5. Jlxeppwm, A. JIx. Teopema orcueros Ilennona, ee pasmnunbie 06061menus u npusosxkenus [Texer] / [Ix. Tsxeppu // O630p. TUNIP.

-1977.- T. 65, Ne 11. - C. 53-89.

6. Petre, Stoica. Spectral analysis of signals [Tekct] / Petre Stoica, Randolph L. Moses. - Pearson Prentice Hall. 2005. - 452 c.

7. Kpasuenko, B.@. Jlekiuu 1o Teopuu atoMapHbIx GyHKINE 1 HeKOTOpsiM ux npuaoxennm | Texcer| / B.M. Kpasuenko. — M.: Pagno-

Texnunka, 2003.- 512 c.

8. CuekTpaybHble CBOICTBa aTOMapHbIX (DYHKIMIT B 3a1auax 1udpoBoit o6paborku curuanos [Tekcr] / B. @. Kpasuenko, M. A. Baca-
pab, X. Tlepec-Meana // Pagnorexnuka u anekrpornka. - 2001. - T.46, Ne5. - C. 534-552.

9. Fractals and the Fractal Dimension [Exexrponnuii pecypc] // Vanderbilt University official website. - Pexkum poctymy: \www/
URL: http://www.vanderbilt.edu/AnS /psychology/cogsci/chaos/workshop/Fractals.html/ -22.11.2012.

10. Shezafs, N., Abramov-Segals, H., Sutskovers, I. Adaptive low complexity algorithm for image zooming at fractional scaling ratio

[Enexrponnmuii pecypc]// The Signal and Image processing Lab.-Pesxum noctymy:\www/ URL:http://www-sipl.technion.ac.il /new/

Teaching/Projects/Zoom_ Article.pdf/ - 10.11.2012.

o o
Sycuans oyau cnpamoeani Ha NOWMYK mMemooie

ons epexmuenoi ma mounoi kaacmepusauii eeau-
Kux 6as danux. B ocnosnomy memu docaioxicenmns
30cepediceni Ha MAcumMado8anocmi KiacmepHux
Memoois, epexmusnocmi memoois xaacmepusauii
ona cxnaonux popm i munie danux, dazamomip-
HUx Memoodax Kaacmepusauii, a maxoic memooax
Kaacmepuzauii 3IMiMAHUX YUCETbHUX | Kamez2opi-
anvHUX 0aHux Yy eeauKux 6asax 0anux

Kniouoei ciosa: 6aza danux, noconannsa y xaa-
cmepu, k-NN epag, eunepepad, cycio, 6azamo-
dynxuionanvruil

[m,]

Yeunus 6viau nanpaeaenvt. Ha NOUCK Memo-
008 015 3P pexmuenoll u mounou Kiacmepusauuu
oovumux 6as dannvix. B ocnoenom memot uccae-
dosanus cocpedomouenvl. HA MACUMAOUPOBAH-
HOCMU KJaacmepHbIX Memo0dos, 3P dexmusnocmu
Memo00e Kaacmepusauuu 0Js CAONCHLIX Popm
U MUno8 0aHHbIX, MHOZOMEPHBLIX Memooax KJaa-
cmepuzauuu, a maxlice Memooax Kiacmepu3auuu
CMEWAHHBIX YUCTICHHBIX U KAME2OPUATLHBIX 0aH-
HbLX 8 00bUMUX 0a3ax OanHbLX

Knioueevie cnosa: 6aza dannvix, od6sedunenue 6
xaacmepot, k-NN epag, eunepepag, coceo, muozo-
dynxyuonanonolll

=,

1. Introduction

The process of grouping a set of physical or abstract
objects into classes of similar objects is called clustering.
A cluster is a collection of data objects that are similar to
one another within the same cluster and are dissimilar to
the objects in other clusters. A cluster of data objects can be
treated collectively as one group in many applications. Data
clustering is under vigorous development. Contributing
areas of research include data mining, statistics, machine le-
arning, spatial database technology, biology, and marketing.
Owing to the huge amounts of data collected in databases,
cluster analysis has recently become a highly active topic in
data mining research. As a branch of statistics, cluster ana-
lysis has been studied extensively for many years, focusing
mainly on distance-based cluster analysis. Active themes of

YK 665.9

A MULTILEVEL
APPROACHTO

THE DYNAMIC
HIERERCHICAL
CLUSTERING FOR
COMPLEX TYPES OF
SHAPES

T. Shatovska

Associate Professor*

E-mail: shatovska@gmail.com

A. Zaremskaya*

E-mail: NastenkaZar@yandex.ua

*Department of Software Engineering

Kharkiv National University of Radioelectronics
Lenina, 16, Kharkov, Ukraine, 61166

research focus on the scalability of clustering methods, the
effectiveness of methods for clustering complex shapes and
types of data.

