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1. Introduction

Booms of special lifting machines have the form of circu-
lar arches. The use of circular arches is due to the advantages
over rectilinear rods in strength and rigidity. In this regard,
arch elements of crane structures very often have a large
ratio of the axial moments of inertia of cross-sections. In this
case, the design meets the requirements of strength and ri-
gidity, but at the same time, there is a risk of lateral-torsional
buckling. After buckling, the rod experiences two bends and
torsion. Significant cross-section displacements often lead to
various accidents.

The phenomenon of buckling can be prevented by cal-
culation. However, this requires appropriate, sufficiently
accurate and reliable mathematical models of buckling pro-
cesses. At present, theoretical developments of stability of
the simple bending of the circular arch are rudimentary and
do not allow solving important practical problems in the
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needed amount. Thus, the problem of creating computational
models of stability problems of circular arches is relevant and
necessary for practice [1-7].

2. Literature review and problem statement

The problem of stability of the simple bending of recti-
linear beams with sections in the form of a narrow strip has
been posed as early as the 19th century. Much later, the
theory of spatial stability of plane and spatial rods and rod
systems has been generalized [1].

The constructed theory could not be used for a long time
because the corresponding differential equations had variable
coefficients and integration encountered serious mathemati-
cal difficulties [2]. There are known solutions to various prob-
lems of calculating the curves of rods in the form of circular
arches taking into account only bending deformation [3].




This problem has found the effective resolution only with
the advent of a numerical-analytic version of the boundary
element method (BEM). This method allows mathematical-
ly rigorous and exact solution of boundary value problems
for the linear homogeneous and inhomogeneous differential
equations with variable coefficients [4, 5].

Various solutions of differential stability equations are
accumulated for rectilinear rods, while for circular arches there
are no fundamental solution functions for Cauchy problems of
stability of the simple bending. The problems of stability of the
simple bending of circular arches can be solved by means of pro-
fessional packages of the finite element method (FEM) such as
Ansys, Solid Works, Abaqus, etc. At this time, the FEM is the
most common numerical method, has a rather simple algorithm
logic and a large number of arithmetic operations [6]. However,
the lack of an exact stiffness matrix of the problems of stability
of the simple bending of structural elements in the form of
circular arches does not allow obtaining accurate and reliable
results with an arbitrarily large sampling of the structure. The
application of the BEM algorithm compares favorably [7]. It
uses an exact system of differential equations of the problem,
a mathematically rigorous procedure for constructing its solu-
tion, and a very logically simple process of forming a resolving
system of linear algebraic equations of the boundary value
stability problem [8]. In addition, as shown in [9], the BEM al-
lows obtaining exact values of the problem parameters (forces,
displacements, stresses, natural vibration frequencies [10, 11],
buckling forces) both at the boundary and within the region.
Moreover, the BEM has the simplest algorithm logic among
other numerical methods, good convergence of the solution,
high stability of arithmetic operations, and a very small accu-
mulation of rounding errors in numerical operations [12]. At
the same time, the method is characterized by the simplicity of
the algorithm logic [10—12], good convergence of the minimum
error of the solution results and high stability.

In this regard, the literature review logically leads to the
following formulation of the aim and objectives of the study.

3. The aim and objectives of the study

The aim of this paper is to construct a system of funda-
mental orthonormal functions for problems of stability of the
simple bending of circular arches with sections with two or
more axes of symmetry.

To achieve the aim, the following objectives were set:

— to simplify the general differential equations of stability
of circular arches with allowance for the symmetry of their
sections;

— to obtain the resolving ordinary differential equation of
the problems under consideration;

— to construct the systems of fundamental orthonormal
functions of the differential equation for the two most im-
portant cases of the roots of the characteristic equation;

—to present practical recommendations on the appli-
cation of the resulting calculated ratios of boundary value
problems of stability of arches.

4. Development of software

The system of equations of stability of the simple bending
of a circular rod, after taking into account the symmetry of
the section, is reduced to the following form [1]:

Bl (0)+ o (a)+[MZ(a)—%]9” (0)=0:
. (1)
EI 0" (0)-GI,0" (oc)+|:MZ () —Ry}w” (a)=0,

where EI, - rigidity of the section in the horizontal xOz plane;
w(o) — flexural motion of the rod axis along the Oz axis
(Fig. 1); EIL, — sectorial rigidity of the section under the
constrained torsion; R — radius of the axis of the circular rod;
6(o) — angle of torsion of the section around the Ox axis;
My(o) — bending moment in the section caused by a given
transverse load; GI; — rigidity of the section under torsion;
o — angular coordinate of the current section.

