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1. Introduction

The software development practice and the trends in 
working out methodologies for managing IT projects show 
that the software testing issues draw the ever-growing 
attention. The problems of software testing are of especial 
importance for present-day computers and computerized 
systems of critical application (CSCA).

The software development experience shows that secu-
rity testing is one of the most complicated and important 
types of testing. It becomes especially important in the 
context of insistent cyberthreats of various kinds associated 
with vulnerability of software codes and growth of risks of 
negative impact of software failures on the overall of the 
CSCA operation process.

According to expert data [1, 2], the time of testing soft-
ware security can take up to 35 % of the total testing time. 
However, these time costs are not always justified. Besides, 
such a long time does not guarantee sufficient complete-
ness of tests and the specified level of the CSCA software 
security. Therefore, nowadays, evaluation of quality of the 
software security tests requires constant care.

The check based on the models of corresponding algo-
rithms is the most acceptable approach to assessing test 

quality. However, the problem of model conformity to the 
process under consideration becomes of primary importance. 
That is why the issue of developing alternative mathematical 
models of the testing algorithm that meet conformity re-
quirements as considered in this paper is topical.

2. Literature review and problem statement

Quality of the software security tests is discussed in 
works of many contemporary scientists. It is shown in [3] 
that the best result of testing security of the CSCA software 
can be achieved by an utmost approach to and complying 
with the points of the software product specification. Au-
thors of paper [4] bring up a question of necessity of model-
ing the software security tests. At present, there are methods 
developed for generating functional and other tests that are 
as close as possible to the specification requirements [5]. 
Also, theoretically grounded ways of improving effectiveness 
of software testing are offered in a number of studies. For 
example, features of software for mobile communication net-
works are taken into account in [6]. Issues of testing quality 
evaluation for boundedly nondeterministic systems are con-
sidered in [7]. However, most of these works do not take into 
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consideration the specifics and experience of testing security 
of the CSCA software. Therefore, the issues of mathematical 
formalization of the testing process and, accordingly, devel-
opment of the mathematical model of security algorithm of 
the СSCA software testing remain unresolved. At the same 
time, it is of fundamental importance to take into account 
features of the software security testing process. As shown 
in [8], one of the features of the software security testing 
process is non-specificity of the test techniques in the course 
of solving the problems posed. This feature is determined by 
the fact that the tester most often plays the role of a hacker 
and starts various non-standard manipulations with the 
software product. Such manipulations include, for example, 
the following:

– attempts to mouse out the password by using external 
means;

– attacking systems by using special utilities that ana-
lyze security;

– DOS attacks;
– intentional embedding of errors with further penetra-

tion into the system in the course of its recovery;
– browsing unclassified data in the hope of finding a key 

to log into the system.
It is these non-specific techniques in combination with 

an accumulated knowledge of main types of the CSCA 
software vulnerability that put the test cases in a fuzzy con-
formance with the existing software product specification. 
Such a fuzzy conformance of the test cases with the specifi-
cation requirements is called “conformality” [9].

In a semantic description of the simulated system, it is 
necessary to take into cpnsideration the fact that obser-
vations of the tested software product can be divided into 
two types: observations at a specified impact of the action 
performed by the test and observations of the action failure.

Thus, semantics of interaction between the CSCA soft-
ware security test and the software can be defined by the al-
phabet of external actions. Strategies for implementing such 
an interaction are described in [10]. Features of the semantic 
description of the models for CSCA are given in [11].

When setting the problem of mathematical formalization 
of the CSCA software testing algorithm, the following fac-
tors should be considered [12]:

A. Interaction of the tester with the software tested 
should be safe for the CSCA.

B. Interaction with the software product allows one to 
get information on its capabilities. To this end, it is possible 
to introduce some restrictions to the interaction semantics, 
specification, and implementation. Given the availability of 
additional (nonspecific) test capabilities, these conditions 
appear to be sufficient to provide a certain level of software 
security in a finite time.

C. Specification, semantics, and implementation of the 
functional are finite.

D. Repetition of the same test action in the same state 
of the software can bring about behavior variants (the con-
dition of nondeterminism). For completeness of testing, it is 
necessary to check all implementation transitions given in 
the specification. To do this, the mathematical model must 
meet a number of conditions:

– adequate mathematical description of the procedure of 
the implementation restart (restarting the test) in some of 
its states (the presence of restart transitions leading to the 
initial state which are taken into account in determining the 
tight coupling);

– stabilization of the initial state of implementation or at 
least formalization of one state achievable in the safe speci-
fication route;

– separation of complete and partial checks in the pro-
cess of security testing;

– visually understandable representation of the testing 
process.