Chameleon is a clustering algorithm that explores dyn-
amic modeling in hierarchical clustering. In its clustering
process, two clusters are merged if the interconnectivity
and closeness between two clusters are highly related to the
internal interconnectivity and closeness of objects within
the clusters. The merge process based on the dynamic model
facilitates the discovery of natural and homogeneous clus-
ters and applies to all types of data as long as a similarity
function is specified. Chameleon is derived based on the
observation of the weakness of two hierarchical clustering
algorithms: CURE and ROCK. CURE and related schemes
ignore information about the aggregate interconnectivity of
objects in two different clusters, whereas ROCK and related

schemes ignore information about the closeness of two clust-
ers while emphasizing their interconnectivity. In this paper,
we present our experiments with hierarchical clustering
algorithm CHAMELEON for circles cluster shapes with dif-
ferent densities using hMETIS program that used multilevel
k-way partitioning for hypergraphs and a Clustering Toolkit
package that merges clusters based on a dynamic model. In
CHAMELEON two clusters are merged only if the inter-
connectivity and closeness between two clusters are comp-
arable to the internal inter-connectivity of the clusters and
closeness of items within the clusters.

The methodology of dynamic modeling of clusters is
applicable to all types of data as long as a similarity matrix
can be constructed. We present a modified hierarchical clus-
tering algorithm that measures the similarity of two clusters
based on a new dynamic model with different shapes and
densities. The merging process using the dynamic model
presented in this paper facilitates discovery of natural and
homogeneous not only circles cluster shapes.

2. Overview of Chameleon dynamic clustering

Chameleon is a hierarchical clustering algorithm that ex-
plores dynamic modelling in hierarchical clustering [KHK,
99a]. Chameleon represents its objects based on the comm-
only used k-nearest neighbour graph approach. This graph
representation of the data set allows CHAMELEON to scale
to large data sets. Each vertex of the k-nearest neighbour
graph represents a data object, and there exists an edge be-
tween two objects if one object is among the k-most similar
objects of the other. The k-nearest neighbour graph captures
the concept that neighbourhood radius of an object is deter-
mined by the density of the region in which this object resi-
des [Mi, 97]. This tends to result in more natural clusters, in
comparison with density-based methods such as DBSCAN
that instead use a global neighborhood. Moreover, the densi-
ty of the region is recorded as the weight of the edges.

During the next step a sequence of successively smaller
hypergraphs are constructed — Coarsening Phase. Two pri-
mary schemes have been developed for selecting what groups
of vertices will be merged together to form single vertices in
the next level coarse hypergraphs. The first scheme called
edge-coarsening (EC) [Al, 97] selects the groups by funding
a maximal set of pairs of vertices (i.e., matching) that belong
in many hyperedges.

The second scheme that is called hyperedge-coarsening
(HEC) [KAK, 97] finds a maximal independent set of hype-
redges, and the sets of vertices that belong to each hyperedge
becomes a group of vertices to be merged together. At each
coarsening level, the coarsening scheme stop as soon as the
size of the resulting coarse graph has been reduced by a fac-
tor of 1.7 [KHK, 99b].

The third phase of the algorithm is to compute a k-way
partitioning of the coarsest hypergraph such that the balan-
cing constraint is satisfied and the partitioning function as
mincut is optimized. During the fours phase - uncoarsening
phase, a partitioning of the coarser hypergraph is projected
to the next level finer hypergraph, and a partitioning refin-
ement algorithm is used to optimize the objective function
without violating the partitioning balancing constraints.

At the final iteration of algorithm CHAMELEON dete-
rmines the similarity between each pair of clusters by taking
into account both at their relative inter-connectivity and

their relative closeness. It selects to merge clusters that are
well inter-connected as well as close together with respect to
the internal inter-connectivity and closeness of the clusters.
By selecting clusters based on both of these criteria, CHA-
MELEON overcomes the limitations of existing algorithms
that look either at the absolute inter-connectivity or absol-
ute closeness.

