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1. Introduction

Ultrasonic surface waves have been widely applied in 
the practice of control over characteristics of technological 
media [1–9]. The reason for this is the following features of 
ultrasonic waves. The first feature is the relatively large con-
centration of energy in a wave due to the small magnitude of 
the layer of its location. The second feature is the possibility 
for obtaining an ultrasonic signal from any point of the sur-
face (including curvilinear), along which it propagates [2].

The most studied and utilized of all currently known 
ultrasonic waves are the Rayleigh surface waves [1–3]. The 
waves of a given type propagate along the boundary of a solid 
space. A Rayleigh wave consists of two flat inhomogeneous 
waves ‒ longitudinal and transverse, which, similar to the 
Rayleigh wave composed of them, are characterized by ver-
tical polarization. The Rayleigh waves possess the greatest 
concentration of energy along the surface of a solid body. 
However, the characteristics of the propagation process sub-
stantially depend on the state of the surface of propagation. 

It is possible to observe reflection, scattering, caused even by 
the microdefects of this surface.

Similar by their nature to the Rayleigh waves, but with 
horizontal polarization, are the Love waves [4, 5]. The Love 
waves, as the surface waves, exist due to the addition of a sol-
id layer to the semi-space, the former acting as a load for the 
semi-space. The Love waves are distinguished by a strong 
dependence on the state of inhomogeneity of the surface 
layer, due to which they do exist, which makes measuring 
surfaces along which they propagate rather vulnerable and 
thereby “unstable”.

The third basic type of ultrasonic surface waves are the 
waves on the boundary of two semi-spaces ‒ the Stoneley 
waves [1]. A Stoneley wave is characterized by the elliptical 
polarization oriented perpendicularly to the boundary of 
semi-spaces. The Stoneley waves propagate in both liquid 
and solid semi-spaces. That is why their component, which 
propagates in a liquid semi-space, is exposed to the same dis-
turbing factors that are experienced by ordinary volumetric 
ultrasonic oscillations. For example, one should expect a 
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strong dependence of the magnitude of their attenuation on 
the content of gas bubbles in industrial suspensions.

Surface waves also include waves in plates: normal waves 
with horizontal polarization (transverse normal waves) and 
normal waves with vertical polarization ‒ the Lamb waves 
[1, 6–9]. Given that the walls of technological containers 
and a number of industrial units are typically made of sheet 
metal, in the realization of ultrasonic control over parame-
ters of media that come into contact with them, it is conve-
nient to use the Lamb waves. These waves are characterized 
by a large enough concentration of energy and are exposed 
to disturbing factors to a lesser extent than the Rayleigh 
waves and the Love waves. However, when devising meth-
ods and tools for control over parameters of gas-containing 
suspensions, it is an important task to determine the degree 
of influence of parameters of the investigated medium on the 
magnitude of attenuation of the Lamb waves.

In many cases, when developing methods for ultrasonic 
control over characteristics of technological media, the 
ultrasonic Rayleigh, Love, Stoneley waves are employed. It 
should be noted that the use of these types of waves is appro-
priate under conditions of meeting a number of significant 
limitations. Such limitations are related to the state of the 
surface of wave propagation, as well as the presence of gas 
bubbles in the examined medium. Otherwise, when failing to 
meet the limitations, the measurement accuracy is compro-
mised. It is possible to resolve these shortcomings by using 
the Lamb waves. This type of wave is much less sensitive to 
the state of a propagation surface, the existence of gas bub-
bles in the investigated media. Thus, the study of processes 
of the Lamb waves propagation along a plate in contact with 
randomly heterogeneous medium is a promising and import-
ant area of research.

2. Literature review and problem statement

Research into optimization process of enrichment of 
iron ore whose results are reported in papers [10, 11] led 
to the following conclusion. Efficiency of control over 
technological processes of ore enrichment depends on the 
accuracy of operative information on the status of techno-
logical processes.

The patterns of propagation of ultrasonic oscillations in 
a fluid under the cavitated mode were considered in paper 
[12]. Based on numerical methods, the authors calculated 
the energy dissipated by bubbles. They obtained a direct 
correlation between the energy lost by gas bubbles and the 
attenuation of ultrasonic oscillations, which leads to the 
formation of traveling waves. Based on the results described 
above [13], the authors estimated the magnitude of Bjerknes 
forces and predicted the structures of gas bubbles generated 
as a result of traveling waves. 

Study into dissipation of acoustic oscillations in liquids 
in the presence of bubbles is described in [14]. The model 
formed makes it possible to predict nonlinear attenuation 
of ultrasonic waves. It is noted that the predicted values of 
damping are much higher than the numbers estimated by 
similar models.

