If every three successive output points are arranged in 
such a way that they are bypassed clockwise, then we as-
sume that the point series belongs to the convex curve line. 
The output point series is divided into convex and concave 
sections and interpolated separately along these sections.

Any convex curve line that interpolates a point series, is 
located within a chain of basic triangles bounded by a chord, 
which connects the adjacent output points and tangent to 
the curve (ti) at these points (Fig. 2).

Fig. 2. Location region of the convex curve

The maximum deviation of the interpolating curve from 
the output one cannot exceed a height of the corresponding 
base triangle (δt

i) at each section. In the case when the form-
ing contour is given only by the output points, the interpola-
tion error cannot exceed the value of δ .h

i  This is a height of 
the triangle, sides of which belong to straight lines passing 
through three pairs of successive output points.

The estimation of the accuracy of interpolation through 
determination of a height of the base triangles is possible at 
formation of contours by methods that provide the control 
of the occurrence of oscillations. This is a method of curves 
of the second order [5], Bezier curves [6], B-splines [7] and 
methods of discrete interpolation [11–13].

The next condition, which reduces the area of a possible 
location of the curve and improves the accuracy of interpo-
lation, is the condition of a monotonous change in values of 

the curvature along a curve. We will call such a curve line 
monotonous.

We draw a circle after every three successive starting 
points and call such circle adjacent (ACi). If radii of adja-
cent circles increase or decrease along a point series mono-
tonically, such a point series may interpolate with a curve 
line with a monotonous decrease or growth of curvature, 
respectively [12].

We divide the output point series into sections with a 
monotonous change in radii of adjacent circles and interpo-
late separately in these sections by monotonous discretely 
represented curves.

Any monotonous curve line, which interpolates the 
output point series, is located within a section bounded by 
successive adjacent circles [12].

We can estimate the absolute error of interpolation by 
the length of a segment m

iδ  (Fig. 3).

Fig. 3. Section of location of monotonous curve

The segment belongs to a line, which is perpendicular 
to the chord [i, i+1] and passes through the middle of the 
chord. Points, which limit the segment m

iδ , belong to adjacent 
circles, which limit the area of the possible location of the 
curve on the section.

4. 2. Formation of a monotonous discretely represent-
ed curve, which interpolates the output point series

We determine location of points of condensation of the in-
terpolating discretely represented curve on the basis of the con-
servation of regularity of the change in radii of adjacent circles 
along the point series, which is obtained as a result of successive 
condensations. The fulfillment of this condition ensures:

– correspondence of predicted geometric properties of 
the output curve of the line and the intended properties of 
the interpolating curve;

– the maximum error of interpolation, the value of which 
does not exceed a size of the area of possible location of the 
output discretely represented curve.

Condensation points are assigned to perpendiculars (ni) 
of corresponding chords passing through the middle of the 
accompanying broken line. For the section (i…i+1), the range 
of possible location of the condensation point (Δi) is the in-
tersection of the segments [A, C] and [B, D], where

– A is a point of intersection of the perpendicular ni and 
the adjacent circle passing through the points i–1, i, i+1: 
А≡ni×AC(i–1, i, i+1);

– В≡ni×AC(i, i+1, i+2);
– С≡ni×AC(i–2, i–1, i);
– D≡ni×AC(i+1, i+2, i+3).
The purpose of the point of condensation on the section 

of the discretely represented curve (i, i+1) leads to formation 
of three new adjacent circles and localization of the region of 
possible location of the curve in the section (i–1…i+2).

Condensation points are consistently assigned within 
maximum ranges Di. As a result of successive condensations, 
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we obtain a curve interpolating the output point series with 
a regular monotonous change in values of the curvature.

4. 3. Methodology for determining maximum absolute 
error of formation of the interpolating curve

We obtain a new monotonous discretely represented 
curve interpolating the output point series as a result of the 
appointment of each point of condensation. In this case, we 
localize the area of possible location of the curve and it re-
mains within the range of location of the output curve.

The presence of a location area, which is consistently 
localized, is a prerequisite for formation of a point series, 
which, with an arbitrarily small absolute error, represents a 
monotonous curve line. The localization of the location of the 
interpolating curve does not make possible to state that the 
accuracy, with which it represents the initial curve, increases.

We can reduce the error of interpolation by reducing 
the area of possible location of the curve due to increasing 
a fixation order of the forming contour. All monotonous 
curves that interpolate a sequence of nodes in which fixed 
positions of tangents (ti) and values of radii of curvature (Ri) 
in the section (i…i+1) are located inside a region bounded 
by two box lines of circles [13]. Each of boundaries consists 
of two arcs of circles, one of which is a stretching circle of 
the monotonous curve at the point that restricts the area, 
and the other is a circle tangent to the monotonous curve at 
another point that restricts the area. Fig. 4 shows radii of the 
adjacent circles, which are marked as Ri and Ri+1.