E. The model being developed should adequately reflect 
the testing procedure.

F. The constructed mathematical model of the testing 
algorithm should ensure calculation of statistical character-
istics of multi-iteration testing procedures.

The graphic-analytical models of complicated systems 
satisfy the formulated requirements.

3. The aim and objectives of the study

The study objective was to develop alternative mathe-
matical models of the testing algorithm that meet the ade-
quacy requirements and provide solution of the problem of 
estimating the algorithm effectiveness.

To achieve the objective, the following tasks were set:
– to develop a mathematical model of the testing algo-

rithm based on semi-Markov graphs;
– to develop a mathematical model of the testing algo-

rithm based on the method of probability-time graphs.

4. Mathematical model of the testing algorithm based on 
the semi-Markov graphs

Conventional technologies for analyzing the semi-Mar-
kov systems are limited to calculation of the final distribu-
tion of probabilities of the system states using the formulas:
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j j
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is the mean time of residence in the state i before leaving; 

iπ  is the stationary probability of residence in the state i,  
i=1, 2,...,n, the set of which is sought by solving a vector-ma-
trix equation
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The final probabilities are found from solution of the giv-
en system. However, a deeper investigation of the process is 
necessary rather often, for example, finding the law of distri-
bution of the time interval before falling into any state of the 
system. To solve the corresponding problems, the apparatus 
of interval-transition probabilities is used.

As is well known, the semi-Markov process (SMP), dif-
fers from the Markov process in that the law of distribution 
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of the time of residence in each of the states is not necessarily 
exponential but can be arbitrary.

There are several ways of specifying semi-Markov pro-
cesses [13, 14]. At first, let us consider the method the least 
demanding in terms of the amount of information used. As-
sume that the SMP is defined if the following is given:

1) the set E of possible states and the process transitions;
2) the matrix ( )( )ijQ t  of independent functions of distri-

bution of the time of the process residence in the i-th state 
before transition to the j-th state, ,i EÎ  ;j EÎ

3) the initial state of the process at time t=0. ( )( )ijQ t  is 
the function of distribution of the length of residence in i be-
fore transition to j provided that there is only one transition 
to this state. If tij is the random duration of residence in i be-
fore going to another, the only state j, then ( ) ( ).ij ijQ t P t t= <

In accordance with the functions ( )( ),ijQ t  і, ,j EÎ  there 
exist random time instants tij of transitions from state i to 
all states j adjacent to it but only one of them, namely that 
corresponding to the shortest duration of residence in i is 
realized, i. e.

min .i ijj E
t t

Î
= 	 (1)

It follows that the probability pij(t) of transition from 
state i to state j in time t is the probability that there will be 
no transition to some other state and that at the moment t, 
transition to just the j-th state will occur during this time. 
The probability of transition from i to j in a vicinity of time 
instant τ  is equal to ( ).ijdQ τ  Then

( ) ( )( )
0

1 ( ),
t

ij ik ij
k j

p t Q dQ
≠

= − τ τ∏∫  .i j≠ 	 (2)

In accordance with the definition,

( )( ) ( ,ijp t P t j= x =  ( )0 ),ijt t i< x =  .i j≠

The function ( )ijp t  unlike ( )ijQ t  is not a distribution 
function since ( ) 1.ijp ¥ ≤  The set of functions pij(t), і,  j EÎ  
together with the initial state also uniquely specify the SMP.

The probability pij(¥) of transition from i to j in an un-
limited time is

( ) ( )( )
0
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and determines the probability of transition of the Markov 
chain embedded in the SMP. The embedded Markov chain 
(IMC) is generated by the SMP if one is only interested 
in the moments of transition from one state to another. 
Therefore,

( )1 ,ij n np P j i+= x = x =  1.ij
j i

p
≠

=∑

Let us introduce the conditional distribution function Fi-

j(t) of duration of residence in i before transition to j provided 
that namely this transition is realized. By definition,

 
( ) ( ) ( )( )0 , .ij ijF t P t t i t j= < x = x =

Then

( ) ( ) .ij ij ijp t F t p= ⋅ 	  (4)

The matrix of transition probabilities of the embedded 
Markov chain P=(pij) together with the matrix of condition-
al functions of residence time distribution, ( )( )( ) ,ijF t F t=  і, 

,j EÎ  and the initial state determine the third way of speci-
fying the semi-Markov process.

