
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/4 ( 92 ) 2018

4

neurons whose activating functions are the assigned basis 
functions

= ∑
,

ˆ ˆ( , ),  i i j
i j

y w f x w  	 (2)

where wi are the weights of neurons in the output layer; ˆ jw  
are the weights of neurons in the hidden layer. 

In this case, the approximation problem comes down to 
determining network parameters through its training.

2. Literature review and problem statement

By using a mathematical model of the cerebellar cortex, 
developed in [1], author of papers [2, 3] proposed the artificial 
neural network CMAC Cerebellar Model Articulation Con-
troller. This network, owing to the high speed of learning and 
a small volume of the required memory, achieved by special 
encoding of information, is especially promising for the im-
plementation in microcontroller systems of control over non-
linear objects, as well as when solving several other practical 
tasks. However, the use of traditional CMAC, which makes it 
possible, in contrast to MP, RBN, to perform a piecewise-con-
stant approximation, is impossible for the tasks of indirect 
adaptive control in which it is required to calculate partial 
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1. Introduction

Artificial neural networks (ANNs) that are increasingly 
common at present are particularly effective when solving 
problems on the identification and control of non-linear 
dynamic objects in real time. ANNs are also widely used for 
processing and filtering of signals and images and for resolv-
ing a number of other tasks, which in one form or another 
employ approximation of complex non-linear dependences

= + x( ) ( ) ,y x f x  	 (1)

where y is the output signal; x=(x1, x2,…, xN)T is the vector 
of input signals; f is an unknown nonlinear function; ξ is the 
disturbance with zero mathematical expectation; T is the 
symbol of transposition. 

Among the existing large number of network structures, 
solving the specified problems mainly involve a multilayer 
perceptron (MP), radial-basis (RBN) and neural fuzzy 
(NFN) networks. 

All of these ANNs are based on the approximation of 
the examined function by a certain system of basis func-
tions ( ).if x  In this case, the approximated function is 
represented as a neural network, containing, in addition 
to the input and output layers, one or more hidden lay-
ers. Each of these layers consists of a certain number of 
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derivatives based on the input control signals. This drawback 
can be eliminated by integrating a CMAC network with an 
apparatus of fuzzy logic [4]. A similar approach was employed 
in papers [5‒8]. However, these papers applied traditional 
training of a network, which, on the one hand, is sufficiently 
proven when solving rather simple problems, and on the other 
hand, is very inefficient if there are interferences ξ with a dis-
tribution different from Gaussian.

As we know, training ANN implies determining a vec-
tor of its parameters and is reduced to minimizing certain 
functionality (learning criterion) caused by the approxi-
mation error 

= − ˆ( ) ( ) ( ),e k y k f k  

whose form depends on statistical properties of the in-
terference. Most of the currently known algorithms for 
training neural networks are based on applying rigid and 
difficult-to-verify conditions associated with a hypothesis 
about normality of the distribution law of interference and 
substantiated by references to the central limit theorem 
and represents some modifications of the method of least 
squares (LSM).

A traditional CMAC network is trained using an er-
ror back propagation algorithm, minimizing quadratic 
functional from error ( )e k  based on the presentation of 
training pairs ( )( ), ( ) ,x k y k  1,2,...k =  [2, 3, 9]. The LSM 
solution, obtained in this case, which is asymptotically 
optimal with a minimum variance in the class of unbiased 
estimates, is based on the assumption that interference x  is 
not correlated and follows a normal distribution law. How-
ever, this assumption is usually wrong under actual condi-
tions because an a priori information on distribution x  is 
typically unavailable, or the interference is clogged with a 
non-Gaussian noise. Due to this, some measurements are 
at a relatively large distance from the primary data volume 
and form the so-called “tails”.

The instability of LSM estimation in the presence of such 
interference led to the development of alternative, robust es-
timation in statistics, the purpose of which was to eliminate 
the impact of large errors. 

It should be noted that a quite common model of clog-
ging is the Tukey-Huber model [10]

ρ x = − ε ρ x + ε x0( ) (1 ) ( ) ( ),q 	  (3)

where ρ x0( )  is the density of 
the respective main distribu-
tion; x( )q  is the density of the 
clogging (random distribution); 
ε Î[0,1]  is a parameter describ-
ing the degree of clogging of the 
main distribution. 