A method for modeling propagation of ultrasonic waves 
under conditions of heterogeneous media was considered in 
papers [15, 16]. To generate controlled ultrasonic waves to 
control characteristics of ore pulp, it was proposed to use 
phased arrays.

Theoretical and experimental studies into ultrasound 
propagation in bubbly liquids were undertaken in paper [17]. 
An approach to modeling the process of ultrasound propaga-
tion was proposed, which implies consideration of a non-uni-
form pressure field away of bubbles. To quantify the instabil-
ity of bubbles, the authors applied analytical methods.

Numerical approach was applied to describe the pro-
cess of ultrasound propagation in bubble liquids in paper 
[18]. This model is based on the methods of finite volume 
and finite differences. Such an approach makes it possible 
to solve a differential system formed by the wave equation 
and the Rayleigh-Plesset equation, which relates a sound 
pressure field with bubbles oscillations. The results obtained 
make it possible to observe the physical effects caused by 
the presence of bubbles in a liquid: nonlinearity, dispersion, 
attenuation.

The results of research into nonlinear propagation pro-
cesses of ultrasonic waves in water at a non-uniform dis-
tribution of bubbles are presented in paper [19]. The math-
ematical model was synthesized using a set of differential 
equations that describes the connection between an acoustic 
field and bubble vibration. It is expected that the attenuation 
and nonlinear effects are due exclusively to the existence of 
bubbles. It should be noted that the heterogeneity in the 
distribution of bubbles is presented in the form of clusters 
of bubbles that can act as acoustic screens, and affect the 
behavior of ultrasonic waves.

The necessity of applying means of nondestructive test-
ing in the process of enrichment of mineral-technological 
varieties of ore raw materials is substantiated in works  
[20–22]. Specifically, the means of ultrasonic testing will 
make it possible to obtain necessary information for the op-
erational control over technological processes. 

As a means of nondestructive testing, authors of paper 
[23] used the multimode Lamb waves. By measuring the 
characteristics of different modes in experimental disper-
sion curves of the Lamb waves and matching them against 
theoretical curves, the authors derived estimates for some 
physical parameters of the investigated medium. It is noted 
that the Lamb waves dispersion curves depend only on the 
plate parameters while the frequency and phase speed can be 
set relative to the speed of a shear wave and thickness of the 
layer of the investigated medium.

The use of controlled ultrasonic influence on the ore raw 
material in the enrichment process, in order to improve the 
efficiency of a given process, was studied in papers [24–25]. 
The authors presented a mathematical description of cavita-
tion processes in a heterogeneous medium and generalized 
model of the dynamics of gas bubbles. The technique for 
determining optimal parameters for the source of ultrasonic 
oscillations was proposed. 

The advantage of a Lamb wave in the field of nonde-
structive testing, as noted in [26], among the multitude of 
ultrasonic waves is that they can scan a large area with a 
minimum number of receivers. Since the Lamb waves are 
dispersing, it is recommended that the sinusoidal emission 
signal should be used. Simulation of the Lamb waves was 
performed using the software ATILA.

In paper [27], it was also noted that the Lamb waves are 
the most widely used ultrasonic waves to control various 
media. However, a theoretical analysis of the propagation of 
a controlled wave is a complex task. The authors considered 
a method for modeling the local interaction during propaga-
tion of waves in metallic structures. It should be noted that 
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the application of the proposed method is complicated by the 
coexistence of at least two highly dispersive modes at any 
given frequency.

A method of control over parameters of liquid media us-
ing the ultrasonic Lamb waves was presented in paper [28]. 
It is shown, that a change in the characteristics of waves can 
be used as a function that depends on the level of the liquid. 
It is noted that in order to determine the optimal conditions 
for measuring the parameters of a liquid medium using the 
Lamb waves, further research is needed. 

Development of approaches to the use of means of ultra-
sonic testing in order to optimize control over technological 
enrichment processes was described in papers [29–31]. The 
results obtained suggest the appropriateness of employing 
ultrasonic control over characteristics of ore material in the 
technological flows at the enrichment line.

An analysis of the scientific literature revealed that in 
most cases, when developing methods of ultrasonic control 
over characteristics of heterogeneous media, certain types 
of waves are utilized. The most commonly used for these 
purposes are the Love, Stoneley, Rayleigh and Lamb surface 
waves. Selecting a specific type of waves for solving the set 
tasks requires taking into consideration a number of strict 
requirements and limitations imposed both on the charac-
teristics of a propagation surface and properties of the con-
trolled medium. To define characteristics of gas-containing 
suspensions, it appears promising to use the Lamb waves. 
However, still unresolved is the task on assessing the extent 
of influence of perturbing factors on the results of measuring 
the parameters of propagation of these waves.

