- Кирпичев, М. В. Математические основы теории подобия [Текст] / М. В. Кирпичев, П. К. Конаков М.-Л.:Изд-во АН CCCP, 1949. - 98 c.
- Кутателадзе, С. С. Основы теории теплообмена [Текст] / С. С. Кутателадзе. М.-Л.: Машгиз, 1962. 456 с.
- Жукаускас, А. Теплоотдача цилиндра в поперечном потоке жидкости [Текст] / А. Жукаускас, И. Жюгжда. Вильнюс Мок-
- 7. Жукова, Ю. В. Аэродинамика и теплообмен плоскоовального цилиндра при вынужденной конвекции [Текст] / Ю. В. Жукова, А. М. Терех, А. В. Семеняко. Труды V Российской Национальной конференции по теплообмену. – 25-29 октября. – г. Москва. - 2010. - Т.2. - С. 126-128.
- Chang, Paul Separation of Flow. 1st edition [Tekct] / Paul K. Chang Published by Pergamon Press, 1970. 777 pp.
- 9. Жукаускас, А. А. Конвективный перенос в теплообменниках [Текст] / А. А. Жукаускас М.: Наука, 1982. 472 с.
- 10. Baker, C. I. The turbulent horseshoe vortex [Текст] / С. I. Baker // Journal of Wind Engineering and Industrial Aerodynamics. 1980. - V. 6. - N 1-2. - P. 9-23.
- 11. Schlichting, Hermann Boundary Layer Theory. 7th edition [Текст] / Hermann Schlichting (J. Kestin transl.). McGraw-Hill Book Co., Inc., 1979. – 816 pp.
- 12. Дыбан, Е. П. Теплообмен цилиндра конечной длины [Текст] / Е. П. Дыбан, Л. Е. Юшина // Промышленная теплотехника. - 1982. - T.4. - №5. - C.3-8.
- 13. Дыбан, Е.П. Тепломассообмен и гидродинамика турбулизированных потоков [Текст]/ Е. П. Дыбан, Э.Я. Эпик. Киев: Наукова думка, 1985. – 296 с.
- 14. Патент на корисну модель №54180 Україна, МПК G01P5/00. Спосіб візуалізації течії газового потоку [Текст] / Є. М. Письменній, О. І Руденко, О. П. Ніщик, О. М. Терех, О. В. Семеняко; заявник та володар патенту на корисну модель НТУУ "КПІ" – u201006121; заявл. 20.05.2010; опубл. 25.10.2010. Бюл. №20.

Розглянуто статистичні nokasники організації охорони праці на одній з українських атомних електростанцій. 3 використанням пакета STATISTICA, контрольних карт дана оцінка якості, встановлені основні причини його зниження. Зроблено висновки про можливості використання в керуванні якістю діяльності служби охорони праці методів і інструментів, традиційно прийнятих в оцінці якості промислових виробництв і їх продукції

Ключові слова: електроенергетика, охорона праці, статистика, керування якістю

Рассмотрены статистические показатели организации охраны труда на одной из украинских атомных электростанций. С использованием пакета STATISTICA, контрольных карт дана оценка качеству, установлены основные причины его снижения. Сделаны выводы о возможности использования в управлении качеством деятельности службы охраны труда методов и инструментов, традиционно принятых в оценке качества промышленных производств и их продукции

Ключевые слова: электроэнергетика, охрана труда, статистика, управление качеством

1. Введение

Производство электрической энергии на современном этапе развития науки и техники — достаточно УДК [621.31+621.311.25]:658.382.3

ИСПОЛЬЗОВАНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ДЛЯ ОЦЕНКИ ОРГАНИЗАЦИИ ОХРАНЫ ТРУДА В **ЭЛЕКТРОЭНЕРГЕТИКЕ**

Р. М. Трищ

Доктор технических наук, профессор* E-mail trich_@ukr.net

М. Б. Смирнитская

Кандидат технических наук, доцент*

Е. Е. Колотова

Заместитель директора по учебно-воспитательной работе Зуевский энергетический техникум ДонНТУ ул. Станционная, 1, г. Зугрэс, Донецкая обл., Украина, 86783 *Кафедра охраны труда, стандартизации и сертификации

Украинская инженерно-педагогическая академия ул. Университетская, 16, г. Харьков, Украина, 61003

сложный процесс, требующий грамотного подхода с целью обеспечения, в первую очередь, безопасности тем, кто обслуживает мощные энергетические установки. В этой связи проведем оценку качества организации контроля знаний безопасным приемам работы в подразделениях атомных электростанций. Выполнение этих функций возложено на службу охраны труда подразделений, традиционно, относимую к непроизводственным системам. Развитие теории и практики менеджмента, методологии системного анализа в управлении, в последние годы, создают возможности принимать решения по управлению качеством экономических, социальных и других непроизводственных систем, на основании моделей и методов, принятых в управлении техническими (производственными) системами [1-5].

