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Зусилля були спрямовані на пошук методів 
для ефективної та точної кластеризації вели-
ких баз даних. В основному теми дослідження 
зосереджені на масштабованості кластерних 
методів, ефективності методів кластеризації 
для складних форм і типів даних, багатомір-
них методах кластеризації, а також методах 
кластеризації змішаних чисельних і категорі-
альних даних у великих базах даних
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Усилия были направлены на поиск мето-
дов для эффективной и точной кластеризации 
больших баз данных. В основном темы иссле-
дования сосредоточены на масштабирован-
ности кластерных методов, эффективности 
методов кластеризации для сложных форм 
и типов данных, многомерных методах кла-
стеризации, а также методах кластеризации 
смешанных численных и категориальных дан-
ных в больших базах данных
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1. Introduction

The process of grouping a set of physical or abstract 
objects into classes of similar objects is called clustering. 
A cluster is a collection of data objects that are similar to 
one another within the same cluster and are dissimilar to 
the objects in other clusters. A cluster of data objects can be 
treated collectively as one group in many applications. Data 
clustering is under vigorous development. Contributing 
areas of research include data mining, statistics, machine le-
arning, spatial database technology, biology, and marketing. 
Owing to the huge amounts of data collected in databases, 
cluster analysis has recently become a highly active topic in 
data mining research. As a branch of statistics, cluster ana-
lysis has been studied extensively for many years, focusing 
mainly on distance-based cluster analysis. Active themes of 

research focus on the scalability of clustering methods, the 
effectiveness of methods for clustering complex shapes and 
types of data.

Chameleon is a clustering algorithm that explores dyn-
amic modeling in hierarchical clustering. In its clustering 
process, two clusters are merged if the interconnectivity 
and closeness between two clusters are highly related to the 
internal interconnectivity and closeness of objects within 
the clusters. The merge process based on the dynamic model 
facilitates the discovery of natural and homogeneous clus-
ters and applies to all types of data as long as a similarity 
function is specified. Chameleon is derived based on the 
observation of the weakness of two hierarchical clustering 
algorithms: CURE and ROCK. CURE and related schemes 
ignore information about the aggregate interconnectivity of 
objects in two different clusters, whereas ROCK and related 
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schemes ignore information about the closeness of two clust-
ers while emphasizing their interconnectivity. In this paper, 
we present our experiments with hierarchical clustering 
algorithm CHAMELEON for circles cluster shapes with dif-
ferent densities using hMETIS program that used multilevel 
k-way partitioning for hypergraphs and a Clustering Toolkit 
package that merges clusters based on a dynamic model. In 
CHAMELEON two clusters are merged only if the inter-
connectivity and closeness between two clusters are comp-
arable to the internal inter-connectivity of the clusters and 
closeness of items within the clusters.

The methodology of dynamic modeling of clusters is 
applicable to all types of data as long as a similarity matrix 
can be constructed. We present a modified hierarchical clus-
tering algorithm that measures the similarity of two clusters 
based on a new dynamic model with different shapes and 
densities. The merging process using the dynamic model 
presented in this paper facilitates discovery of natural and 
homogeneous not only circles cluster shapes.

2.  Overview of Chameleon dynamic clustering 

Chameleon is a hierarchical clustering algorithm that ex-
plores dynamic modelling in hierarchical clustering [KHK, 
99a]. Chameleon represents its objects based on the comm-
only used k-nearest neighbour graph approach. This graph 
representation of the data set allows CHAMELEON to scale 
to large data sets. Each vertex of the k-nearest neighbour 
graph represents a data object, and there exists an edge be-
tween two objects if one object is among the k-most similar 
objects of the other. The k-nearest neighbour graph captures 
the concept that neighbourhood radius of an object is deter-
mined by the density of the region in which this object resi-
des [Mi, 97]. This tends to result in more natural clusters, in 
comparison with density-based methods such as DBSCAN 
that instead use a global neighborhood. Moreover, the densi-
ty of the region is recorded as the weight of the edges.

During the next step a sequence of successively smaller 
hypergraphs are constructed – Coarsening Phase. Two pri-
mary schemes have been developed for selecting what groups 
of vertices will be merged together to form single vertices in 
the next level coarse hypergraphs. The first scheme called 
edge-coarsening (EC) [Al, 97] selects the groups by funding 
a maximal set of pairs of vertices (i.e., matching) that belong 
in many hyperedges.