Fig. 4. Area of location of the segment of a contour of  
the second fixation order

The deviation of the contour of the second fixation order 
with the monotonous curvature change from the output 
curve in the segment (i…i+1) cannot exceed the maximum 
width of the area of possible location of the curve – .m

iδ  

5. Results of the study on the absolute error of 
interpolation

As a test case, we selected a point series, which belongs to 
the parabola branch. Table 1 shows the value of the absolute 
error of the representation of the output curve.

Table 1

Estimation of the absolute error of representation of  
the output curve

Number of 
section, i…i+1

Chord length 
hi=|i;i+1|, mm

Absolute error, mm

δt
i

m
iδ

1…2 34.73 8.9638 3.68
2…3 48.2689 5.0317 2.445
3…4 53.3633 1.6393 0.549
4…5 51.3769 0.7093 0.1557
5…6 34.5599 0.2498 0.0243

The values of the absolute error of interpolation of the 
convex curve determined on the basis of basis triangles (δt

i)  
exceed values determined on the basis of adjacent circles  
( m

iδ ) for a monotonous curve in 2−3 times.
The error determined on the basis of the output point 

series (δ ,t
i  m

iδ ) is equal to the maximum possible deviation 
of a non-oscillating generated curve formed of the output 
curve. We can consider such error can as a sampling error. 
And we can reduce such error by increasing the number of 
output nodes. Consolidation of the point series in 2 times, 
characteristics of which are in Table 1, leads to a decrease in 
the error δt

i  in 2−3 times, and m
iδ  − in 5−8 times (Table 2).

Table 2

Estimation of the absolute error of presentation of the 
output curve based on the point series, which consists of  

a double number of nodes

Number of 
section, i…i+1

Chord length 
hi=|i;i+1|, mm

Absolute error, mm

δt
i

m
iδ

1…2 16.9426 3.235737 0.6642

2…3 18.6058 3.377989 0.6934

3…4 23.747 1.760375 0.4277

4…5 24.5925 0.469214 0.114

5…6 25.6318 0.523739 0.0877

6…7 27,7316 0,210213 0,0352

7…8 24,4898 0,238711 0,0262

8…9 26.8903 0.101133 0.0111

9…10 17.5891 0.168795 0.00821

10…11 16.9712 0.105677 0.00514

Table 3 shows the value of the absolute error of interpo-
lation for the segments of the contour of the second fixation 
order.

Table 3

Estimation of the absolute error of interpolation by the 
second-order fixation contour

Number of section, 
i…i+1

Chord length 
hi=|i;i+1|, mm

Absolute error,  
,m

iδ mm

1…2 34.73 0.352423

2…3 48.2689 0.28445

3…4 53.3633 0.055597

4…5 51.3769 0.016804

5…6 34.5599 0.002738

We took a point series considered in the previous example 
(Table 1) as the output data. The position of the tangent to the 
contour at the i-th point is defined as an average of positions 
of the tangents to the adjacent circle passing through the 
points i–1, i and i+1 (AC(i–1, i, i+1)), and the closest tangent 
by location to AC(i–2, i–1, i) or AC(i, i+1, i+2). The value of 
the radius of the contour at the i-th point (Ri) is based on the 
condition of the location of the point series, in the nodes of 
which the value of radii of the curvature of the contour is less 
than Ri inside the i-th adjacent circle. The fulfillment of the 
mentioned conditions permits to form a second-order fixation 
contour with a monotonous curvature change [13].

Increasing the order of fixing of the contour to the sec-
ond one at constant number of output nodes reduced the 
absolute error of the interpolation of the sections of the mo-
notonous curve by an average of 9−10 times.
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The estimation of the accuracy of interpolation based 
on the condition of growth or decrease of values of the cur-
vature along a smooth curve is possible in the modeling of 
contours by methods of formation of monotonous curves. 
Among the well-known methods are methods developed 
within a framework of differential discrete geometric mod-
eling [11–13].

6. Discussion of results of study of the error in discrete 
interpolation

Linear interpolation with a given absolute error requires 
determination of the area of possible location of the dis-
cretely represented curve line. Known methods of geometric 
modeling do not give possibility to determine such an area.

The conducted studies showed that we can determine the 
area based on predicted properties of the output curve and 
their corresponding properties of the interpolating curve.