Define the unconditional function of distribution of resi-
dence time i before leaving for some other state

( ) ( ) ( ) ( )
, ,

.i i ij ij ij
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The same function can be defined in a different way, 
through the original matrix ( )( ) :ijQ t

( ) ( )( )
,

1 1 .i ij
i E j i

F t Q t
Î ≠

= − −∏ 	 (6)

The expression corresponding to (5) for the density of 
distribution of the residence time in i has the form

( ) ( )
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( ) .ij
i ij ij ij

j E j i j E j i

dF t
f t p p f t
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Introduce additionally the matrix of conditional transi-
tion probabilities:

( ) ( )( ) ,ijq t q t=  і, ,j EÎ

( ) ( )( ,ijq t P t j t t= x = =  ( ) ).U ix =

Thus, qij(t) is the conditional probability that the SMP 
x(t) falls into the state j after being in the state i for a time 
equal to t. It is clear that

( )( ,ijp P t j= x =  ( ) ( ) ( )
0

0 ) d .
t

ij ij it t i q f< x = = τ τ τ∫

The matrix of conditional transition probabilities ( )( ),ijq t  
the vector of the functions of distribution of the residence 
time ( )( ),iF t  ,i EÎ  and the initial state determine the fourth 
way of specifying the SMP.

All above methods of specifying SMP are absolutely 
equivalent. They equally allow one to analyze behavior of the 
system described by the semi-Markov model. However, they 
are far from being equal in terms of the amount of informa-
tion necessary to obtain a relevant source data. As already 
mentioned, it is most simple in this case to obtain a matrix of 
independent distribution functions ( ),ijQ t  і,  .j EÎ

Introduce the functions

( ) ( ) ( ) ( )1 d ,i i i i
t

t F t f t t P t t
¥

ψ = − = = >∫  .i EÎ 	 (8)

The function ( )i tψ  determines the probability that the 
process that was in the state i at the zero time will have no 
time to leave this state in time t.

Let Φij(t) be the conditional probability that the system 
is in the state j at the time instant t if it was in the state i at 
the time instant t=0. This probability is called interval-tran-
sient probability.

The system starting from i, can enter the state j at the 
time instant t in different ways.

First, if i=j, then it may not leave і for the entire time t or 
when leaving i, at least once, it will return to i on the time 
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instant t. The corresponding interval-transient probability is 
determined by correlation

( ) ( ) ( ) ( )
, 0

Ф Ф d
t

ij i ik ik ki
k E k i

t t p f t
Î ≠

= ψ + τ ⋅ − τ τ∑ ∫ .	 (9)

Secondly, if ,j i≠  then the system can get into this state j 
taking an intermediate state k at some time instant tτ < while
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Combine (9) and (10) to get:
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The system of linear integral equations (11) allows us to 
find interval-transient probabilities. Solution for the system 
can be obtained using the Laplace transform.

Let
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Further, apply the Laplace transform and obtain
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Write now the system (12) in a matrix form. To do this, 
introduce matrices 

( ) ( )Ф (Ф ),ijt t=  ( );ijP p=  ( ) ( )( ),ijf t f t=  

diagonal matrices 

( ) ( )( ),ij iW t f t= d  ( ) ( )( ),i ij iF t F t= d  ( ) ( )( )ij it tψ = d ψ  

and corresponding Laplace transforms. Besides, to take into 
account the specific form of summation in (12), introduce a 
special matrix multiplication operation denoting it by sym-
bol ○. In accordance with this operation, for square matrices 
of the same dimensionality A, B and C, the notation C=A○B 
means that ,ij ij ijc a b= ⋅  і,  .j EÎ

Then

( ) ( ) ( ) ( )* * * *Ф Ф ,s s P f s s = ψ + ο  	 (14)

whence

( ) ( ) ( )* * *Ф 1 .s P f s s = − ο ψ  	 (15)

It follows from (15) that the interval-transient probabili-
ties depend only on the products pij and fij(t) and not on each 
of the factors separately. Using (15), one can investigate the 
transient process in the system and the stationary distribu-
tion of the state probabilities. Taking into account (13),