When using model (3), it is 
also commonly assumed that 
both ρ x0( ), and x( ),q  are Gauss-
ian with zero mathematical 
expectations and different va-| 
riances. 

However, for many informa-
tion-processing tasks (interpo-
lation, estimation and modeling 
of attributes, related to spatial 
distribution, the presence of 

pulse noise with long “tails”, etc.), there is often the need to 
account for asymmetry in the distribution of original data 
(and interferences).

If the information about belonging of interference ξ to some 
specific class of distributions is known, then, by minimizing an 
optimal criterion, which is a logarithm of distribution function 
of the interference, taken with opposite sign, one can obtain 
an estimate for maximum likelihood. If such information is not 
available, then, in order to evaluate the desired vector of param-
eters, one should apply any nonquadratic criterion that would 
enable the robustness of estimate to be obtained. 

Among the main types of robust estimations, M-, L-, 
and R-estimates, training tasks most commonly employ the 
M-estimation proposed in [10].

3. The aim and objectives of the study

The aim of present study is to develop a robust approach 
to training CMAC and to investigate the properties of a net-
work, obtained as a result of combining a traditional CMAC 
with the apparatus of fuzzy logic and a robust M-estimation, 
the robust FCMAC ‒ Fuzzy CMAC. This would make it 
possible to implement a robust approach to solving problems 
on the identification of and control over non-linear dynamic 
systems, as well as enable the use of a FCMAC network in 
systems with strong perturbations.

To accomplish the aim, the following tasks have been set:
– to synthesize a structure of the fuzzy CMAC network 

(FCMAC);
– to develop a robust algorithm for configuring FCMAC;
– to perform a test simulation to evaluate the effective-

ness of application of the proposed method for the identifica-
tion of non-linear dynamic objects.

4. Architecture of the robust neural network FCMAC

The main part of FСМАС is a linguistic description of 
steps, carried out in accordance with the current state of the 
object. While a traditional СМАС simulates a physical sys-
tem or a real process, FСМАС makes it possible to include 
in the operation algorithm an expert knowledge and can be 
considered as a real time expert system [11–13]. 

Let is consider the principle of operation of the network, 
an example of which is shown in Fig. 1.

 

Fig. 1. Operation principle of FСМАС network



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/4 ( 92 ) 2018

6

Because sensors and controlling elements use definite 
values, the network employs two subsystems: a fuzzification 
subsystem (converts definite values to fuzzy values) at the 
input and a defuzzification subsystem (converts fuzzy values 
to definite values) at the output. Fuzzification is executed 
by using an input membership functions and defuzzification 
can be implemented applying special procedures, which will 
be described below. 

Fuzzy rules describe possible states of the system and 
their corresponding actions. The rules implemented by the 
fuzzy neural network FCMAC take the form

IF 1x  IS 1,iX  AND… Nx  IS ,N iX  THEN =ˆ ,i if w  = ρ1,..., ,i

where 1, ,,...,i N iX X are linguistic values in the antecedent 
of the i-th rule; îf  is the function in the consequent of the 
i-th rule; wi are the adjustable parameters in the consequent 
of the i-th rule; ρ is a parameter, assigned a priori, which 
defines the number of active membership functions (quan-
tization steps); N is the dimensionality of the input signal.

Thus, each component of the input signal X is sent to 
the appropriate association matrix in the fuzzification unit 
containing Ri quantization levels. In addition, each level of 
quantization of the i-th component has the same number ρ 
of quantization steps ( 1,iC  2,iC …, ρ

iC ). Each quantization step 
includes ρ*

≤ρ of quantization regions, denoted by some inter-
mediate variables and which represent certain pre-selected 
membership functions. N-dimensional signal x, arriving at 
the network input, activates Nρ membership functions (each 
component xi excites ρ membership functions ‒ one for each 
level of quantization in the corresponding association matrix).

The association matrices outputs produce signals whose 
magnitude is determined by the value of the accepted mem-
bership function. 