3. The aim and objectives of the study

The aim of present research is to refine the patterns in 
the propagation of Lamb waves along a plate in contact with 
randomly heterogeneous medium, and to estimate the degree 
of influence of viscosity and motion speed of a gas-contain-
ing suspension on the attenuation magnitude of the Lamb 
waves.

To accomplish the aim, the following tasks have been set:
– to form a mathematical description of the Lamb wave 

propagation process in a metallic plate;
– to investigate the dependence of Lamb waves atten-

uation on the characteristics of a fluid in contact with the 
propagation medium.

4. Mathematical description and modeling of the Lamb 
wave propagation process in a metallic plate

Consider a flat harmonic Lamb wave that propagates in a 
plate with a thickness of 2d in the positive direction of the X 
axis. Introduce for the area occupied by the plate the scalar 
φ and vector ψ potentials of displacements that describe, re-
spectively, the longitudinal and transverse waves. The values 
of φ and ψ can be represented in the following form [1, 2]

;ikx ikx
S aA chqze B shqzeϕ = + 	 (1)

,ikx ikx
S aD shsze C chszeψ = + 	 (2)

where ,SA  ,aB  ,aC  SD  are the arbitrary constants; k is the 
wavenumber of the Lamb waves; 

2 2 ;lq k k= −  2 2 .ts k k= −

Values of wavenumber k are derived from characteristic 
equations

( )22 2 24 0;k s ch qh sh sd k qs sh qd ch sd+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ = 	 (3)

( )22 2 24 0.k s sh qd ch sd k qs ch qd sh sd+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ = 	 (4)

Upon performing mathematical transformations, one 
can obtain, in order to calculate the desired potentials, the 
following expressions

;s aik x ik x
S s a aA ch q ze B sh q zeφ = ⋅ + ⋅ 	 (5)
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	 (6)

where 

2 2
, , ;s a s a lq k k= − 2 2

, , .s a s a tS k k= −

Expressions (5) and (6) allow us to calculate displace-
ment components U and W

;S aU U U= + 	 (7)

;S aW W W= + 	 (8)

2
2 2

2
;

si k x t
s s s a

S s
s s s a

ch q z q s sh s z
U Ak e
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π −ω −   ⋅ ⋅
= − × ⋅ + ⋅ 

	 (9)
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W Bq e

ch q d k s ch s d

π −ω −   ⋅ ⋅
= − − × ⋅ + ⋅ 

	 (12)

where A and B are constants. 
Analyzing expressions (5)–(12), one can notice that in 

the first group of waves, denoted with symbol s, the motion 
occurs symmetrically to the plane Z=0. That is, at the up-
per and bottom parts of the plate displacement U has the 
same signs, while displacement W ‒ opposite. In the second 
group of waves, denoted with index a, the motion occurs 
anti-symmetrically relative to Z=0. That is, at the upper 
and bottom parts of the plate, displacement U has opposite 
signs, and displacement W ‒ similar. The waves of the first 
group are the symmetrical Lamb waves while waves in the 
second group ‒ anti-symmetrical.

In the plate with a thickness of 2d at frequency ω there 
can be a certain finite number of symmetric and antisym-
metric Lamb waves. The mentioned waves are different one 
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from another in phase and group velocities, as well as distri-
bution of displacements and stresses along the thickness of 
the plate. 

Fig. 1–4 show simulation results of the Lamb wave prop-
agation process in an aluminum plate using the software 
package LAMSS [34].

Fig. 1. Lamb wave phase speed in aluminum 2024-Т3 

Fig. 2. Stresses along the thickness of plate made of 
aluminum 2024-T3

Fig. 3. Lamb wave group speed

Formulas (7)‒(12), obtained above, for the mathematical 
description of the Lamb wave propagation process allow us 
to proceed to the exploration of factors influencing the de-
gree of attenuation of a given type of waves.