Fig. 1. Design scheme of the problem of stability
of a circular rod

It can be seen that the system (1) has variable coefficients
in the form of the bending moment Mz(a). Considering that
this is generally a set of simple functions, the difficulties that
will be encountered in the integration of this system become
obvious.

The problem can be substantially simplified if we use the
numerical-analytical version of the BEM [2-5].

In this method, it is necessary to have a solution of the
Cauchy problem for equations (1), but with constant coef-
ficients. We now describe the procedure for integrating the
simplified system of equations. The initial parameters of the
constrained torsion and bending in the horizontal plane are
as follows:

GI,6(0) — torsion angle, kNmy;

GI1,6"(0) — derivative of the torsion angle, kNm;

GI
Bm (0) = _72[1

k= /% — flexural-torsional characteristic of the sec-

6" (0) — bimoment, kNm?;

. 1

tion, —;

" GI
_T;GW

EI yw(O) — motion of the section towards the Oz axis,
kNm?;

EILw'(0)= EI6(0)
kNm?; A

El w”(0)=-M,(0) — bending moment in the horizontal
plane, kNm;

Elw™(0)=-Q.(0) — transverse force in the horizontal
plane, kN.

These initial parameters and the system of equations (1)
form the Cauchy problem of stability of the plane of the
bending shape of the circular rod. To form fundamental
solutions of the Cauchy problem, we perform a number of
transformations.

My (0)= (0) — flexural-torsional moment, kNm;

— angle of rotation of the section,



From the second equation of the system (1), it follows
that (Mz=const):

1

MEIy
“ R

By double integration of this expression, we obtain a con-
nection between the flexural motion w(o) and the torsion
angle 6(a):

w”(o)= [-E1,0" (0)+GI,0" (o). (2)

1
w(o)= 7}51[—51@9” (o) +GI,0(ar) |+
M,-=r
R
i (Ao+B) 3)
( EI, )’
M,-=r
R
where the integration constants are equal to
El, "
B=| M, ~—* Juwg + 1" (0)~GI,O(0);
E]y ’ 17 ’
A=\ M, == |+ E1,0" (0)~GL,o/(0). (4)

If we substitute @”(a) from (2) into the first equation of
the system (1), we obtain the resolving differential equation
of stability of the simple bending the circular rod:

=285 + 2,83 + 2,0, =0, 5)
where
EI,-EI, EI,-GI, EI
2= v 2= - —;
( E[y) (M El, R
s TR
Gl
2= M, -t (6)

The equation (5) is classified as the sixth-order linear
homogeneous differential equation with constant coeffi-
cients. Its solution can be obtained according to the standard
scheme. The characteristic equation for (5) has the form:

(—2,)e +zt" +2t* =0. @)

Its roots are of various kinds. Consider the two most im-
portant combinations of the roots.
First case.

t,,=0
— valid multiples;

2
N +42, +4z.2,

-2z,

(®)

— two valid roots;

2
Zy +4/ 2. +4zz
i 2 2 173
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q

— two imaginary roots.

The general solution of the equation (5) can be written
in the form:

8(a)=C,+C,-0+C,chao+
+ Cshao+C;-cosbo+Cgsinba, 9)

where

—z, 4425 +4z,2, b 2, +4z; +4z,z, (10)
a=,|—————; b=, |—"F—.
-2z, 2z,

By five-time differentiation of the expression (9), taking
into account the ratios between the initial parameters and
expression (3), we can form a system of linear algebraic equa-
tions for the integration constants C;—Cy:

6(0)
0(0)
11 1 ¢\ | _Bu(0)#
1 a b ||c, Gl,
R | TN B IR TACL
a3 _b3 C4 - GId ’ ( )
A, A, G| M0
A Ay J\ G GI,
Q.(0)
EI

where elements of the coefficient matrix of the equation (11)
have the form:

L (-ELa*+GI,) L (E1,b*+GI,)
53 " Ely ’ 55 " Ely ’
R “ R
a’(-Ela*+GI,) b (EIb*+GI, ) "
Aﬁzi - EI ’ 6 EI] . ( )
M,-=r M, -
R R

The integration constants after solving the system of the
equations (11) are written in the form:

C,= Myo |, x| Baoe |
1_6(0)_xb2—xa2 CE +xb2—xa2 ol |
1 2 y 1 2 d
A a*+b* Q) X+, M o0 |,
C'z_e(())_ycbz—xa2 TE | xp—nd | oI, |
1 2 y 1 2 d
co b | Mo| x| Boope |,
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b Qo | x, B M o |
a(xlb2 —xzaQ) El, a(x1b2 —xzaz) GI, |

C.= a _M-v<0> M _Bmw)kz ;o (13)
> xb*-x,a*| EI xb*-x,a’| GI, |

a’+b’