2. Анализ литературных данных и постановка проблемы

Среди известных процедур и средств статистического контроля качества продукции промышленных производств определенное место занимают контрольные карты [6, 7], позволяющие по качеству оценить абсолютный и относительный уровень несоответствий (количество брака), определить причины возникновения несоответствий (оценить влияние оборудования, исходных материалов, человеческого фактора и т.п.), принять необходимые меры и обеспечить контроль эффективности решений по улучшению состояния производства и качества продукции. В настоящее время хорошо разработаны [8] и реализованы в профессиональных статистических пакетах [9], технологии построения: Х , R, S, C, U, T², карт; карт Парето и др. [10-14].

Общность законов функционирования различных систем, универсальность структуры и характера информации о качестве работы предприятий, их отдельных цехов и участков, принципы обработки этой информации с целью разработки управленческих решений, на наш взгляд, позволяют использовать контрольные карты для анализа и регулирования качества вспомогательных систем и подразделений производств. К таким системам вполне может быть отнесена и система управления охраной труда (СУОТ), обеспечивающая надежность производственного процесса.

3. Цель и задачи исследования

В работе поставлена цель оценки качества работы СУОТ в подразделениях атомных электростанций с использованием контрольных карт. В качестве объекта исследования рассмотрен процесс организации контроля знаний персонала эксплуатационного подразделения (ЭП) АЭС по технике безопасности (ТБ): ПТБ, ПРБ, ППБ, ПТЭ, ПУБЭ, ПНБАЭ.

4. Экспериментальные данные и их обработка

Оценка тенденций временных изменений показателя качества работы системы (числа нарушений ТБ в ЭП АЭС) с использованием С карты (рис.1), анализ результатов sigma теста (табл. 1) позволяют сделать следующие выводы.

- 1. В изменениях показателя нарушений правил ТБ ЭП отсутствуют явно выраженные закономерности (тренды).
- 2. Наличие попаданий 2 из 3-х расположенных подряд точек в зону A, наличие попаданий 4 из 5-ти расположенных подряд точек в зону B и выход значений за пределы зоны B могут рассматриваться как индикатор "раннего предупреждения" о начинающемся разладе качества организации системы.

Таблица 1 Результаты сигма теста С карты показателя числа нарушений ТБ в ЭП АЭС

Зоны A/B/C: 3,000/2,000/1,000 * Sigma Кол-во нарушений; С Карта центральная линия: 25,800000 Сигма: 5,079370	От	До
9 значений на одной стороне от центра	OK	OK
6 значений в ряду возрастающих/убывающих	OK	OK
14 альтернативных значений выше/ниже	OK	OK
2 из 3 значений в зоне А или за ее пределами	1	3
/ . T		13
4 из 5 значений в зоне В или за ее пределами		18
15 значений в зоне С	OK	OK
8 значений за пределами зоны С	11	18

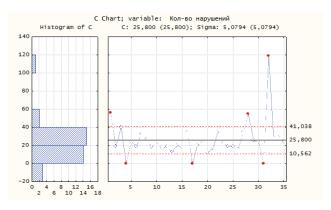


Рис. 1. C карта временных изменений показателя числа нарушений ТБ в ЭП АЭС

С целью выявления распределения факторных признаков (причин) обеспечения качества СУОТ ЭП воспользуемся построением и анализом карт Парето. Для получения количественных оценок критерия, описывающего эффективность работы системы, рассмотрим статистические взаимосвязи отклонений числа нарушений и числа проверок знаний правил ТБ от соответствующих средних по выборке значений. Будем считать, что действие фактора числа проверок знаний ТБ эффективно только в случае, если

$$(m_t - \underline{m}) \le 0 \& (n_{i,t} - \underline{n}_i) \ge 0,$$
 (1)

где \underline{m} , \underline{n}_i - средние по выборке числа нарушений и проверок знаний направлений ТБ.