To solve the problem on indirect adaptive control, it is 
required that t-norm should be differentiable for input vari-
ables and for parameters of membership functions. This con-
dition should also be met when FCMAC network employs 
learning methods that make it possible to tune parameters of 
membership functions. To this end, a t-norm used in the net-
work shown in Fig. 1 is the product, however, if a network is 
designed to solve the problem on approximation of functions 
or the task of indirect control with a reference model, it is 
possible to apply other t-norms. 

When a t-norm used is the product, the degree of fulfill-
ment of the i-th rule is calculated according to expression

=

Φ = ϕ∏
1

( ) ( ),
N

i ij j
j

x x  = ρ1, ,i  	 (4)

where ϕ ( )ij jx  is the membership function at the j-th input in 
the antecedent of the i-th rule. 

After computing the degree of compliance with the rules, 
their normalization is performed in accordance with formula

=
ρ

==

ϕ
Φ =

ϕ

∏

∑∏
1

11

( )

( ) ,
( )

N

ij j
j

i N

ij j
jk

x

x
x

= ρ1, .i

	

 (5)

Components of the resulting vector Φ(x) are recorded to 
the corresponding cells of association vector a, which is the 
code of the received input signal X. 

Dimensionality of the association vector a defines the 
number of weights (configurable parameters) of the network 
and can be derived from formula

  − = ρ + ρ   
max

1
1 ,

N
R

n  	 (6)

where R is the applied number of quantization levels of input 
signals; N is the dimensionality of the input vector; ] [•  de-
notes rounding toward the nearest larger integer.

One can see from (6) that the volume of memory required 
for the implementation of a network dramatically increases 
with an increase in the dimensionality of vector of input 
signals N. Consequently, it is quite difficult to implement a 
FCMAC network to solve the tasks on identification of and 
control over objects with a large dimensionality. Given this, 
in order to reduce the memory used, the hashing of informa-
tion is employed [14‒16], at which the resulting association 
vector a is converted, by using a certain hashing algorithm, 
into the new vector =′ ( )Ha a  with a smaller dimensionali-
ty. Here H(•) is the transformation performed by a hashing 
algorithm. The number of nonzero components in vector ′a  
can be smaller than ρ (corresponding units and connections 
at hashing are shown in the bottom right part of Fig. 1 with 
dotted lines).

A network output is computed as a weighted sum of all 
nonzero association vector components a (in the absence of 
hashing), or ′a  (if it is applied), that is defuzzification is 
carried out at this stage. 

Thus, in a general case, a СМАС network performs 
transformations

S: X ⇒ A, 			    (7)

A ,⇒ ′:  H A 	  (8)

A ⇒′: ,P y 					      (9)

where X is the N-dimensional space of continuous input sig-
nals; A is the n-dimensional space of associations; A′  is the 
space of associations transformed by the hashing algorithm; 
y is the vector of output signals. 

Transformation (7) corresponds to the coding of infor-
mation

a=S(x), 	 (10)

(8) – to hashing 

=′ ( ),Ha a

and (9) – to the output signal computation 

ŷ =P( ′a )=( ′a )Tw=(H(a))Tw, 	 (11)

where T is the transposition. 
Expression (11) describes the transformation taking 

place in a traditional СМАС using the hashing of informa-
tion (not always applied). If a network employs the apparatus 
of fuzzy logic, transformation (11) takes the form

ŷ =H(aTФ(x))w, 	 (12)

where 
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Φ 
 Φ Φ =  
 

Φ 

1

2

( ) 0 ... 0

0 ( ) ... 0
( ) .

... ... ... ...

0 0 0 ( )n

x

x
x

x

For a traditional СМАС, Ф(х)=I, where I is the identity 
matrix.

4. 1. Choice of membership functions
The choice of membership functions significantly affects 

approximating properties of a FСМАС network. 
As already noted, traditional СМАС executes continu-

ous piecewise approximation, which is a consequence of its 
using the rectangular membership functions. When choos-
ing membership functions of this type, computing costs 
would be minimal. Components of the association vector in 
this case can accept values of either “0” or “1”. Consequently, 
this greatly reduces a network response time to the arrived 
input signal, that is, the rate of network learning will be 
maximum. 