3. Multilevel approach to the dynamic hierarchical
clustering

As we remark above the CHAMELEON operates on
a sparse graph in which nodes represent data items and
weighted edges represent similarities among the data item
(symmetric graph) [KHK, 99a].

In our algorithm during first phase we construct an as-
ymmetric k-NN graph and there exists an edge between two
points if for one of it there exist closest neighbour among all
existing neighbours according to the value of k. Note that
the weight of an edge connecting two objects in the k-NN
graph is a similarity measure between them, as usual a simple
distance measure (or inversely related to their distance).

In our algorithm the weight of an edge we compute as
weighted distance between objects and as more similar two
objects as heavier weight of an edge connecting them. It is
very useful for outlier detection. The main goal of k-NN graph
representation is to define regions of a maximal set of density-
connected objects as the initial shapes of clusters and separate
noise and non similar points. The Fig. 1 (Fig 1. The k-NN
graph “disk in disk”) represents the k-NN graph for data set
“disk in disk” with k=5 number of neighbours (it means that
each point will has no less than k neighbours) and Fig.2 with
k=15 (Fig 2. The k-NN graph “Men’s face”) represents a gene-
ral overview of how the data are structured and connected in
this case. As we can see the obtain shapes as dense regions of
objects that are separated by regions of low density. During
our experiments we show that it isn’t important the values k
for computing the initial k-nearest neighbour graph.

During next coarsening phase the set of smaller hype-
rgraphs are constructed. In the initial stage we randomly
choose a set of vertices and matched it together. In the next
stage of coarsening process we choose the set of vertices with
maximum degrees and matched it with a random neighbour.
On the other stages we visit each vertex in a random order
and matched it with adjacent vertex via heaviest edge. Note
that usually the weight of an edge connecting two nodes in a
coarsened version of the graph is the number of edges in the
original graph that connect the two sets of original nodes
collapsed into the two coarse nodes [KHK, 99b].

Fig. 2. The k-NN graph “Men’s face”

In our case we compute the weight of the hyperedge as the
sum of the weights of all edges that collapse on each other duri-
ng coarsening step. We stop the coarsening process at each level
as soon as the number of multiservices of the resulting coarse
hypergraph has been reduced by a constant less then 2. The
main structure of k-NN graph isn’t destroyed during coarsening
process, but the number of points was reduced. We finally stop
this step when the total number of objects is no less then 1200.

On the next level of algorithm we produce a set of small
hypergraphs using k-way multilevel paradigm [KHK,1999b].
We start the process of partitioning by choosing k most heav-
ier multiservices, where k can be 8, 16, 32.

After that we gathering one by one all neighbours from
each previously chosen most heavier vertex and obtain the
initial partitioning w.r.t the balancing constant. Balancing
constant is a maximal number of multiservices in each part of
the partitioning.

The problem of computing an optimal bisection of a hype-
rgraph is NP-hard.

One of the most commonly used objective function is to
minimize the hyperedge-cut of the partitioning; i.e., the total
number of hyperedges that span multiple partitions [Karypis,
1999b]. One of the most accuracy algorithm of partitioning
the hypergraph is Kernighan-Lin / Fiduccia — Mattheyses al-
gorithm, in which during each pass, the algorithm repeatedly
finds a pair of vertices, one from each of the subdomains, and
swaps their subdomains [Fiduccia, 1982]. The pairs are sele-
cted so as to give the maximum improvement in the quality
of the partitioning even if this improvement is negative. Once a
pair of vertices has been moved, neither are considered for mov-
ement in the rest of the pass. When all of the vertices have been
moved, the pass ends. At this point, the state of the bisection at
which the minimum edge-cut was achieved is restored.

In our approach we use a main idea of greedy refinement alg-
orithm developed by George Karypis [KK, 99b], but with some
extensions. In the first stage of this process we calculate a gain
function for each multiservice. But we suggest instead of classic
view to compute a gain criteria of each vertex in hypergraph as
differences between the sums of the weights of edges incident
on vertex that go to the other partition and the of edges weights
that stay within the partition. We choose the vertex with maxi-
mum positive gain and move it if it result in a positive gain, so we
works only with boundary vertices. After this step we obtain k
parts of small hypergraphs and implement for each part a simple
bisection algorithm to find an optimal min-cut bisection. After
that we project the partition to the previous level finer hypergra-
ph and refine partition using an iterative scheme. In both the KL
and KL (1) refinement algorithms, we have to insert the gains of
all the vertices in the data structures [KKb, 98].

