-0 представленій

досліджується вплив температури на швидкості поширення теплової

і механічної хвиль в узагальненій динамічної

термопружності для півпростору Ключові слова: швидкість хвилі,

термопружність, динамічна задача

скорости распространения тепловой и механической волны в обобщен-

ной связанной динамической задаче термоупругости для полупростран-

Ключевые слова: скорость волны,

In the presented work is investigated

the influence of temperature on thermal and mechanic waves in half-space in a

generalized constrained dynamic task

wave

динамическая

speed,

В представленной работе исследуется влияние температуры на

роботі

задачі

B

зв'язаній

ства

задача

термоупругость,

of thermoelasticity

Keywords:

thermoelasticity, dynamics

многоканальности, сформулированного В.С. Кулебакиным.

Для более эффективного использования выражения (10) можно, например, вместо заданных анали-

Литература

- 1. Одинцов, А.А. Экспериментальные исследования схемы автокомпенсации уходов трехстепенного гироскопа [Текст] / А.А. Одинцов, В.В. Карачун, Р.С. Жук// Вест. Киев. политех. ин-та. Приборостроение.: - Киев, КПИ. – Вып. 8, 1978. – С. 9-13.
- 2. Карачун, В.В. О схеме двухканальной автокомпенсации уходов трехстепенного свободного гироскопа [Текст] / В.В. Карачун // Механика гироскоп. Систем. – Респ. Междувед. научн.-техн. сб.: - Киев, КПИ. – Вып.4, 1985. – С. 35-38.
- Автокомпенсация инструментальных погрешностей гиросистем / [Текст]: монография / С.М. Зельдович, М.И. Малтин-3. ский, И.М. Окон, Я.Г. Остромухов. – Л.: Судостроение, 1976. – 255 с.
- Карачун, В.В. Влияние нестабильности значений параметров гироскопов двухканальных схем на погрешность курсоуказа-4. ния [Текст] / В.В. Карачун, В.Н. Мельник // Восточно-европейский журнал передовых технологий. – 2011. - № 3/7 (51). – C. 4-7.
- Карачун, В.В. Гироскоп направления со структурной избыточностью [Текст] / В.В. Карачун, В.Н. Мельник // Восточно-5. европейский журнал передовых технологий. - 2011. - № 2/7 (51). - С. 51-55.
- 6. Карачун, В.В. Структурная избыточность как средство повышения точности курсоуказания [Текст] / В.В. Карачун, В.Н. Мельник // Восточно-европейский журнал передовых технологий. – 2011. - № 1/3 (49). – С. 52-56.

УДК 539.3

ТЕРМОУПРУГИЕ ВОЛНЫ И СКОРОСТЬ ИХ РАСПРОСТРАНЕНИЯ В **ДИНАМИЧЕСКОЙ ЗАДАЧЕ** ВЗАИМОСВЯЗАННОЙ ТЕРМОУПРУГОСТИ

А.Д. Шамровский Доктор технических наук, профессор*

Г.В. Меркотан

Аспирант Контактный тел.: 066-733-98-05 E-mail: merkatan@ukr.net *Кафедра программного обеспечения автоматизированных систем Запорожская государственная инженерная академия пр. Ленина, 226, Запорожье, Украина, 69000

Рассматривается задача о распространении плоских механических и тепловых волн в полупространстве. В теории упругости известны скорости распространения тепловой и механической волн. При взаимном влиянии температурной и механической волны характер движения и скорости волн меняются вследствие взаимного их влияния друг на друга. Найдены числовые значения термоупругих волн и приведено числовое сравнение с чисто упругими скоростями распространения механической (поперечной) и тепловой (продольной) волны.

Постановка задачи термоупругости в напряжениях рассматривалась в [3], причем решение было получено методом интегральных преобразований. В представленной статье задача решается методом асимптотикогруппового анализа [4].

Постановка задачи

Для определения поля температур и деформаций в рассматриваемом полупространстве воспользуемся системой уравнений:

$$\begin{cases} \sigma_{x} = \rho u_{tt} \\ \sigma = (\lambda + 2\mu)u_{x} - k\rho S \\ S = \eta^{-1}(T - T_{0}) + k\eta^{-1}u_{x} \\ -q_{x} = \rho T_{0}S_{t} \\ \tau_{r}q_{t} + q = -\lambda_{t}T_{x} \end{cases}$$
(1)

Уравнения системы (1) описывают соответственно уравнение движения, соотношение между напряжением и деформацией, плотность энтропии, плотность теплового потока, а также уравнение теплопроводности, которое учитывает скорость распространения тепла.