( ) ( )1
1 .s W

s
ψ = −

Then

( ) ( ) ( )1* * 1
Ф 1 1 .s P f s W

s

−
 = − ο − 

5. Application of the technology of probability-time 
graphs

Complexity of analytical solution of the system of equa-
tions (12) depends on the nature of the f(t) functions de-
scribing density of the distribution of duration of the system 
residence in each of its possible states before leaving. The 
following problem seriously complicates the possibility of real 
use of semi-Markov methods for solving practical problems: 
the fundamental necessity of knowing densities of distribu-
tion of the residence time in each of the states and the difficul-
ties of their adequate correct description for real systems. At 
the same time, in many cases, the system study objectives are 
simplified to find the probabilities of achieving a certain final 
state from the initial and average time to reach this state. This 
problem is solved using the mathematical apparatus of prob-
ability-time graphs [13]. The technology of probability-time 
graphs was developed to calculate statistical characteristics 
of routes in computer networks between the given initial and 
final points. In this case, the set of intermediate points is dis-
played by an oriented graph, the arcs of which specify a set of 
possible transitions. Each arc is attributed with a probability 
Pi of transition along this arc and the transition time Ti. This 
method is based of the technology of forming a certain func-
tion designed in a definite way: 

( , ) ,iT
i i i if P T P z=  1,2,..,i n= 	 (16)

called the generating function.
When using (16) for some route of i1, i2, ... il transitions, 

an equivalent generating function can be obtained.

1
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However, if the transition from some initial state to the final 
one is realized by a system of parallel arcs i1, i2, … il, the corre-
sponding equivalent generating function will have the form

1 2, ,..,
1

( ) .k

l

l
T

i i i k
k

F z P z
=

= ∑ 	 (18)

Besides, loops may appear on any route during the system 
operation. For example, if an error is detected during testing, 
it is necessary to eliminate it and re-test. Suppose, for exam-
ple, that for an arc joining vertices i1 and i2 with a generating 
function 

1
( ),if z  a loop appears that connects vertices i2 and 

i1 with a generating function
2
( ).if z  In this case, taking into 
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account possible multiple returns from i2 to i1, the equivalent 
generating function will be described by the correlation
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The choice of correlation for description of the generating 
function (16) is made in such a way that numerical character-
istics of the random path transit time could be obtained when 
z=1. In this case, the mean transit time is calculated by formula
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..
, ,..
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T

dz
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= 	 (20)

and the variance of the random time is determined in accor-
dance with the correlation
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The use of (20) to calculate the mean time for a sequen-
tial transition along the route i1, i2, ... il gives
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and in transition along a system of parallel arcs, the follow-
ing is obtained
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Finally, the mean time to overcome the loop between 
nodes i1, i2 is calculated taking into consideration (19):

The use of probability-time graphs makes it possible to 
simplify topological description of complex objects by con-
structing equivalent graphs.

Fig. 1 presents a generalized probability-time graph of 
the software security testing algorithm.

Fig. 1. Generalized model of the testing algorithm

In this model, vertex 1 corresponds to a match check 
operation, vertex 2 corresponds to the operation of evaluat-
ing the check completeness. At the node corresponding to 
vertex 3, criticality of mismatch is estimated. At the node 4, 
incompleteness level is evaluated. At the node 5, errors are 
corrected. The node 6 determines success of total check. The 
graph arcs define transitions between the corresponding ver-
tices. All above information on the specification of the graph 
elements is given in Table 12 together with data on transition 
probabilities and duration of operations.

Table 1

Characteristics of the vertices of the probability-time graph

Item 
No.

Vertex 
number

Operation name
Operation 
duration

1 1 Match check T1

2 2 Completeness check T2

3 3 Mismatch criticality estimation T3

4 4 Incompleteness level estimation T4

5 5 Error correction T5

Table 2

Characteristics of the arcs of the probability-time graph

Item 
No.

Arc 
number

Operation name
Transition 
probability

1 1–2
Transition to the completeness 

check
P1

2 1–3
Transition to the mismatch  

criticality check 
1 –P1

3 2–4
Transition to the completeness 

level check 
P2

4 2–6 Transition to the test completion 1 –P2

5 3–5 Transition to the error correction 1

6 4–1 Return to the initial state 1

7 5–1 Return to the initial state 1

Let us analyze the proba-
bility-time graph.