The second scheme that is called hyperedge-coarsening 
(HEC) [KAK, 97] finds a maximal independent set of hype-
redges, and the sets of vertices that belong to each hyperedge 
becomes a group of vertices to be merged together. At each 
coarsening level, the coarsening scheme stop as soon as the 
size of the resulting coarse graph has been reduced by a fac-
tor of 1.7 [KHK, 99b].

The third phase of the algorithm is to compute a k-way 
partitioning of the coarsest hypergraph such that the balan-
cing constraint is satisfied and the partitioning function as 
mincut is optimized. During the fours phase - uncoarsening 
phase, a partitioning of the coarser hypergraph is projected 
to the next level finer hypergraph, and a partitioning refin-
ement algorithm is used to optimize the objective function 
without violating the partitioning balancing constraints.

At the final iteration of algorithm CHAMELEON dete-
rmines the similarity between each pair of clusters by taking 
into account both at their relative inter-connectivity and 

their relative closeness. It selects to merge clusters that are 
well inter-connected as well as close together with respect to 
the internal inter-connectivity and closeness of the clusters. 
By selecting clusters based on both of these criteria, CHA-
MELEON overcomes the limitations of existing algorithms 
that look either at the absolute inter-connectivity or absol-
ute closeness.

3. Multilevel approach to the dynamic hierarchical 
clustering

As we remark above the CHAMELEON operates on 
a sparse graph in which nodes represent data items and 
weighted edges represent similarities among the data item 
(symmetric graph) [KHK, 99a].

In our algorithm during first phase we construct an as-
ymmetric k-NN graph and there exists an edge between two 
points if for one of it there exist closest neighbour among all 
existing neighbours according to the value of k. Note that 
the weight of an edge connecting two objects in the k-NN 
graph is a similarity measure between them, as usual a simple 
distance measure (or inversely related to their distance).

In our algorithm the weight of an edge we compute as 
weighted distance between objects and as more similar two 
objects as heavier weight of an edge connecting them. It is 
very useful for outlier detection. The main goal of k-NN graph 
representation is to define regions of a maximal set of density-
connected objects as the initial shapes of clusters and separate 
noise and non similar points. The Fig. 1 (Fig 1. The k-NN 
graph “disk in disk” ) represents the k-NN graph for data set 
“disk in disk” with k=5 number of neighbours (it means that 
each point will has no less than k neighbours) and Fig.2 with 
k=15 (Fig 2. The k-NN graph “Men’s face”) represents a gene-
ral overview of how the data are structured and connected in 
this case. As we can see the obtain shapes as dense regions of 
objects that are separated by regions of low density. During 
our experiments we show that it isn’t important the values k 
for computing the initial k-nearest neighbour graph.

During next coarsening phase the set of smaller hype-
rgraphs are constructed. In the initial stage we randomly 
choose a set of vertices and matched it together. In the next 
stage of coarsening process we choose the set of vertices with 
maximum degrees and matched it with a random neighbour. 
On the other stages we visit each vertex in a random order 
and matched it with adjacent vertex via heaviest edge. Note 
that usually the weight of an edge connecting two nodes in a 
coarsened version of the graph is the number of edges in the 
original graph that connect the two sets of original nodes 
collapsed into the two coarse nodes [KHK, 99b].

Fig. 1. The k-NN graph “Disk in disk”
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Fig. 2. The k-NN graph “Men’s face”

In our case we compute the weight of the hyperedge as the 
sum of the weights of all edges that collapse on each other duri-
ng coarsening step. We stop the coarsening process at each level 
as soon as the number of multiservices of the resulting coarse 
hypergraph has been reduced by a constant less then 2. The 
main structure of k-NN graph isn’t destroyed during coarsening 
process, but the number of points was reduced. We finally stop 
this step when the total number of objects is no less then 1200.

On the next level of algorithm we produce a set of small 
hypergraphs using k-way multilevel paradigm [KHK,1999b]. 
We start the process of partitioning by choosing k most heav-
ier multiservices, where k can be 8, 16, 32.