Fig. 4. Lamb wave length

5. Investigation of dependence of the Lamb wave 
attenuation on characteristics of the plate in contact with 

a liquid propagation medium 

If a plate in which the Lamb wave propagates borders the 
fluid, and the speed of sound in liquid Cl is less than speed C 
of the wave in the plate, the Lamb wave will attenuate, radi-
ating energy into liquid. Attenuation coefficient of the Lamb 
waves per unit length is determined from formula [1, 15]

2 1 , ,l
s ak i k A

ρ
= − ⋅

ρ
	 (13)

where lρ  is the density of the fluid that borders the surface 
of the plate; ρ  is the density of a material of the plate;

( )

( )

4 2 2
, , ,

, 2 22 2 2
, ,, , ,

2 2
, ,

, ,2 2 2
, , ,

12
,

, ,
,

1
2 28

4

2

,
2

t s a s a s a
s a

s a s as a s a c s a

s a s a
s a s a

s a s a s a

s a
s a s a

s a

ik hS d k k
A

S qk S k k

k k d
thS d cthS d

k S S

k d
thq d cthq d

q

−

⋅
= − + + −

⋅ − 

⋅
− + − −

+

⋅
− − 


	 (14)

where ,s ak  is the wavenumber of the symmetric and antisym-
metric Lamb waves; 

2 2
, , ;s a s a lq k k= −

2 2
, , ;s a s a tS k k= −  

lk  and tk  are the wavenumbers of longitudinal and trans-
verse waves of the plate’s material. 

It should be noted that coefficient k2 of the Lamb waves 
attenuation monotonically grows with an increase 1,l

−ρ ⋅ρ  
which means that k2 can be represented as

2 ,lk Cν
ρ

=
ρ

	 (15)

where Cν  is the magnitude that almost does not depend on 
the fluid density. 
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Fig. 5 shows dependence of the attenuation coefficient 
per a Lamb wavelength on parameters of the medium: 1 – 

1 1,5;t lC C −⋅ =  2 – 1 2;t lC C −⋅ =  3 – 1 3.t lC C −⋅ =  Poisson’s ratio 
of the plate’s material is equal to 0.3.

Fig. 5. Dependence of attenuation coefficient per a Lamb 
wavelength on parameters of the medium  

1 – 1 1,5;t lC C −⋅ =  2 – 1 2;t lC C −⋅ =  3 – 1 3t lC C −⋅ =

Fig. 6 shows dependence of the magnitude of relative 
change in the Lamb wave speed on parameters of the medi-
um under the same conditions.

Fig. 6. Dependence of the magnitude of relative change in  
the Lamb wave speed on parameters of the medium  

1 – 1 1,5;t lC C −⋅ =  2 – 1 2;t lC C −⋅ =  3 – 1 3t lC C −⋅ =

Consider the case where a plate is in contact with 
water, which contains solid phase particles of various size 
(suspension) and gas bubbles, that is a randomly hetero-
geneous medium. An example of such a medium is the iron 
ore pulp. As the gas phase of pulp has almost no effect on 
its density, gas bubbles do not affect the weakening of 
Lamb waves. In this case, the density of suspension lρ  
is determined by the volumetric fraction of particles of 
solid phase W, their average density ,sρ  and the density 
of water ρw

( )1 .l w sW Wρ = − ρ + ρ 	 (16)

Attenuation coefficient k2 of the Lamb waves in this case 
can be represented as

( )2 1 .w sk W W Cν

 ρ ρ
= − + ρ ρ 

	 (17)

Thus, the intensity of Lamb waves at a distance l from 
the source of waves can be derived from formula

{ }

( )

, 0, 2

0,

exp

exp 1 .

l

w T

I I k l

I W W C l

ν ν

ν ν

= − =

  ρ ρ = − − +  ρ ρ   
	 (18)

If we accept in formula (18) that W=0, we obtain the 
expression that will determine the intensity of Lamb waves 
in contact between the plate and clean water.

*
, 0, exp .w

lI I C lν ν ν

 ρ
= − ρ 

	 (19)

Consider the influence of viscosity of the investigated 
medium and the speed of its motion on the magnitude of 
Lamb waves attenuation. 

At the border between liquid and solid media there arise 
the outflowing waves propagating along the border and con-
tinuously re-emitting energy into the fluid. This event leads 
to the Lamb waves attenuation. 

As the fluid motion can affect the Lamb waves parame-
ters only by internal forces of friction (viscosity), studying 
this factor gives an idea not only of the degree of influence of 
fluid flow velocity, but also its viscosity.

In terms of theoretical analysis of the specified situa-
tion, it is appropriate to consider an outflowing wave of the 
Rayleigh type at the border of solid and liquid semi-spaces. 
From a mathematical point of view, this problem is much eas-
ier, and from a physical standpoint is similar, which is why 
quantitative ratios of such a problem will properly reflect the 
influence of the factors under consideration. 