Using the relations intro-
duced, simplify the graph by 
“gluing” together the vertices 
3 and 5. In accordance with 
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(17), the equivalent generating function of this graph branch 
will have the form:

( ) ( ) 3 5
1351 11 .T TF Z P Z += −

Further, using (19), introduce the generating function for 
the loop ( )1 2 4 1   .i i i i

( )
1

2 4

1
1241

1 2

.
1

T

T T

P Z
F Z

P P Z +=
−

Now, the initial probability-time graph is simplified to 
the form shown in Fig. 2.

In this case, the vertex 2  and the vertex 3  are the re-
sults of “gluing” the vertices (2, 4) and (3, 5), respectively. 
The average duration of overcoming the loops (1, 2, 4, 1) 
and (1, 3, 5, 1) in accordance with (24) are determined by 
correlations:

( )
( )

2
1 1 1 2 4

2 2

1 2

,
1

PT P T T
T

P P

+ +
=

−


 ( ) ( ) ( )2

1 1 1 3 5
3 2

1

1 1
.

P T P T T
T

P

− + − +
=

Fig. 2. The simplified model of the testing algorithm

Next, calculate the average time of transit from the ini-
tial node 1 to the final node 6:

( )
( )

2
1 1 1 2 2 4

16 1 2

1 2

.
1

PT P P T T
T T

P P

+ +
= +

−


Finally, taking into account the possible time spent on 
elimination of the mismatch errors, the average test duration 
will be

( )
( )

( )
( ) ( ) ( )

1 2 1 3

2 32
1 1 2 2 4 1 1 1 3 5

2 2
11 2

1

1 1
.

1

T PT P T

P T P T T P T P T T

PP P

= + − =

+ + − + − +
= +

−

 

The above correlations allow us to determine the law of 
distribution of the random duration of the testing procedure. 
To this end, compile a table of events that occur during 
implementation of this procedure with indication of their 
probabilities and the time of their occurrence elapsed from 
the start of testing (Table 3).

These events are incompatible and in aggregate, they 
form a complete group. Therefore, the sum of their probabil-
ities should be equal to 1.

Determine the sum S1 of probabilities of the events 
corresponding to the completion of testing, the sum S2 of 
probabilities of the events corresponding to the detection 
of a mismatch, and the sum S3 of probabilities of the events 
corresponding to the mismatch elimination and obtain the 
following: 
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Table 3

A fragment of the list of events in the testing process. 
Probability-time characteristics

Item 
No.

Event name Probability
Time from the 
process start

1
Completion of the 

unproblematic 
testing procedure

( )1 21P P− 1 2T T+

2
Detection of incom-

pleteness. Transi-
tion to the node 4 

1 2P P 1 2T T+

3

Detection of mis-
match after a single 
cycle of incomplete-

ness check 

( )1 2 11P P P −  1 22T T+ 

4

Completion of 
testing after a single 
cycle of complete-

ness check 

( )( )1 2 1 21P P P P− 1 22 2T T+ 

5

Completion of test-
ing after a double 
cycle of complete-

ness check

( ) ( )2

1 2 1 21P P P P  −  1 2 23 2T T T+ +

… … … …

k

Completion of test-
ing after the k-th 

cycle of incomplete-
ness check

( )1 2 1 2( ) 1kP P P P  −  ( ) 1 2 21k T kT T+ + +

k+1

Detection of mis-
match after the k-th 
cycle of incomplete-

ness check

( )1 2 1 2 1( ) 1kP P P P P  −  ( ) 1 2 22k T kT T+ + +

Thus, the law of distribution of the test duration is ob-
tained. It can be used in working out measures to improve 
effectiveness of the testing procedure.

6. Discussion of results of studying the developed 
mathematical models of the testing algorithm

In this paper, main lines from the arsenal of methods 
of the theory of complex systems were considered. The use 
of these methods enables construction of adequate mathe-

 2 21  P T
1 2 6

3

1 2, P T

 1 11  P T

31, T
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matical models of real systems of a complicated structure 
characteristic of a software testing algorithm.

Let us consider advantages and disadvantages of the 
proposed models.

The models of the first type realize known methods of 
the theory of semi-Markov processes. It was shown that this 
technology for calculation of statistical characteristics of 
systems while being irreproachable in stringency of its con-
struction, solves the problem of evaluating quality of testing 
algorithms. However, accuracy of the results obtained in this 
case essentially depends on accuracy of description of the 
laws of distribution of residence time in each system state.