Здесь $k = T_0 (3\lambda + 2\mu) \alpha_T c^{-1} \rho^{-1}$, $\eta = T_0 c^{-1}$, $T = T_0 c^{-1}$,

температура среды, и – перемещение вдоль оси x, σ – напряжение, S – энтропия на единицу массы, q – тепловой поток, ρ – плотность, λ , μ – адиабатические коэффициенты Ламе, τ_r – время релаксации теплового потока, λ_r - коэффициент теплопроводности изотропного тела, α_T - температурный коэффициент линейного расширения изотропного тела, с – теплоемкость.

Разрешим систему (1) относительно температуры T(x, t) и напряжения $\sigma(x, t)$. Продифференцируем перм вые три уравнения, чтобы исключить перемещение u(x, t) и энтропию S(x, t).

$$\sigma_{xx} = \rho u_{ttx}$$

$$\sigma_{tt} = (\lambda + 2\mu) u_{xtt} - k\rho S_{tt}$$

$$S_{tt} = \eta^{-1} T_{tt} + k\eta^{-1} u_{xtt}$$
(2)

Подставив значение величины $S_{\rm tt}$ во второе из полученных уравнений, получим:

$$\sigma_{tt} = (\lambda + 2\mu)u_{xtt} - k\rho\eta^{-1}T_{tt} - k^2\rho\eta^{-1}u_{xtt}$$

или

$$\sigma_{tt} = \left(\lambda + 2\mu - \frac{k^2 \rho}{\eta}\right) u_{xtt} - k\rho \eta^{-1} T_{tt}$$

Учитывая, что
$$u_{ttx} = \frac{\sigma_{xx}}{\rho}$$
, получим:
 $\rho \sigma_{tt} = \left(\lambda + 2\mu - \frac{k^2 \rho}{\eta}\right) \sigma_{xx} - \frac{k\rho}{\eta} T_{tt}$ (3)

Из последних двух уравнений системы (1) исключим тепловой поток q(x,t). Продифференцируем по времени уравнение, описывающее плотность теплового потока, системы (1).

$$-q_{xt} = \rho T_0 S_1$$

Также продифференцируем по х последнее уравнение системы (1).

$$\tau_{\rm r} q_{\rm tx} + q_{\rm x} = -\lambda_{\rm t} T_{\rm x}$$

или

$$\tau_{\rm r} q_{\rm tx} + \rho T_0 S_{\rm tt} = -\lambda_{\rm t} T_{\rm xx}$$

Тогда получим:

$$\tau_{\rm r} \rho T_0 S_{\rm tt} + \rho T_0 S_{\rm t} - \lambda_{\rm t} T_{\rm xx} = 0 \tag{4}$$

Найдем значение S_t через Т и σ , для этого исключим из второго и третьего уравнения системы (1) величину $u_x(x, t)$.

$$S_{t} = \frac{k\eta^{-1}}{\left(\lambda + 2\mu - \frac{k\rho^{2}}{\eta}\right)}\sigma_{t} + \frac{\left(\lambda + 2\mu\right)\eta^{-1}}{\left(\lambda + 2\mu - \frac{k\rho^{2}}{\eta}\right)}T_{t}$$

Учитывая (11) исключим значения энтропи
и S_t и S_{tt} в (2.1.4). тогда получим:

$$\frac{\tau_{\rho} T_{0}}{\eta} T_{tt} + \frac{k\rho^{2}}{\eta^{2}} \frac{\tau_{r} k T_{0}}{\left(\lambda + 2\mu - \frac{k^{2}\rho}{\eta}\right)} T_{tt} + \frac{\tau_{r} \rho^{"}_{0} k}{\eta} \frac{1}{\left(\lambda + 2\mu - \frac{k^{2}\rho}{\eta}\right)} \sigma_{tt} + \frac{\rho^{"}_{0} k}{\eta \left(\lambda + 2\mu - \frac{k^{2}\rho}{\eta}\right)} \sigma_{tt} + \frac{\rho T_{0} (\lambda + 2\mu)}{\eta \left(\lambda + 2\mu - \frac{k^{2}\rho}{\eta}\right)} T_{t} - \frac{\lambda_{t} \eta}{\eta} T_{xx} = 0$$

$$(5)$$

Приведя подобные в (5), получим:

$$\left(\lambda + 2\mu - \frac{k^2 \rho}{\eta}\right) T_{xx} - \frac{\rho_{,u}^{,u} k}{\lambda_t \eta} \left(\tau_r \sigma_{tt} + \sigma_t\right) = \frac{\rho T_0(\lambda + 2\mu)}{\lambda_t \eta} \left(\tau_r T_{tt} + T_t\right)$$
(6)