After that we gathering one by one all neighbours from 
each previously chosen most heavier vertex and obtain the 
initial partitioning w.r.t the balancing constant. Balancing 
constant is a maximal number of multiservices in each part of 
the partitioning.

The problem of computing an optimal bisection of a hype-
rgraph is NP-hard.

One of the most commonly used objective function is to 
minimize the hyperedge-cut of the partitioning; i.e., the total 
number of hyperedges that span multiple partitions [Karypis, 
1999b]. One of the most accuracy algorithm of partitioning 
the hypergraph is Kernighan-Lin / Fiduccia – Mattheyses al-
gorithm, in which during each pass, the algorithm repeatedly 
finds a pair of vertices, one from each of the subdomains, and 
swaps their subdomains [Fiduccia, 1982]. The pairs are sele-
cted so as to give the maximum improvement in the quality 
of the partitioning even if this improvement is negative. Once a 
pair of vertices has been moved, neither are considered for mov-
ement in the rest of the pass. When all of the vertices have been 
moved, the pass ends. At this point, the state of the bisection at 
which the minimum edge-cut was achieved is restored.

In our approach we use a main idea of greedy refinement alg-
orithm developed by George Karypis [KK, 99b], but with some 
extensions. In the first stage of this process we calculate a gain 
function for each multiservice. But we suggest instead of classic 
view to compute a gain criteria of each vertex in hypergraph as 
differences between the sums of the weights of edges incident 
on vertex that go to the other partition and the of edges weights 
that stay within the partition. We choose the vertex with maxi-
mum positive gain and move it if it result in a positive gain, so we 
works only with boundary vertices. After this step we obtain k 
parts of small hypergraphs and implement for each part a simple 
bisection algorithm to find an optimal min-cut bisection. After 
that we project the partition to the previous level finer hypergra-
ph and refine partition using an iterative scheme. In both the KL 
and KL (1) refinement algorithms, we have to insert the gains of 
all the vertices in the data structures [KKb, 98].

We use the idea of the boundary Kernighan-Lin refineme-
nt algorithm, where we initially insert into the data structures 
the gains for only the boundary vertices. As in the KL refin-
ement algorithm, after we swap a vertex, we update the gains 

of the adjacent vertices not yet being swapped. If any of these 
adjacent vertices become a boundary vertex due to the swap 
of vertex, we insert it into the data structures if they have 
positive gain. Notice that the boundary refinement algorithm 
is quite similar to the KL algorithm, with the added advantage 
that only vertices are inserted into the data structures as nee-
ded and no work is wasted.

After the partitioning of hypergraph into the large number 
of small parts we start to merge the pair of clusters for which 
both relative inter-connectivity and their relative closeness are 
high. In our research we use George Karypis formula to comp-
ute the similarity between sub-clusters [KHK, 99a].

The relative inter-connectivity between a pair of clusters 
Ci and Cj is defined as the absolute inter-connectivity between 
Ci and Cj normalized with respect to the internal inter-conne-
ctivity of the two clusters Ci and Cj . The absolute inter-conn-
ectivity between a pair of clusters Ci and Cj is defined to be as 
the sum of the weight of the edges that connect vertices in Ci 
to vertices in Cj [KHK, 99a]. The relative closeness between 
a pair of clusters Ci and Cj is defined as the absolute closeness 
between Ci and Cj normalized with respect to the internal 
closeness of the two clusters Ci and Cj [KHK,99a].

But mentioned above approach has some limitations – it 
doesn’t evaluate in a full way the similarity between clusters 
by it’s densities and in each iteration it depends on min-cut 
bisector between two equal parts of hypergraph.

So we introduce some additions as evaluation and comp-
arison of clusters density within merging process. Instead of 
evaluation the relative inter-connectivity and relative closen-
ess we used formula (1)

where cij  – the number of edges that connect vertices be-
tween subclasses i and j; c ci j,  – the number of edges con-
necting vertices inside classes i and j respectively; sij  – the 
average length of the edges that connect vertices in subcla-
sses i and j, s si j,  – the average length of the edges inside 
subclasses i and j respectively;

α β,  – define by user.
The first part of the formula it’s a number of the edges that 

are merging two classes divided on the number of the edges in 
smaller class, this way allow to compute connectivity between 
two subgraphs with different densities. The second part of (1) 
is evaluation of similarity between two subgraphs. At the each 
step of the merging process we visit each subgraph and checks 
to see if any one of its adjacent subgraphs satisfy the (1) and 
then connect two subgraphs with the maximal value of (1).