The alternative approach consists in the use of probabil-
ity-time graphs and is much less demanding. For its imple-
mentation, it is sufficient to know the mean time of residence 
in each state and the probability of transitions from one state 
to another. This approach was at design steps and brought 
to the process of calculating the law of distribution of the 
testing procedure execution time. It should be noted that 
the mathematical model of the testing process obtained by 
the method of probability-time graphs is informative and 
useful per se, even in absence of numerical values of initial 
data. This model determines the explicit dependence of the 
performance indicators of the testing algorithm on the val-
ues of the statistical characteristics of the algorithm which is 
available for direct analysis.

The obtained theoretical relationships can really be 
used to develop preliminary recommendations and possible 

ways of improving effectiveness of the software testing al-
gorithms.

Possible lines for further studies are connected with the 
necessity of taking into account the real uncertainty of the 
source data which can be described fuzzily [15–18] or incor-
rectly [19]. The problems arising in this case are solved based 
on the methods proposed in [20, 21].

7. Conclusions

1. A graphic-analytical mathematical model of the 
CSCA software security testing algorithm has been de-
veloped. It differs from known models by its taking into 
account specifics of software security testing in the pro-
cess of mathematical formalization. The model can be 
used to study basic stages of the CSCA software security 
testing. Application of this model will reduce the software 
vulnerability and increase security of the IT project in 
general. Also, the model is applicable when developing new 
methods, algorithms, and procedures for managing the IT 
projects.

2. Application of the method of probability-time graphs 
in the course of mathematical modeling enables use of the re-
sults obtained in an analytical form. These results (distribu-
tion density functions) are used in conducting comparative 
analyses and studies of various stages and steps of software 
testing.
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1. Introduction 

Interpolation and approximation of numerical sets of 
data is a relevant task in applied mathematics because of a 
widespread application in various fields of science and tech-
nology. Among the various areas of research, there are two 
that stand out ‒ the interpolation using polynomial splines, 
which solves a problem on the construction of curves that 
pass through the set points, and methods for constructing 
Bezier curves for which set points are the control points. It 
is understood in the sense that a curve does not pass through 
these points but approaches them, changing in so doing its 
shape depending on their location. At present, researchers 
chose to combine these two approaches. That makes it pos-
sible to obtain rather smooth curves and efficient algorithms 
for their construction with the possibility of interactive con-
trol over the shape of the curves using control points.

2. Literature review and problem statement

A method for constructing curves, which are called the 
Bezier curves, was developed independently by engineers 
Pierre Bézier, who worked for the automotive company 
Renault (Headquarters in the city of Boulogne-Billancourt, 
France), and Paul de Castillo, who was an employee of 
the automobile company Citroën (Headquarters in Paris, 
France) [1]. They proposed to apply these curves to design 
automobile bodies. A widespread use of Bezier curves for the 
problems on approximation is associated with convenience 
in both the analytical description and the visual geometri-
cal construction. Employing the Bezier curves in computer 
graphics systems allows the user to move control points us-
ing a cursor on the screen to interactively change the shape 
of the curve [2]. This is a handy tool used in various areas of 
technical design.
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Досліджуються кусково-поліноміальні криві тре-
тього степеня. Вводиться послідовність точок, які 
розглядаються як керуючі, а з’єднуючі їх відріз-
ки є дотичними до кривої. Побудовано систему рів-
нянь для обчислення коефіцієнтів кривої та знайдено 
умови її єдиності. На прикладах розрахунків пока-
зано хороші апроксимаційні властивості одержаної 
кривої та проілюстрована можливість локальної 
зміни її форми в залежності від параметрів

Ключові слова: сплайнова крива третього степе-
ня, крива Без’є, параметри форми кривої

Исследуются кусочно-полиномиальные кривые 
третьей степени. Вводится последовательность 
точек, рассматриваемых как управляющие, а соеди-
няющие их отрезки являются касательными к кри-
вой. Построена система уравнений для вычисления 
коэффициентов кривой и найдены условия ее един-
ственности. На примерах расчетов показаны хоро-
шие аппроксимационные свойства полученной кривой 
и проиллюстрирована возможность локального изме-
нения ее формы в зависимости от параметров

Ключевые слова: сплайновая кривая третьей сте-
пени, кривая Безье, параметры формы кривой
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