We use the idea of the boundary Kernighan-Lin refineme-
nt algorithm, where we initially insert into the data structures
the gains for only the boundary vertices. As in the KL refin-
ement algorithm, after we swap a vertex, we update the gains

of the adjacent vertices not yet being swapped. If any of these
adjacent vertices become a boundary vertex due to the swap
of vertex, we insert it into the data structures if they have
positive gain. Notice that the boundary refinement algorithm
is quite similar to the KL algorithm, with the added advantage
that only vertices are inserted into the data structures as nee-
ded and no work is wasted.

After the partitioning of hypergraph into the large number
of small parts we start to merge the pair of clusters for which
both relative inter-connectivity and their relative closeness are
high. In our research we use George Karypis formula to comp-
ute the similarity between sub-clusters [KHK, 99a].

The relative inter-connectivity between a pair of clusters
Ciand Cj is defined as the absolute inter-connectivity between
Ciand Cj normalized with respect to the internal inter-conne-
ctivity of the two clusters Ci and Cj . The absolute inter-conn-
ectivity between a pair of clusters Ci and Cj is defined to be as
the sum of the weight of the edges that connect vertices in Ci
to vertices in Cj [KHK, 99a]. The relative closeness between
a pair of clusters Ci and Cj is defined as the absolute closeness
between Ci and Cj normalized with respect to the internal
closeness of the two clusters Ci and Cj [KHK,99a].

But mentioned above approach has some limitations — it
doesn’t evaluate in a full way the similarity between clusters
by it’s densities and in each iteration it depends on min-cut
bisector between two equal parts of hypergraph.

So we introduce some additions as evaluation and comp-
arison of clusters density within merging process. Instead of
evaluation the relative inter-connectivity and relative closen-
ess we used formula (1)

o

. B
_ ¢ . Si L[mings;,s;) 1)
min(c,|, Cj‘) ¢ ‘cj‘ max(s;,s;)
. S.
1 J
S
where ‘Cij‘ — the number of edges that connect vertices be-

tween subclasses i and j; |c;

)

cj‘ — the number of edges con-

necting vertices inside classes i and j respectively; ‘Sij — the
average length of the edges that connect vertices in subcla-

sses i and j, [s,], sj‘ — the average length of the edges inside

subclasses i and j respectively;

o,p — define by user.

The first part of the formula it’s a number of the edges that
are merging two classes divided on the number of the edges in
smaller class, this way allow to compute connectivity between
two subgraphs with different densities. The second part of (1)
is evaluation of similarity between two subgraphs. At the each
step of the merging process we visit each subgraph and checks
to see if any one of its adjacent subgraphs satisfy the (1) and
then connect two subgraphs with the maximal value of (1).

Such approach allow to classify the clusters with different
densities and nonlinear separated.

Experimental results

The overall computational complexity of CHAMELEON
depends on the amount of time it requires to construct the K
— nearest neighbors graph and the amount of time it requires to
perform the two phases of the clustering algorithm. In [KHK,
99a] was shown that CHAMELEON is not very sensitive of
values k for computing the k-nearest neighbor graph, of the va-

lue of MINSIZE for the phase I of the algorithm, and of scheme
for combining relative inter-connectivity and relative closeness
and associated parameters, and it was able to discover the co-
rrect clusters for all of these combinations of values for k and
MINSIZE. In this section, we present experimental evaluation
of clustering using hMETIS hypergraph partitioning package
for k-way partitioning of hypergraph and for recursive bisection
[KK, 98] and CLUTO 2.1.1- A Clustering Toolkit [Ka, 03].

We experimented with five different data sets containing
points in two dimensions: “disk in disk”, t4.8k, t5.8k, t8.8k,
t7.10k [Ka lab.].The first data set, has a particularly challeng-
ing feature that two clusters are very close to each other and
they have different densities and circles shapes. We choose the
number of neighbors k=5, 15, 40, MINSIZE = 5%.