Мы перешли от системы уравнений (1) к системе из двух уравнений (3) и (6).

$$\begin{cases} \left(\lambda + 2\mu - \frac{k^2 \rho}{\eta}\right) \sigma_{xx} - \frac{k \rho^2}{\eta} T_{tt} = \rho \sigma_{tt} \\ \left\{\left(\lambda + 2\mu - \frac{k^2 \rho}{\eta}\right) T_{xx} - \frac{\rho''_{0} k}{\lambda_t \eta} (\tau_r \sigma_{tt} + \sigma_t) = \frac{\rho T_0 (\lambda + 2\mu)}{\lambda_t \eta} (\tau_r T_{tt} + T_t) \end{cases}$$

$$\tag{7}$$

Полученная система уравнений (7) описывает поля температур и деформаций в термоупругом пространстве, а также их взаимное влияние.

Введем безразмерные переменные:

$$\begin{aligned} \mathbf{x} &= \frac{\lambda_{\mathrm{T}}}{c_{\mathrm{1}}\rho c} \mathbf{\bar{x}}; \ \mathbf{t} = \frac{\lambda_{\mathrm{T}}}{c_{\mathrm{1}}^{2}\rho c} \mathbf{\bar{t}}; \ \mathbf{T} = c_{\mathrm{1}}\sqrt{\eta} \cdot \mathbf{\overline{T}}; \ \sigma = \rho c_{\mathrm{1}}^{2} \overline{\sigma} \ \beta = \frac{k}{\rho T_{\mathrm{0}}} \\ c_{\mathrm{1}}^{2} &= \frac{(\lambda + \mu)}{\rho} \qquad \tau_{\mathrm{0}} = \frac{c_{\mathrm{1}}}{c_{\mathrm{q}}} \end{aligned}$$

 $\tau_{_0} = \frac{c_{_1}}{c_{_q}}~-$ отношение скорости звуковой волны к

скорости тепловой волны.

с_l - скорость распространения звуковой (продольной) упругой волны.

сq - скорость распространения тепловой (поперечной) упругой волны.

Тогда уравнения системы (3) примут вид:

$$\begin{cases} \left(\lambda+2\mu-\frac{k^{2}\rho}{\eta}\right)\frac{\rho a^{4}}{\left(\beta\eta\right)^{2}}\overline{T}_{\overline{x}\overline{x}}-\frac{k\rho^{2}}{\eta}\frac{a^{5}\sqrt{\eta}}{\left(\beta\eta\right)^{2}}\overline{T}_{\overline{t}\overline{t}}=\frac{\rho^{2}a^{6}}{\left(\beta\eta\right)^{2}}\overline{\sigma}_{\overline{t}\overline{t}}\\ \left\{\lambda+2\mu-\frac{k^{2}\rho}{\eta}\right)\frac{a^{3}}{\left(\beta\eta\right)^{2}}\overline{T}_{\overline{x}\overline{x}}-\frac{\rho^{*}}{\lambda_{t}}\frac{a^{k}}{\eta}\left(\frac{\tau_{t}\rho a^{6}}{\left(\beta\eta\right)^{2}}\overline{\sigma}_{\overline{t}\overline{t}}+\frac{\rho a^{4}}{\beta\eta}\overline{\sigma}_{\overline{t}}\right)=\frac{\rho T_{0}\left(\lambda+2\mu\right)}{\lambda_{t}\eta}\left(\frac{\tau_{t}a^{5}\sqrt{\eta}}{\left(\beta\eta\right)^{2}}\overline{T}_{\overline{t}\overline{t}}+\frac{a^{3}\sqrt{\eta}}{\beta\eta}\overline{T}_{\overline{t}}\right)$$

$$\tag{8}$$

Введем безразмерный параметр связности

 $\varepsilon = \delta^2 = \frac{\alpha_{\rm T}^2 T_0 (3\lambda + 2\mu)^2}{(\lambda + 2\mu)c\rho}$