Let the semi-space of the solid medium occupy region 
Z>0 and fluid Z<0. As it is known, in a general case, the 
equation of motion of elastic medium is written in the fol-
lowing form 

( )
2

2 2 grad ,l
t

U
U U

t
∂

ρ − µ∆ + λ + µ
∂



 

	 (20)

where U


 is the vector of medium particles displacement;  
ρ  is the density; λ and μ are the elastic constants of the medi-
um (Lame parameters); Δ is the Laplace operator. 

Represent displacement vector in the form

,l tU U U= +
  

where grad ;lU = φ


 rot ;tU = ψ


 φ  and ψ


 are the scalar and 
vector potentials. 

Then equation (20) can be reduced to two independent 
equations

( )
2

2 2 0;l
l

U
U

t
∂

ρ − λ + µ ∆ =
∂





	 (21)

2

2 0.l
t

U
U

t
∂

ρ − µ∆ =
∂





	 (22)

The first one describes the propagation of longitudinal 
waves, the second ‒ transverse waves. 
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Consider a flat Rayleigh wave propagating in the positive 
direction of the X axis along the boundary between the semi-
space and liquid. 

In this case, the movement does not depend on coordi-
nate Y. Then vector’s potential ψ



 will be different from zero 
only by the component that is denoted .ψ  Proceed from lU



 
and ,tU



 to the scalar and vector potentials φ  and .ψ  For a 
flat harmonic wave the equations of motion (21) and (22) 
will hold if φ  and ψ  are the solutions to wave equations 
of the form

2 2

2 2 0;lk
X Z

∂ φ ∂ φ
+ + φ =

∂ ∂
	 (23)

2 2
2
t2 2 0k

X Z
∂ ψ ∂ ψ

+ + ψ =
∂ ∂

	 (24)

for a solid semi-space and

2 2
2

2 2 0,
l l

l
lk

X Z
∂ φ ∂ φ

+ + φ =
∂ ∂

	 (25)

for a liquid semi-space.
Here 

( )/ 2 ,lk = ω ρ λ + µ  /tk = ρ µ  

are the wavenumbers, respectively, of the longitudinal and 
transverse waves of a solid semi-space; 

/c lk = ρ λ

is the wavenumber of longitudinal waves propagating in a 
liquid half-space. 

Solutions to equations (23), (24) and (25) will take the 
form:

[ ] ( )exp exp ;A qZ i kx t φ = − − ω 

[ ] ( )exp exp ;B SZ i kx t ψ = − − ω  	 (26)

[ ] ( )exp exp ,l
lC q Z i kx t φ = − ω 

where 2 2 2;lq k k= −  2 2 2;lS k k= −  2 2;l lq k k= −  A, B and C are 
the arbitrary constants. 

Particle displacement components in a wave along the 
X and Z axes are expressed through potentials ,φ  ,ψ  lφ  as 
follows

( )1 ;xU
X Z

∂φ ∂ψ
= −

∂ ∂

( )2 ;
l

xU
X

∂φ
=

∂

( )1 ;zU
Z X

∂φ ∂ψ
= +

∂ ∂
	 (27)

( )2 .
l

zU
Z

∂φ
=

∂

Here indexes (1) and (2) apply to the medium with solid 
and liquid semi-spaces, respectively. 

The components ,xxT  ,zzT  ,xzT  of the stress tensor can be 
expressed via ,φ  ,ψ  lφ

	 2 2 2 2

2 2 22 ,xxT
X Z X X Z

   ∂ φ ∂ φ ∂ φ ∂ ψ
= λ + + µ +   ∂ ∂ ∂ ∂ ∂   

2 2 2 2

2 2 22 ,zzT
X Z Z X Z

   ∂ φ ∂ φ ∂ φ ∂ ψ
= λ + + µ +   ∂ ∂ ∂ ∂ ∂   

2 2 2

2 22 .xzT
X Z X Z

 ∂ φ ∂ ψ ∂ ψ
= λ + − ∂ ∂ ∂ ∂ 

	 (28)

Expressions (26)–(28) are initial for determining the 
arbitrary constants А, В и С and finding the wavenumber k. 
Boundary conditions are used for this purpose at Z=0. In this 
case, we assume the equality of displacement components along 
the Z axis of particles of solid and liquid semi-spaces. That is

( ) ( ) ( ) ( )1 20 0 ,z zU Z U Z= = =

and when Z=0 component xzT  and zzT  of stress tensors of 
both media are the same. 

Expression (26), when recording a scalar potential ,lφ  
does not reflect the fact of the liquid motion. Therefore, before 
proceeding to the boundary conditions to obtain the charac-
teristic equation for k, let us find out how the magnitude lφ  
changes when taking into account the motion of liquid. 