The data set t8.8k has eight clusters of different shapes, size
and orientation, some of which are inside the space enclosed by
other clusters. Moreover, it also contains random noise such
as a collection of points forming vertical streaks. Looking at
k=5 nearest neighbors we can see that hMETIS also compute
k-way partitioning of hypergraph with mistakes closer to the
border of two classes and CLUTO can not effectively merge
clusters for such type of dataset using asymmetric k-NN, with
k=>5. It means that algorithm of the partitioning phase is very
sensitive to the value of k for spherical shapes of clusters and
to the types of k-NN graph (symmetric and asymmetric). It is
very important to choose an optimal value of k, because with
k=16 and more, and only for symmetric k-NN with weights
of edges equal to the number of common neighbors we obtain
final clustering with minimum percentages of errors.

Looking at the Fig. 3, Fig. 4 we can see the correct clu-
stering results for the same data set “disk in disk” using our
suggested expression. For another above mentioned data sets
we obtain as well accuracy results.

a) b)
Fig 3. Clustering results using a new approach to the sub-
clusters merging, k=5: a) Data set “disk in disk”; b) Data set
“18.8k.txt”

b)
Fig. 4. Clustering results using a new approach to the sub-
clusters merging and k-means method, k=5: a) Data set
“t111”; b) Data set “t4.8k”, k =5

4. Conclusions

In this paper, we present our experiments with hierarc-
hical clustering algorithm CHAMELEON for circles clus-
ter shapes with different densities using hMETIS program
that used multilevel k-way partitioning for hypergraphs
and a Clustering Toolkit package that merges clusters ba-
sed on a dynamic model. In CHAMELEON two clusters
are merged only if the inter-connectivity and closeness
between two clusters are comparable to the internal inter-
connectivity of the clusters and closeness of items within
the clusters.

The methodology of dynamic modeling of clusters is
applicable to all types of data as long as a similarity matrix
can be constructed.

Experimental results showed that hMETIS compute
k-way partitioning of hypergraph with mistakes closer to
the border of two classes and CLUTO can not effectively
merge clusters using asymmetric k-NN, with k=5.

We present a modified hierarchical clustering algorit-
hm that measures the similarity of two clusters based on
a new dynamic model with different shapes and densities.
The merging process using the dynamic model presented
in this paper facilitates discovery of natural and homogen-
eous not only circles cluster shapes.

Experimental results showed that this method is not
sensitive to the value of k and doesn’t need a specific k-ne-
arest neighbor graph creating.

References

1. [Al, 97] Alpert C. J., Huang J. H. and Kahng A. B., Multi-
level circuit partitioning. In: Proc. of the 34th ACM/IEEE
Design Automation Conference. 1997.

2. [Fi, 82] Fiduccia C. M. and Mattheyses R. M., .A Linear-
time Heuristic for Improving.

3. [GRS, 99] Guha S., Rastogi R., Shim K. ROCK: Robust
Clustering using linKs, (ICDE’99).

4. [KAK, 97] Karypis G., Aggarwal R., V. Kumar. Multilevel
hypergraph partitioning: Application in VLST domain. In:
Proceedings of the Design and Automation Conference.
1997.

5. [KKa, 98] Karypis G.and Kumar V.. A Fast and High Qu-
ality Multilevel Scheme for Partitioning Irregular Graphs.
STAM Journal on Scientific Computing, 1998.

6. [KKb, 98] Karypis G., and Kumar V., hMETIS 1.5.3: A hyp-
ergraph partitioning package. Technical report. Department
of Computer Science, University of Minnesota, 1998.

7. [KHK, 99a] Karypis G.,. Han E.-H, and Kumar V.. CHA-
MELEON: A Hierarchical Clustering Algorithms Using
Dynamic Modeling. IEEE Computer, 32(8):68-75, 1999.

8. [KHK, 99b] Karypis G., Han E.-H. and Kumar V.. Multil-
evel k-way hypergraph partitioning. In Proceedings of the
Design and Automation Conference, 1999.

9. [Ka, 03] Karypis G., CLUTO 2.1.1. A Clustering Toolkit.
Technical report. Department of Computer Science, Unive-
rsity of Minnesota, 2003.

10. [Ka lab.] http://www.cs.umn.edu/karypis.

11. [Mi, 97] Mitchell T. M.. Machine Learning. McGraw Hill,
1997.