This study presents the solution to the problem for a 
flat smooth curve based on the condition of absence of os-
cillations and a condition of a monotonous change of the 
curvature. The chosen conditions are universal, because any 
curve line can be divided into areas, along which values of 
the curvature monotonically increase or decrease.

One can use research results with approximate calcula-
tions, graphs construction, modeling of surfaces.

The proposed method was first developed for formation 
of surface frameworks, function of which is interaction with 
the environment. In the process of study, we established that 
the best solution for the task is based on the area of possible 
location of the curve. One can use such an area to solve any 
tasks that require estimation of the accuracy of interpolation.

The interpolation error, which is determined from the 
condition of the convexity of the curve, is maximal and is 
the output error. The imposition of more strict conditions: 
a monotonous change in values of the curvature along the 
curve and the purpose of fixed characteristics at the output 
points localize an area of a possible solution.

The main advantage of the proposed method is possibili-
ty of interpolation of a point series consisting of any number 
of nodes. This ensures regular and appropriate change in 
values of the curvature along the contour. The interpola-
tion curve forms in the form of a condensed point series in 
sections that may interpolate the curve with a monotonous 
curvature change. This makes it possible to interpolate a 
point series of binary configuration. Condensation points 
are assigned based on the condition of existence of a possible 
location of the curve with given characteristics. The area of 
a possible solution is localized as a result of successive con-
densations of the point series.

An increase in the number of output points reduces the ab-
solute error, with which the interpolating curve represents the 
output curve, but this does not result in accumulation of cal-
culation errors or uncontrolled occurrence of special points.

The proposed method involves increase in the accuracy 
of interpolation at an unchanged number of output points 
due to the build-up of conditions imposed on the curve. For 
flat interpolation, the next step may be to control the rate of 
growth of the curvature along the curve.

The formed point series may represent a curve line with 
given geometric characteristics with an arbitrarily small 
absolute error. The value of the maximum absolute error of 
the representation of the output curve makes it possible to 

control the required amount of output information, which 
provides necessary accuracy of the problem solution. When 
solving practical problems, acceptable values of the error can 
be based on capabilities of a measuring equipment, require-
ments of product layout, permissible deviations of a mass and 
dimensions of the object being modeled.

The method gives possibility to take into account an 
arbitrary number of additional conditions in the process of 
modeling. This may be the accuracy that can be achieved 
by the processing equipment or special requirements for a 
quality of the surface of a product. For example, operation 
surfaces of products, functional purposes of which are in-
teractions with the environment, should ensure laminar 
nature of their flow. The permissible error of interpolation in 
formation of linear elements of the geometric model of such 
a surface depends on a rate of contact of the surface with 
the flow of the environment and can be measured by micron 
particles. In the general case, the permissible error of further 
interpolation can be on orders of magnitude smaller than the 
error of presentation of the output curve line. The proposed 
method provides the accuracy required for the solution of 
such problems.

Formation of an interpolating curve with given geomet-
ric characteristics on the basis of a possible location makes 
possible to reduce the problem of ensuring the accuracy of 
geometric modeling to the solution of technical issues − to 
ensure the necessary accuracy of measurements and calcu-
lations.

The main disadvantage of the developed method is that 
the formed discretely presented curve is unambiguous. Pro-
viding the required accuracy involves formation of a point 
series consisting of a large number of nodes at presentation of 
the modeling result in the form of an accompanying broken 
line. In addition, an algorithm for determination of ranges 
of the location of points of condensations requires imple-
mentation of sequential algebraic actions, each of which is 
performed with some degree of error. As a result of consecu-
tive condensations of a point series, when a width of the area 
of possible location of a monotonous discretely represented 
curve is measured by values of 10-5 mm or less, these errors 
do not give possibility to control the given geometric prop-
erties of the contour. The mentioned problems include a large 
amount of required calculations and increased requirements 
for the accuracy of calculations.

Another problem caused by the discrete representation of 
geometric images is the complexity of solution of a number of 
positional geometric modeling tasks. This are a definition of 
a length of the discretely represented curve, points of inter-
section of the curve with given geometric images, and others. 
The mentioned problems require a solution when forming 
based on line frameworks of discretely presented surfaces.

The direction of further development of the method of 
interpolation based on the area of a possible location of curve 
line may be formation of spatial one-dimensional contours. 
Interpolation with given accuracy of spatial point series re-
quires a regular change along a contour of the curvature, the 
rounding and the radii of spatial spheres.