Выполнив некоторые элементарные преобразования в системе (8) и опустив черточки над переменными, получим систему уравнений:

$$\begin{cases} \frac{1}{1-\delta^2}\sigma_{tt} + \frac{\delta}{1-\delta^2}T_{tt} = \sigma_{xx} \\ \frac{\delta\tau_0^2}{1-\delta^2}\sigma_{tt} + \frac{\tau_0^2}{1-\delta^2}T_{tt} = T_{xx} - \frac{\delta}{1-\delta^2}\sigma_t - \frac{1}{1-\delta^2}T_t \end{cases}$$
(9)

Предполагается, что на границе полупространства мгновенно приложены либо постоянное напряжение, либо постоянная температура.

Следует отметить, что полагая сq $\rightarrow \infty$, то есть скорость распространения тепла бесконечна, получаем значение параметра $\tau 0=0$, следовательно, из (9) получаем математическую модель классической задачи термоупругости (без учета скорости распространения тепла). Если же положить параметр связности $\varepsilon=0$, то получаем несвязанную задачу термоупругости, в которой напряжение и температура рассматриваются отдельно.

Решение

Структура системы уравнений (9), описывающая задачу распространения механических и тепловых волн в полупространстве, такова, что в ней явно не выделены волновые операторы, поэтому необходимо решать задачу о собственных числах, чтобы выделить волновые операторы.

Запишем уравнение (5) для случая отброшенных первых производных:

$$\begin{cases} \frac{1}{1-\delta^2}\sigma_{tt} + \frac{\delta}{1-\delta^2}T_{tt} = \sigma_{xx} \\ \frac{\delta\tau_0}{1-\delta^2}\sigma_{tt} + \frac{\tau_0}{1-\delta^2}T_{tt} = T_{xx} \end{cases}$$
(10)

Введем обозначения: $a_{11} = \frac{1}{1 - \delta^2}, \ a_{12} = \frac{\delta}{1 - \delta^2}, \ a_{21} = \frac{\delta \tau_0}{1 - \delta^2}, \ a_{22} = \frac{\tau_0}{1 - \delta^2}$

$$\partial_x^2 = \frac{\partial^2}{\partial x^2}, \quad \partial_t^2 = \frac{\partial^2}{\partial t^2}$$
 (11)

Это позволяет переписать систему уравнений (1) в виде:

$$\begin{aligned} \partial_{t}^{2} \left(a_{11} \sigma + a_{12} T \right) &= \partial_{x}^{2} \sigma \\ \partial_{t}^{2} \left(a_{21} \sigma + a_{22} T \right) &= \partial_{x}^{2} T \end{aligned}$$
 (12)

Найдем собственные числа и вектора матрицы А, компонентами которой являются коэффициенты :

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
(13)

Собственные числа матрицы А вычисляются по формулам:

$$\lambda_{1,2} = \frac{a_{11} + a_{22} \pm \sqrt{\left(a_{11} - a_{22}\right)^2 + 4a_{12}a_{21}}}{2}$$
(14)

а собственные вектора являются столбцами матрицы:

$$U = \begin{pmatrix} a_{12} & a_{12} \\ \lambda_1 - a_{11} & \lambda_2 - a_{11} \end{pmatrix}$$
(15)

Запишем уравнения (12) в матричной форме:

$$\partial_t^2 A X = \partial_x^2 X, \quad X = \begin{pmatrix} \sigma \\ T \end{pmatrix}$$
 (16)

Выполним преобразование:

$$X = UY, \quad Y = \begin{pmatrix} f \\ g \end{pmatrix}$$
 (17)

Здесь f, g – новые искомые функции. Подставляя (17) в (16) получаем:

- 0

- 0

$$\partial_t^2 A U Y = \partial_x^2 U Y \tag{18}$$

Умножая (18) слева на обратную матрицу U⁻¹ имеем:

$$\partial_t^2 U^{-1} A U Y = \partial_x^2 Y \tag{19}$$

Учитывая равенство:

$$\mathbf{U}^{-1}\mathbf{A}\mathbf{U} = \mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix}$$
(20)