Let the liquid medium flows along the X axis from right 
to left (Fig. 7) at speed V.

Fig. 7. Geometrical interpretation of the simulated space

Proceed to the ,k′  coordinate system in which fluid is 
resting, it means that the system k′  moves along the neg-
ative X axis direction at speed V. If the Rayleigh wave with 
frequency ω propagates along the positive direction of the 
X axis at velocity c, the frequency and speed of this wave in 
the k system will be equal to ( )1 /V cω = ω +′  according to 
the Doppler effect, and ,c c V= +′  according to the classical 
law of addition of velocities. Wave numbers k′  and lq′  in the 
system k′  do not change because

( )
( )
1 /

1 /

V c
k k

c c V c c

ω +ω ω′= = = =′
+′

.

The same applies to ,lq′  so the scalar potential lφ  will 
take the form
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( ) ( )exp exp .l
lC q z i kx t φ = − ω′ ′  	 (29)

The presence of internal friction (viscosity) of liquid 
leads to the occurrence of tangential forces that can be de-
scribed by assigning the stress tensor

( )
2

2 ,
l l l

x x x
xy

V V V
T

z z t t
∂ ∂ ∂′ ′

= −η = −η = −η
∂ ∂ ∂ ⋅∂

	 (30)

where η  is the viscosity coefficient; 

.
l

l l
x lU ik

x
∂φ

= φ
∂

From the condition of equality of components of the 
stress tensor of a solid medium and fluid with respect to co-
ordinate transformations of Galileo ,X X Vt= +′  we obtain 
equation

( )2 2
1 1

1

2 0.cikq A k S B q kC
η

+ + − ω =′
λ

	 (31)

Thereafter, the magnitude 1η λ will be denoted via β. 
The second condition of equality

( ) ( ) ( )1
zz , 0 Vt,Z 0l

zzT X Z T X X= = = + =′  

leads to equation:

( )
1

2 2 2
1 1

1

2 0.l
tk S A iS kB k C

ρ
+ + − =

ρ
	 (32)

And, finally, the condition of equality of components of 
the Z displacement

( ) ( ) ( )1
z z, 0 Vt,Z 0lU X Z U X X= = = + =′  

produces equation

1 0.lq A ikB q C− + = 	 (33)

Thus, we obtain a system of linear homogeneous equa-
tions relative to arbitrary constants А, В and С.

( )2 2
1 12 0;likq A k S B q kC+ + − β ω =′

( )
1

2 2 2
1 1

1

2 0;l
tk S A iS kB k C

ρ
+ + − =

ρ
	 (34)

1 0.lq A ikB q C− + =

The condition for the existence of a nontrivial solution to 
this system is the equality of its determinant to zero

1

2 2
1 1

2 2 2
1 1

1

2

2 0.
l

t

l

ikq k S q k

k S iS k k

q ik q

+ β ω′
+ − =

−

	 (35)

This produces the following characteristic equation to 
find the wavenumber k

( )
( )1

2 2 2
1 1 1

4
1 2 2 2

1 1 1
1

2

2 .l t

l

k q S k S

k q
iBk k k S q S

q

+ + =

ρ
 = + ω + +′  ρ

	 (36)

It can be shown that under condition ,Rc c>  which holds 
for almost all actual media, equation (36) has a complex root

,Rk k=  corresponding to the system of three waves. In this 
case, for a given wave, lq  in equation (36) should be under-
stood as the next branch of the root

2 2 2 2 .l l lq k k i k k= − = − −  

The complexity of k has a simple physical sense: a surface 
wave in this case continuously radiates energy into a liq-
uid, forming in it a heterogeneous wave diverging from the 
boundary (an outflowing wave). 

In characteristic equation (36) proceed to the dimen-
sionless variable 

1

2 2 2 .tk kµ =  

The result is

( )
( )

( )

2 2 2 2 2

2 2
2

2 2
1

2 2 2 2

4 1 2 1

1

2 1 2 1 .

ci i

µ = µ − ζ µ − + µ − =

ρ µ − ζ
= + βωµ + αµ ×

ρ ν − µ

 × µ − + µ − ζ µ −  	 (37)

Because k is the complex magnitude, represent it as

1 2,k k ik= +  

where 2 1,k k<<  since .Rk k≈  
Comprehensive part of the wave number is the attenua-

tion coefficient of a surface wave of the Rayleigh type, so the 
main task is to determine this magnitude. 