7. Conclusions

1. We developed a method for the determination of the 
area of a possible location of a monotonous curve line, which 
interpolates a given point series. The method is based on 
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determination of segments of a point series, which may be in-
terpolated by a monotonous curve line, a curve along which a 
value of the curvature increases or decreases monotonically. 
This makes possible to determine the output curve of the line 
as a curve with a minimum number of special points - points 
of inflection and points of change in the direction of growth 
of curvature. The method gives possibility to estimate the 
maximum absolute error of interpolation by the magnitude 
of the area of a possible location of monotonous curve lines. 
The estimation of the accuracy of discrete interpolation on 
the basis of the monotonous curvature change makes possi-
ble to reduce the absolute error by 2−3 times with respect 
to the estimation of accuracy based on the condition for 
prevention of oscillations.

2. We developed the method of formation of a one-di-
mensional contour, which represents a monotonous curve 
line with given accuracy. The method makes it possible to:

– form a monotonous discretely represented curve, which 
interpolates sections of the output point series, the area of a 
possible location of which is arbitrarily small;

– create a contour in the form of an accompanying bro-
ken line, which represents a monotonous curve with given 
accuracy.

Only capabilities of equipment limit the accuracy of rep-
resentation of a monotonous curve. The calculation of test 
cases showed that the developed algorithms work steadily 
in the formation of a discretely presented monotonous curve 
located inside the area, a width of which is up to 10-5 mm.

References

1.	 Bahvalov N. S., Zhidkov N. P., Kobel’kov G. M. Chislennye metody. Moscow: BINOM, 2008. 636 p.

2.	 Ivan M. A note on the Hermite interpolation // Numerical Algorithms. 2014. Vol. 69, Issue 3. P. 517–522. doi: 10.1007/s11075-

014-9909-x 

3.	 Argyros I. K., George S. On the convergence of Newton-like methods using restricted domains // Numerical Algorithms. 2016.  

Vol. 75, Issue 3. P. 533–567. doi: 10.1007/s11075-016-0211-y 

4.	 Liu S., Chen Z., Zhu Y. C1Rational Quadratic Trigonometric Interpolation Spline for Data Visualization // Mathematical Problems 

in Engineering. 2015. Vol. 2015. P. 1–20. doi: 10.1155/2015/983120 

5.	 Li H., Zhang L. Geometric error control in the parabola-blending linear interpolator // Journal of Systems Science and Complexity. 

2013. Vol. 26, Issue 5. P. 777–798. doi: 10.1115/imece2013-62877 

6.	 Shen W., Wang G., Huang F. Direction monotonicity for a rational Bézier curve // Applied Mathematics – A Journal of Chinese 

Universities. 2016. Vol. 31, Issue 1. P. 1–20. doi: 10.1007/s11766-016-3399-7 

7.	 Volkov Y. S. Obtaining a banded system of equations in complete spline interpolation problem via B-spline basis // Central Euro-

pean Journal of Mathematics. 2011. Vol. 10, Issue 1. P. 352–356. doi: 10.2478/s11533-011-0104-1 

8.	 Volkov Yu. S. Issledovanie skhodimosti processa interpolyacii dlya proizvodnyh polnogo splayna // Ukrainskiy matematicheskiy 

vestnik. 2012. Vol. 9, Issue 2. P. 278–296.

9.	 Jung J.-H., Stefan W. A Simple Regularization of the Polynomial Interpolation for the Resolution of the Runge Phenomenon // 

Journal of Scientific Computing. 2010. Vol. 46, Issue 2. P. 225–242. doi: 10.1007/s10915-010-9397-7 

10.	 Klewicki J. C. On the Singular Nature of Turbulent Boundary Layers // Procedia IUTAM. 2013. Vol. 9. P. 69–78. doi: 10.1016/ 

j.piutam.2013.09.007 

11.	 Gavrilenko E. A., Kholodnyak Y. V. Discretely geometrical modelling of one-dimensional contours with a regular change of dif-

ferential-geometric characteristics // 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). 2014. doi: 10.1109/

dynamics.2014.7005654 

12.	 Kholodniak Yu. V., Havrylenko Ye. A. Formuvannia heometrychnykh kharakterystyk pry modeliuvanni monotonnoi dyskretno 

predstavlenoi kryvoi // Prykladna heometriya ta inzhenerna hrafika. 2013. Issue 91. P. 482–487.

13.	 Havrylenko Ye. A., Kholodniak Yu. V. Vyznachennia diapazoniv heometrychnykh kharakterystyk monotonnoi dyskretno predstav-

lenoi kryvoi // Pratsi Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu. 2012. Vol. 54, Issue 4. P. 38–42.