приходим к матричному уравнению:

$$\partial_x^2 \Lambda Y = \partial_t^2 Y \tag{21}$$

В развернутой форме это уравнение дает два скалярных уравнения:

$$\lambda_1 \partial_t^2 f = \partial_x^2 f \quad \lambda_2 \partial_t^2 g = \partial_x^2 g \tag{22}$$

Введем обозначения:

$$\lambda_1 = \frac{1}{a_1^2}, \ \lambda_2 = \frac{1}{a_2^2}$$
(23)

переходя к стандартным формам волновых уравнений:

$$a_1^2 \partial_x^2 f - \partial_t^2 f = 0$$
 (24)

$$a_2^2 \partial_x^2 g - \partial_t^2 g = 0$$

Таким образом, мы заменили два связанных уравнения (10) на систему из двух независимых уравнений (24). Решая уравнения (24) относительно функций f и g, мы можем вернуться к прежним искомым функциям при помощи преобразования (17), которое в развернутой форме имеет вид:

$$\sigma = a_{12}t + a_{12}g$$
(25)

$$T = (\lambda_1 - a_{11})f + (\lambda_2 - a_{11})g$$

Кроме матрицы А, рассмотрим также матрицу В, состоящую из коэффициентов правой части системы (9):

$$B = \begin{pmatrix} 0 & 0 \\ -a_{12} & -a_{11} \end{pmatrix}$$
(26)

Это позволяет переписать уравнения в следующей матричной форме:

$$\partial_{t}^{2}AX = \partial_{x}^{2}X + \partial_{t}BX$$
(27)

Подставим в (27) преобразование (17), получим:

$$\partial_t^2 AUY = \partial_x^2 UY + \partial_t BUY$$
 (28)

Умножая (28) слева на U⁻¹ и вводя обозначение:

$$D = U^{-1}BU$$
 (29)

имеем:

$$\partial_{t}^{2}\Lambda Y = \partial_{x}^{2}Y + \partial_{t}DY$$
(30)

Вычислим матрицу D:

$$U^{-1}B = \begin{pmatrix} \frac{\lambda_2 - a_{11}}{a_{12}(\lambda_2 - \lambda_1)} & -\frac{1}{\lambda_2 - \lambda_1} \\ -\frac{\lambda_1 - a_{11}}{a_{12}(\lambda_2 - \lambda_1)} & \frac{1}{\lambda_2 - \lambda_1} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -a_{12} & -a_{11} \end{pmatrix} = \begin{pmatrix} \frac{a_{12}}{\lambda_2 - \lambda_1} & \frac{a_{11}}{\lambda_2 - \lambda_1} \\ -\frac{a_{12}}{\lambda_2 - \lambda_1} & -\frac{a_{11}}{\lambda_2 - \lambda_1} \end{pmatrix}$$
(31)

$$D = U^{-1}BU = \begin{pmatrix} \frac{a_{12}}{\lambda_2 - \lambda_1} & \frac{a_{11}}{\lambda_2 - \lambda_1} \\ -\frac{a_{12}}{\lambda_2 - \lambda_1} & -\frac{a_{11}}{\lambda_2 - \lambda_1} \end{pmatrix} \begin{pmatrix} a_{12} & a_{12} \\ \lambda_1 - a_{11} & \lambda_2 - a_{11} \end{pmatrix} = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix}$$
(32)

где:

$$d_{11} = -d_{21} = \frac{(a_{12})^2 + a_{11}(\lambda_1 - a_{11})}{\lambda_2 - \lambda_1}, \quad d_{12} = -d_{22} = \frac{(a_{12})^2 + a_{11}(\lambda_2 - a_{11})}{\lambda_2 - \lambda_1}$$
(33)

В развернутом виде матричное уравнение заменяется на два уравнения:

$$\lambda_1 \partial_t^2 f = \partial_x^2 f + d_{11} \partial_t f + d_{12} \partial_t g \ \lambda_2 \partial_t^2 f = \partial_x^2 f + d_{21} \partial_t f + d_{22} \partial_t g$$
(34)

С учетом (23) окончательно имеем:

$$a_{1}^{2}\partial_{x}^{2}f - \partial_{t}^{2}f = d_{1}\partial_{t}f + d_{2}\partial_{t}g \ a_{2}^{2}\partial_{x}^{2}g - \partial_{t}^{2}g = -d_{1}\partial_{t}f - d_{2}\partial_{t}g$$
(35)
rge $d_{1} = -a_{1}^{2}d_{11}, \ d_{2} = -a_{2}^{2}d_{12}.$

Следует отметить, что теперь мы имеем две функции f(x,t) и g(x,t), каждая из которых описывает фронт продольной и фронт поперечной волны. Кроме того мы получили конкретные значения скоростей распространения продольной (a₁) и поперечной (a₂). В отличие от c₁ и c_q, которые являются чисто упругими скоростями, то есть описывают значения скоростей без учета влияния температуры, новые полученные значения скоростей фронтов волн a₁ и a₂ учитывают тепловое влияние на распространение волн.