Such approach allow to classify the clusters with different 
densities and nonlinear separated.

Experimental results
The overall computational complexity of CHAMELEON 

depends on the amount of time it requires to construct the K 
– nearest neighbors graph and the amount of time it requires to 
perform the two phases of the clustering algorithm. In [KHK, 
99a] was shown that CHAMELEON is not very sensitive of 
values k for computing the k-nearest neighbor graph, of the va-
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lue of MINSIZE for the phase I of the algorithm, and of scheme 
for combining relative inter-connectivity and relative closeness 
and associated parameters, and it was able to discover the co-
rrect clusters for all of these combinations of values for k and 
MINSIZE. In this section, we present experimental evaluation 
of clustering using hMETIS hypergraph partitioning package 
for k-way partitioning of hypergraph and for recursive bisection 
[KK, 98] and CLUTO 2.1.1– A Clustering Toolkit [Ka, 03].

We experimented with five different data sets containing 
points in two dimensions: “disk in disk”, t4.8k, t5.8k, t8.8k, 
t7.10k [Ka lab.].The first data set, has a particularly challeng-
ing feature that two clusters are very close to each other and 
they have different densities and circles shapes. We choose the 
number of neighbors k=5, 15, 40, MINSIZE = 5%.

The data set t8.8k has eight clusters of different shapes, size 
and orientation, some of which are inside the space enclosed by 
other clusters. Moreover, it also contains random noise such 
as a collection of points forming vertical streaks. Looking at 
k=5 nearest neighbors we can see that hMETIS also compute 
k-way partitioning of hypergraph with mistakes closer to the 
border of two classes and CLUTO can not effectively merge 
clusters for such type of dataset using asymmetric k-NN, with 
k=5. It means that algorithm of the partitioning phase is very 
sensitive to the value of k for spherical shapes of clusters and 
to the types of k-NN graph (symmetric and asymmetric). It is 
very important to choose an optimal value of k, because with 
k=16 and more, and only for symmetric k-NN with weights 
of edges equal to the number of common neighbors we obtain 
final clustering with minimum percentages of errors.

Looking at the Fig. 3, Fig. 4 we can see the correct clu-
stering results for the same data set “disk in disk” using our 
suggested expression. For another above mentioned data sets 
we obtain as well accuracy results.

а)                                           b)
Fig 3. Clustering results using a new approach to the sub-

clusters merging, k=5: a) Data set “disk in disk”; b) Data set 
“t8.8k.txt”

а)                                                    b)
Fig. 4. Clustering results using a new approach to the sub-

clusters merging and k-means method, k=5: a) Data set 
“t111”; b) Data set “t4.8k”, k =5

4. Conclusions

In this paper, we present our experiments with hierarc-
hical clustering algorithm CHAMELEON for circles clus-
ter shapes with different densities using hMETIS program 
that used multilevel k-way partitioning for hypergraphs 
and a Clustering Toolkit package that merges clusters ba-
sed on a dynamic model. In CHAMELEON two clusters 
are merged only if the inter-connectivity and closeness 
between two clusters are comparable to the internal inter-
connectivity of the clusters and closeness of items within 
the clusters.

The methodology of dynamic modeling of clusters is 
applicable to all types of data as long as a similarity matrix 
can be constructed.

Experimental results showed that hMETIS compute 
k-way partitioning of hypergraph with mistakes closer to 
the border of two classes and CLUTO can not effectively 
merge clusters using asymmetric k-NN, with k=5.

We present a modified hierarchical clustering algorit-
hm that measures the similarity of two clusters based on 
a new dynamic model with different shapes and densities. 
The merging process using the dynamic model presented 
in this paper facilitates discovery of natural and homogen-
eous not only circles cluster shapes.

Experimental results showed that this method is not 
sensitive to the value of k and doesn’t need a specific k-ne-
arest neighbor graph creating.
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