Диаграмма Парето, соответствующая выборке категорий СУОТ ЭП, когда условие (1) не выполняется, приведена на рис. 2. Итоги карты Парето представлены в табл. 2.

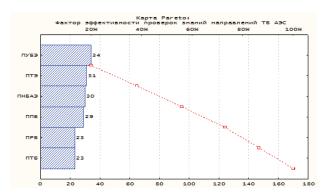


Рис. 2. Карта Pareto: "Фактор эффективности проверок знаний направлений ТБ"

Таблица 2 Итоги карты Pareto : "Фактор эффективности проверок знаний направлений ТБ"

Категория	Значение	Совокупное значение	Процент	Совокупный процент
ПУБЭ	34,00	34,00	20,00000	20,0000
ПТЭ	31,00	65,00	18,23529	38,2353
ПНБАЭ	30,00	95,00	17,64706	55,8824
ППБ	29,00	124,00	17,05882	72,9412
ПРБ	23,00	147,00	13,52941	86,4706
ПТБ	23,00	170,00	13,52941	100,0000

Из приведенных данных следует, что среди основных причин снижения качества организации СУОТ ЭП можно назвать недостатки в планировании и организации проверок знаний по таким направлений ТБ как ПУБЭ, ПТЭ, ПНБАЭ и ППБ.

Выясним, как измениться вклад причин потерь качества работы СУОТ ЭП при учете дополнительных показателей системы. В качестве таких дополнительных оценок может быть рассмотрено отношение числа нарушений ТБ к числу проверок знаний по направлениям ТБ АЭС.

Карта Парето, построенная с учетом введенного показателя качества организации проверок знаний направлений ТБ ЭП АЭС представлена на рис. 3. Соответствующие числовые характеристики карты сведены в табл. 3.

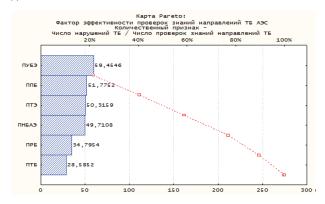


Рис. 3. Карта Pareto: Фактор эффективности проверок знаний направлений ТБ АЭС; Количественный признак: Число нарушений ТБ/Число проверок знаний направлений ТБ

Таблица 3 Итоги карты Pareto: Количественный признак: Число нарушений ТБ/Число проверок знаний направлений ТБ

Категория	Значение	Совокупное значение	Процент	Совокупный процент
ПУБЭ	59,45461	59,4546	21,64842	21,6484
ППБ	51,77516	111,2298	18,85220	40,5006
ПТЭ	50,31594	161,5457	18,32087	58,8215
ПНБАЭ	49,71084	211,2566	18,10055	76,9220
ПРБ	34,79543	246,0520	12,66960	89,5916
ПТБ	28,58525	274,6372	10,40837	100,0000

Из представленной численной и графической информации можно сделать вывод о том, что учет показателя соотношения числа нарушений ТБ и числа проверок знаний по направлениям ТБ АЭС, меняет приоритеты в распределении причин потерь качества работы рассматриваемой системы. Последовательность расстановки направлений изучения и проведения проверок правил ТБ — "ПУБЭ; ППБ; ПТЭ; ПНБАЭ" вместо "ПУБЭ; ПТЭ; ПНБАЭ; ППБ" при краткосрочном планировании мероприятий по ТБ ЭП АЭС может оказаться особенно важной, если учесть, что ущерб от нарушений ТБ на АЭС, как правило, намного превышает затраты, связанные с предотвращением таких нарушений.

Результаты выполненного статистического анализа показателей качества работы СУОТ ЭП АЭС можно обобщить в виде рекомендаций по целесообразной структуре факторных признаков (категорий) СУОТ (табл. 4).

Таблица 4 Структура факторных признаков СУОТ ЭП АЭС

	Структура фак		
Катего- рия	При учете фактора эффективности проверок знаний направлений ТБ АЭС и соотношения числа нарушений ТБ и числа проверок знаний направлений ТБ		Откло- нение
ПУБЭ	20,00000	21,64842	1,65
ЕТП	18,23529	18,32087	0,09
ПНБАЭ	17,64706	18,10055	0,45
ППБ	17,05882	18,85220	1,79
ПРБ	13,52941	12,66960	-0,86
ПТБ	13,52941	10,40837	-3,12

В заключение работы отметим, что использование в управлении качеством деятельности непроизводственных систем АЭС известных методов и инструментов оценки качества промышленной продукции может в значительной мере повысить эффективность менеджмента подразделений, обеспечивающих надежность и культуру энергетических производств.