После решения уравнений (35) вновь возвращаемся к исходным искомым функциям при помощи преобразований (25).

Для решения полученных уравнений (35) применяем методику асимптотико-группового анализа[4].

Наиболее интересными являются задачи о внезапно приложенном на границе напряжении, либо температуре. При этом будет $\sigma_l \neq 0$ и (или) $T_l \neq 0$, и $\gamma = 0$, а также $\sigma_i = 0$, $T_i = 0$ (i=2,3,..).

Результат

В процессе перехода от системы уравнений (1) к системе волновых уравнений (35) мы разделили две функции, описывающие распространение фронта тепловой волны f(x,t) и распространение фронта температурной волны g(x,t). А также нашли значения новых термоупругих скоростей распространения фронтов тепловой и температурной волны a_1 и a_2 . В отличие от скоростей чисто упругих волн эти значения учитывают взаимное влияние распространения тепловой и температурной волн. Ниже приведена таблица полученных данных для некоторых металлов и сплавов.

Таблица 1

Значения реальных скоростей фронтов продольных и поперечных упругих волн, их приведенные безразмерные значения, а также значения скоростей фронтов термоупругих волн.

	0	0		c ₁	cq		
Материал	c ₁ *10 ⁵	c _q *10 ³	τ_0	IDUDOJOU	TRUBOROU	a ₁	a ₂
Алюминиевый сплав литей-				приведен.	_приведен.		
ный	6,1802	4,4358	<u>1,3933</u> 3,0353	1,0000	<u>0,7177</u> 0,3295	1,03381	0,70128 0,32785
Бетон	2,6131	0.8600	-		-	1.01502	-
	- 2,7023	1,1024	2,4513	1,0000	0,4079	1,01505 -	0,40519
	6,1660	1,6792			0,2723	1,01386	0,27131
Гранит, мрамор	-	-	3,6721		-	-	-
	6.0070	4 40 40	(2200	4 0000	0.000/	4.04044	0.0007/
	6,0970	1,4049	-4,3399	1,0000	0,2304	1,01311	0,22974
Дюралюминий катаный	5,8534	3,9528	1,4808	1,0000	0,6753	1,02991	0,66230
Каучук	0,2008	0,1841	1,0911	1,0000	0,1687	1,07344	0,86245
Кварцевая нить	5,4278	2,4626	2,2041	1,0000	0,4537	1,01837	0,45003
Латунь холоднотянутая про- катная	3,8347	2,6247	1,4610	1,0000	0,6845	1.03068	0,67078
Латунь корабельная канатная	4 4273	3 3211	1 3331	1 0000	0.7501	1 03746	0.73035
Медь холоднотянутая про-	4,474	0,0211	1,0001	1,0000	0.0745	1,00740	0,0000
Сринон	4,4171	<u>2,9659</u>	1,4893	1,0000	0,5060	1,02960	0,65874
Свинец	1,5061	0,0020	1,0445	1,0000	0,3000	1,02320	0,39921
Серебро	3,7353 5,0465	2,8603 2,9439	1,3059 1,7142	1,0000	0,7657 0,5834	1,03947	$\begin{array}{c c} 0.74410 \\ 0.57556 \end{array}$
Carrie						1 00080	
Стекло	-	-	-		-	1,02380	-
	4,7164	2,3333	2,0213	1,0000	0,4947	-1,01981	0,49002
					0,0057		
Титан	1,9213	1,3175	1,4583	1,0000	0 7983	1,03079	0,67198
			1,2020		0,7505		
Фосфористая бронза катаная	2,4721	1,9736 -	-		-	1,04434 -	0,77217
	- 1.5939	1.2725	1.2526	1.0000	0.7984	1.04434	- 0.77217
	0.5050	0.0000	1 000 0	4.0000	0.0450	4.00505	0.00050
Цинк катаный	3,7379	2,3023	1,6236	1,0000	0,6159	1,02567	0,60658
Чугун белый, серый	4.4132	2.6839	1.6443	1.0000	0.6082	1.02520	0.59921
	,	,	,	,	,	,	,
				c1	<u></u>		
Некоторые маркированные	c1 *10 ³	$cq^{*}10^{3}$	τ0	01	сq	a1	a2
				приведен.	приведен.		
Бронза БрМц5 (для топок	3,6677	1,1212	3,2713	1,0000	0,3057	1,01452	0,30436
			0.4000				
оронза брумцэ-1, брОФ6.5- 0.15, БрОЦ4-3	3,1823	1,0179	3,1262	1,0000	0,3196	1,01482	0,31839
· · ·	5,4550	3,5711	1,5275		0,6547	1,02830	0,64307
Стали хромоникелевые	-	-	-	1,0000	-	-	-
	5 0500	0.4440			0.0510	4 00000	
Сталь 02Н18К9М5Т (ЭП637А;	5,2566	3,4412	1,5275		0,6546	1,02830	0,64307
BKC-210), 03H18K8M5T	5,4274	3,5531	1,5275	1,0000	0,6547	1,02830	0,64307
<u>Сталь 14ХГН</u>	5,8564	3,8339	1,5275	1,0000	0,6547	1,02830	0,64307