C,=




where the following are denoted:

. a*(-El,a"+GI,)

! u HL
R
v (ELD +GI,)
Xy = (14)
M, -
R

The constants C;—Cg are substituted
into the expression for the torsion angle
0(a) (9) and then four bending parame-
ters (using the expression (3)) and four
parameters of the constrained torsion re-
lative to the corresponding initial para-
meters can be formed. After rationing of
the fundamental functions, it is conve-
nient to present these expressions in the
matrix form as follows:

El w(ot)
E1,9(0)
Q.(o) |
GI,0(ar)
GIL0'(at)
B, (o)
M, (er)
lo _A13 AM _A17 _A18
1 _Azs Az4 _A27 _Azs
Ay Ay Ay Asg
_ Ay Ay Ag Ay %
_Ass _A54 lo _A57 _Ass
_Aes _As4 1 _A67 _AGS
Ay Ay Ay Ay
Ay Ay Ay Ay
Elyw(O)
EIL¢(0)
«| 2.(0) | (15)
G1,8(0)
GL,8'(0)
B, (0)
M, (0)

From this expression, it follows that
when solving the problems of stability
of circular arches by the BEM, it is
necessary to solve only eight equations,
with an error of less than 1 % [11]. Ac-
cording to the FEM, as the experiment
shows [12], it will be required to derive a
thousand equations, with an error of 5 %
or more.

The fundamental orthonormal func-
tions of the equation (15) take the form:
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The expression (15) is the resolving equation of the BEM
for solving boundary value problems of stability of the simple
bending of structures in the form of individual arches, rings,
ring systems, and combined arch systems.

Second case.

The roots are valid multiple and imaginary:

r'+s'>0; s'<0; ' <0.

by=~N-r*=rt+s*; by=~-r*+Jr'+s*;

p_B g B,
2z, z
ELEI ELGI,  EI,
ATTTEL (T EN R
M - )
’ R ( ’ RJ

(17)
The general solution of the equation (5) takes the form:

8(a)=C, +C,0+C,-cosbo+
+ C, sinb,o.+C; cosb,0.+ C; sin b,0u.

(18)

The integration constants, expressed through the initial
parameters of the equation (11) for this case, have the form:
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The fundamental orthonormal functions of the equa-
tion (15) after all transformations are written in the form:
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These fundamental functions, as well as the expres-
sions (16), serve as the initial mathematical model of stabili-
ty problems of circular arches.

5. Discussion of the proposed approach
to solving stability problems

5. 1. The case when M, =const

This case for circular arches is very rare and is possible
only with the hinge support and loading by concentrated
equal bending moments. In this case, equation (15) can be
used directly for the entire structure using the BEM algo-
rithm [2-6].

5. 2. The case when M, is some function of the angular
coordinate o

This is the most common case for arch structures. Here
it is necessary to have an analytical expression for the Mx(o)
function. This function can be constructed most simply by
the BEM algorithm [5, 6], where the procedure for calcula-
ting the M) function from the existing loads is described
exhaustively. Then the arch is broken into n parts [7-9]. In
each part, the values of the bending moment My are calcu-
lated from the known expression so that the area of the step
figure My is equal to the area of the valid plot My. If this con-
dition is met, then for n>30 almost exact results of critical
loads M,,, F.,, q.r are obtained [10—12].

It should be noted that the conducted studies have
removed the problems of mathematical modeling of very
complex problems of stability of structural elements of lifting
machines.

6. Conclusions

1. When solving the problems of stability of the simple
bending of the arch by the FEM, it is necessary to solve about
1,000 linear algebraic equations. The error of the solution
will be about 5 %. To solve the problems of stability of arches
by the BEM, it will be required to solve only eight equations
and the error of the results will be less than 1 %.

2. The simplified system of differential equations of prob-
lems of stability of the simple bending of rods in the form of
circular arches with variable coefficients is presented. Hori-
zontal motions and angles of torsion of the axis of circular
arches serve as unknowns.

3. The sixth-order ordinary differential equation with con-
stant coefficients for the considered stability problems and use
of the BEM technology is derived. The resulting equation al-
lows constructing an exact analytical solution of the problems
of stability of circular arches according to the known theory.

4. The matrix equation of boundary value problems of
stability of the simple bending of circular arches by the BEM
is formed. This equation makes it possible to substantially
simplify the logic of solving stability problems and obtain
exact values of critical loads.

The analysis of the presented material shows that in
the framework of the algorithm of the numerical-analytical
version of the BEM it is possible to construct the resolving
equation of stability problems of the simple bending of cir-
cular rods. This equation can be applied to the solution of
very complex problems of stability of various structures con-
taining rods, outlined along the circle arch.
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