Литература

- Большаков А.С., Михайлов В. И. Современный менеджмент: теория и практика. 2-е изд., Санкт-Петербург: Питер, 2002.
- Дикань Н.В., Борисенко І.І. Менеджмент: Навч. посібник., К.: Знання, 2008. 389 с.
- Weber, Winfried W. Kulothungan, Gladius (eds.) Peter F. Drucker's Next Management. New Institutions, New Theories and Practices, 2010. ISBN 978-3-9810228-6-5
- Теория и практика менеджмента: учебник. Издание 2-е //Под ред. д.э.н. проф. К.Е. Кубаева. Алматы: аза университеті, 2008. – 486 c.
- Кнорринг В.И. Теория, практика и искусство управления. Учебник для вузов по специальности "Менеджмент". 2-е изд., изм. и доп. - М.: НОРМА - ИНФРА-М, 2001. - 528 с.
- Робертсон Б. Лекции об аудите качества: Пер. с англ. / Под общей ред. Ю.П. Адлера. М.: Редакционно-информационное агентство «Стандарты и качество», 1999.— 375 с.
- Уилер Д., Чамберс Д. Статистическое управление процессами. Оптимизация бизнеса с использованием контрольных карт Шухарта.- М.: Альпина-Бизнес Букс, 2009. - 409 с.
- ГОСТ Р 50779.40-96 Статистические методы. Контрольные карты. Общее руководство и введение.
- Боровиков В. Statistica. Искусство анализа данных на компьютере. СПб.: Питер, 2003. 688с.
- 10. Минько Э.В., Минько А.Э. Менеджмент качества: Учебное пособие. Стандарт третьего поколения. СПб.: Питер, 2013. —
- 11. Фатхутдинов Р.А. Управление конкурентоспособностью организации. 2-е изд., испр. и доп. М.: Эксмо, 2005. 544 с.
- 12. H. Rinne, H-J. Mittag (1995), Statistische Methoden der Qualitätssicherung, Hanser, München; MAS 352:55944(003)
- 13. D. C. Montgomery (2005), Introduction to statistical quality control, Wiley, Hoboken, NJ, USA; BWL 490.5;YC001(005)
- 14. Hawkins, Douglas M.; Olwell, David H. (1998), Cumulative Sum Charts and Charting for Quality Improvement, Springer, MAT 729:YD0003

Розроблено математичну модель теплопередавальної системи для дво- та триходового теплообмінників на основі методу режимних розрахунків. Використання розроблених математичних моделей дасть змогу проводити режимні розрахунки поверхонь нагріву діючих котлів на основі відомих тільки режимних параметрів (зокрема температур теплоносіїв в одному із режимів роботи обладнання), а об'єктні параметри (витрата теплоносіїв, площа і стан поверхонь нагріву) можуть залишатися невідомими.

Ключові слова: теплоенергетичне обладнання, математична модель, режимні розрахунки, параметри, температура, схема руху, теплоносій

Разработана математическая модель теплопередающей системы для двух- и триходового теплообменников на основе метода режимных расчетов. Использование разработанных математических моделей позволит проводить режимные расчеты поверхностей нагрева действующих котлов на основе известных только режимных параметров (в частности температур теплоносителей в одном из режимов работы оборудования), а объектные параметры (расход теплоносителя, площадь и состояние поверхностей нагрева) могут оставаться неизвестными.

Ключевые слова: теплоэнергетическое оборудование, математическая модель, режимные расчеты, параметры, температура, схема движения, теплоноситель

УДК 621.184.4/.5

МАТЕМАТИЧНІ МОДЕЛІ ТЕПЛОПЕРЕ-ДАВАЛЬНОЇ СИСТЕМИ ДЛЯ ДВО-ТА ТРИХОДОВОГО **ТЕПЛООБМІННИКІВ**

I. Р. Галянчук

Старший викладач*

E-mail: i galyanchuk@yahoo.com

М. Я. Кузнецова

Кандидат технічних наук, асистент* E-mail: kuznetsovam83@gmail.com *Кафедра теплотехніки і теплових електричних станцій Національний університет

"Львівська політехніка"

вул. С. Бандери, 12, м. Львів, Україна, 79013