The method for its determining will imply the following: 
a dimensionless variable is represented in the form 

1 2,iµ = µ + µ  

where 
11 1 ;tk kµ =  

12 2 .tk kµ =  In this case, 2 1,µ << µ  because 

2 1.k k<<  Next, decomposing in equation (37) all magnitudes 
containing μ, into a series, and, confining ourselves to the terms 
of the first-order smallness relative to μ2, we obtain the equa-
tion that contains, separately, the integrated and the real parts

Next, by equating imaginary and real expressions from 
the left and right side of ratio (38), we obtain two equations, 
solving which produces information about 1µ  and 2µ

( ) ( )

( )
( ){ ( )

2 2 2 2 2 2
1 1 1 1 2 1 1

2 2 2
1 12 2 2 2 2

1 1 1 1 12 2 2
1 1

2 2 2 2 2
1 2 1 1 1 1

2 2 2
1 12 2

1 12 2 2
1 1

2 2
12

1 2 12 2
1 1

4 1 2 1 8 2 1

1
4 2 1

1

2 3 2 1 1

1
4

1

1c

i µ = µ − ζ µ − + µ − + µ µ µ − +
µ − µ − ζ
+ µ µ − ζ µ − + µ + µ =
µ − ζ µ − 

 = βωµ µ + µ µ − + µ − ⋅ µ − ζ + 
 µ − µ − ζ +µ + + µ −   µ − ζ µ −  

µ − ζρ
− µ µ × + µ

ρ µ − ζ

( ) ( )

2
1

2 2
1 2 2 2 2

1 1 1 12 2
1 1

2 1 1 1 . (38)ci

 
+  ν − µ 

ρ µ − ζ  + + βω µ − + µ − ζ µ − µ + αµ  ρ ν − µ  
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( ) ( )

( )

( )

2 2 2 2
2 1 1 1 1 1

2 2 2
1 12 2

1 12 2 2
1 1

2 2
1

1 12 2
1 1

2 2 2 2
1 1 1

8 2 1 4 2 1

1

1

1

2 1 1 ;

c

µ µ µ − + µ µ − ζ µ − +
µ − µ − ζ
+ µ + µ =
µ − ζ µ − 

ρ µ − ζ
= + βωµ + αµ ×

ρ ν − µ

 × µ − + µ − ⋅ µ − ζ  	 (39)

( )

( )( )

22 2 2 2 2
1 1 1 1

2 2
1

1 2 22 2
1 11

1 1 1 1 2

4 1 2 1

1

1 ,

c

µ µ − ζ µ − + µ − =

  µ − ζρ= − µ + +ρ ν − µ µ − ζ
+βωµ φ µ + αµ µ 	 (40)

where 

( ) ( ) ( ){ 2 2 2 2 2
1 1 1 1 1 1

2 2 2
1 12 2

1 12 2 2
1 1

2 3 2 1 1

1
4 .

1

 φ µ = + µ µ − + µ − ⋅ µ − ζ + 
 µ − µ − ζ +µ + + µ   µ − ζ µ −  

	 (41)

From equation (40), 2µ will be represented as

( ) ( ) ( )2 1 1 1 2 1
1

1 ,l f f
ρ

µ = µ + βω + αµ µ
ρ

	 (42)

where 

( ) ( )2 2 2 2 2
1 1 1 1 1 1

2 2 2
1 12 2 2 2 2

1 1 1 1 12 2 2
1 1

8 2 1

1
4 2 1 ;

1

f µ = µ − ζ ν − µ µ µ − +
 µ − µ − ζ + µ µ − ζ µ − + µ + µ   µ − ζ µ −  

( ) ( ) ( )2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 12 1 1 .f f µ = µ − + µ − ⋅ µ − ζ ν − µ ⋅ µ µ − ζ 

In turn, 1µ is found from the solution to equation

where 

( )
2 2
1

2 1 2 22 2
11

1
.

µ − ζ
φ µ = +

ν − µµ − ζ

Since 1 Rµ ≈ µ  (an analysis reveals that the difference 
between these magnitudes does not exceed 1‒2 %), with a 
good approximation 2µ  can be estimated from formula (42) 
assuming that in this case 1 .Rµ = µ  

As seen from expression (42), 2µ  is defined by two ele-
ments; the second one assesses the contribution of viscosity 
and movement of liquid on the surface wave attenuation 
factor. Multiplier ( )11+ αµ  shows effect of the fluid motion. 
However, the magnitude 1Rαµ <<  ( )3~10 .R

−αµ

6. Discussion of results of research into the processes of 
Lamb wave propagation in a metallic plate

We have considered results of research into the Lamb 
wave propagation process along a plate in contact with 
randomly-heterogeneous medium. The importance of the 
results obtained is emphasized by that they could be used to 
develop improved methods and tools to control parameters 
of gas-containing suspensions.