В таблице 1 показаны значения чисто упругих и термоупругих скоростей распространения тепловых и механических волн для известных экспериментальных данных. В пятой и шестой колонках приведенные скорости фронтов тепловой и механической волн. Сравнивая приведенные чисто упругие скорости с полученными термоупругими скоростями, видим, что одна волна становится количественно больше, а другая – меньше, то есть происходит процесс диссипации скоростей обеих волн.

Выводы

Получена система уравнений в напряжениях, описывающая движение тепловых и механических волн в однородном полупространстве. Полученная система уравнений приведена к виду волновых уравнений с помощью ортогональных преобразований. Получены функции, описывающие движение фронтов тепловых и механических волн. Найдены скорости движения этих волн, которые под влиянием друг друга имеют уже другие числовые характеристики по сравнению с аналогичными скоростями чисто упругих волн (без учета влияния температуры).

Для решения поставленной задачи применен метод асимптотико-группового анализа.

Проведен количественный анализ для скоростей движения фронтов волн в различных термоупругих средах. Числовые значения скоростей волновых и тепловых волн необходимы для изучения поведения термоупругих сред при внезапном воздействии на грани-

Литература

1. Коваленко А. Д. Введение в термоупругость. – Киев: Наукова думка, 1965 г. – 204с.

-0

- 2. Подстригач Я.С., Коляно Ю.М. Обобщенная термомеханика. Киев: Наукова думка 1976 г. с. 115 168.
- Кукуджанов В.Н. Динамические задачи взаимосвязанной термоупругости. / Кукуджанов В.Н., Острик А.В. // нститут проблем механики, «Наука», М., 1988 г. – с. 125 – 130.
- Шамровский А.Д. Асимптотико-групповой анализ дифференциальных уравнений теории упругости. // ЗГИА, 1997 г. с. 20 – 136.

Розглянуті питання впливу пластичної деформації при звичайній і вібраційній обробці на величину зміцнення

Ключові слова: зміцнення, дислокації, напружений стан

Рассмотрены вопросы влияния пластического деформирования при обычной и вибрационной обработке на величину упрочнения

Ключевые слова: упрочнение, дислокации, напряженное состояние

The questions of influence of flowage are considered at ordinary and oscillation treatment on the size of work-hardening

Keywords: work-hardening, distributions, tense state

-0

УДК 621.9

К ВОПРОСУ ВЛИЯНИЯ ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ НА ПРОЧНОСТЬ ДЕТАЛЕЙ

А.А. Дудников Профессор, заведующий кафедрой* Контактный тел.: 095-515-55-75

А.И. Беловод Кандидат технических наук, доцент* Контактный тел.: 050-662-89-13

> Р.П. Решитько Магистрант*

В.В. Шевченко

Магистрант *Кафедра ремонта машин и технологии конструкционных материалов

Полтавская государственная аграрная академия

ул. Сковороды, 1/3, г. Полтава, Украина, 36003 Контактный тел.: (0532) 22-29-81