There are objective difficulties for using ultrasonic meth-
ods of control over parameters of gas-containing suspensions 
related to the existence of microdefects at the surface of 
propagation and gas bubbles in the examined liquid. In this 
case, the results of the measurements of an ultrasonic field 
will contain significant error. Study of the process of Lamb 
wave propagation under similar conditions has shown that 
the use of this type of waves makes it possible to overcome 
these disadvantages, which is the benefit of the proposed 
approach. The value of measurement error in this case does 
not exceed permissible limits under different condition of 
the surface of propagation of ultrasonic waves and varying 
content of gas bubbles in the examined medium.

It was established that the attenuation is due to the 
density of the studied medium. Viscosity and speed of a 
gas-containing suspension, for example the iron ore pulp, 
have almost no effect on the magnitude of attenuation of the 
Lamb waves.

From a practical point of view, the results obtained could 
be used for calculation of parameters of measuring channels 
in the systems of ultrasonic control over characteristics of 
shredded materials in the flow of pulp. For example, at ore 
dressing plants, processed ore is categorized based on the 
main chemical-mineralogical and physical-mechanical char-
acteristics. The resulting separation of ore into varieties is 
subsequently used in the planning and organization of ore 
extraction. At the same time, the task is to ensure constant 
characteristics of ore over a certain time interval. Such an 
approach makes it possible to better comply with technology 

regulations for the enrichment process and contributes 
to the improvement of quality of the finished product ‒ 
the concentrate. However, the mining system does not 
at present make it possible to extract the same type of 
ore to provide for a sufficient time for stable operation 
of the processing plants. Hence the relevance of opera-
tional control over characteristics of ore in technolog-
ical processes at an enrichment plant and recognition 
of its mineralogical-technological varieties. In this 
case, the ultrasonic control methods solve the import-
ant task on ensuring that the management systems of 

ore-enrichment receive reliable operational information on 
the characteristics of the material. Thus, there appears an 
opportunity to improve the efficiency of technological pro-
cesses in the mining and metallurgical industry, specifically, 
the enrichment of ore.

The disadvantages of the proposed approach include the 
lack of a possibility to control characteristics of the particles 
of the solid phase of the pulp that belong to a specific size class. 
That is, under present conditions, it is not possible to obtain 
information on the characteristics of solid phase particles of 
a specific size class. This information is important in the for-
mation of control actions in the process of enrichment of ore.

The prospect of the development of present research is to 
study the possibilities of combining the tools for ultrasonic 
(using surface and volumetric waves) and nuclear physical 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
22 2 2 2 2

1 1 1 1 1 2 1 1 1
1

1 1 1 1 1 1 2 1 2 1
1

4 1 2 1

1 , (43)

l

l

f

f f

 ρ
µ µ − ζ µ − + µ − = − µ φ µ µ − ρ 
ρ  − βωµ + αµ φ µ µ + φ µ µ ρ
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measurements. This would make it possible to control the 
characteristics of certain particle size classes that make up 
the solid phase of the pulp. It is necessary to investigate the 
effects of a simultaneous impact of various types of radiation 
on the ore pulp. Further research in this direction will re-
quire taking into consideration numerous disturbing factors 
that differently affect various kinds of energy impact.

7. Conclusions 

1. We have formed a mathematical description of the 
Lamb wave propagation process in a metallic plate. Analyt-
ical expressions were derived for determining the displace-
ment potentials that describe, respectively, the longitudinal 
and transverse waves in a plate with a thickness of 2d at 

frequency ω. The possibility is shown of the existence under 
these conditions of a specific finite number of symmetric 
and antisymmetric Lamb waves. The mentioned waves are 
different one from another in phase and group velocities, as 
well as the distribution of displacements and stresses along 
the plate’s thickness.

2. We have investigated dependence of the Lamb wave 
attenuation on the characteristics of fluid in contact with 
the propagation medium. In the case when the Lamb wave 
propagation medium borders the fluid and the speed of 
sound in liquid Cl is less than speed C of the wave in a plate, 
the Lamb wave will attenuate radiating energy into liquid. It 
was established that the attenuation is due to the density of 
the studied medium. Viscosity and speed of a gas-containing 
suspension, for example iron ore pulp, have almost no effect 
on the magnitude of attenuation of the Lamb waves.
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