A FCMAC network can employ, for example, the follow-
ing functions as a membership function [17]:

 − µ Φ = − s  

2

2( ) exp ,i
i

i

x
x 	  (13)

( ) ( ) ( )−µ
−

s
 − µ

Φ = −  s 

2

2

2

21 ,
i

i

x

i
i

i

x
x e  	 (14)

 − µ Φ = − s  
( ) exp ,i

i
i

x
x  	 (15)

( ) ( ) − µ − µ Φ = − s s  

2

2

2
( ) exp ,i i

i
i i

x x
x  	 (16)

where ⋅  is the Euclidean norm; µ i  is the center of the i-th 
quantization region; si  is the size of the i-th quantization 
region. 

In addition, a FСМАС network quite often employs, 
as membership functions, the B-splines of various orders 
[14, 15] whose apparent advantage is the possibility for 
recurrent calculation of both the B-splines, in accordance 
with formula

−
− − −

− − − +

=

   − λ λ −
= +   

λ − λ λ − λ      

,

1, 1 1,
1 1

( )

( ) ( ),

n j

j n j
n j n j

j j n j j n

B x

x x
B x B x

	

(17)

and their derivatives of the δ-th order

d

d d

−
− − −

− − − +

−
= ×

− d −

    − λ λ − × +    λ − λ λ − λ        

( )
,

( ) ( )

1, 1 1,
1 1

( 1)
( )

( 1)

( ) ( ) ,

n j

j n j
n j n j

j j n j j n

n
B x

n

x x
B x B x

	

(18)

where d( )
, ( )n jB x  is the derivative of δ-th order from B-spline 

of the n-th order in the j-th quantization region.

Here

)1
0,

1,  if , ;
( )

0,  otherwise;

j j
j

x
B x −

 Î λ λ = 
   

)1(0)
0,

1,  if  , ;
( )

0,  otherwise;

j j
j

x
B x −

 Î λ λ = 


d− d−
− − −d

− − − +

   
= −   

λ − λ λ − λ      

( 1) ( 1)
1, 1 1,( )

,
1 1

( ) ( )
( ) ;n j n j

n j
j j n j j n

B x B x
B x

λ j  
is the j-th knot of the spline (quantization region center). 
Thus, upon determining active interval −λ λ1( , ]j j  for the 

first-order B-spline, these expressions can be used to retrieve 
the values of all B-splines of higher orders and, if necessary, 
their derivatives.

Thus, a traditional СМАС is matched by the zero-order 
B-spline; when choosing the first-order B-spline we obtain 
triangular membership functions; the fourth-order B-spline 
is similar to choosing the Gaussian membership function. 

It should be noted, however, that although the most 
commonly used Gaussian membership function allows very 
simple calculation of derivatives and possess the property 
of local excitation, it is difficult to clearly identify their 
excitation limits, which is important in order to realize a 
FСМАС network. It is possible, in order to eliminate this 
shortcoming, to use a modified Gaussian function

2
2 1

1 2
1 2

( ) / 4
exp  for  ( , );

( ) ( )( )

0,   otherwise.
i

х
x x x

  λ − λ
− Î λ λ  ϕ = − λ λ −  




	 (19) 

One can see from expression (19) that this function is 
strictly defined in interval (λ1, λ2), which simplifies the 
scaling of basis functions when changing such network pa-
rameters as R and ρ. 

Because the value for the association vector components 
is obtained by multiplying the corresponding values of mem-
bership functions, it is required to consider the following fact. 
Such membership functions as the B-splines of the fourth, and 
higher, orders, as well as the Gaussian function and a modified 
Gaussian function, accept the values, near the bound of a 
quantization region, close to zero. Hence, it follows that the 
values for the association vector components will also tend to 
zero, which would have a negative effect on the properties of 
the network. To avoid the specified drawback, it is possible to 
use as membership functions the trigonometric functions, for 
example, the cosinusoidal function, of the form

( )cos   for   , ;
( ) 2 2

0, otherwise,

j j
j i j i i

i j j

r r
xх

x r

   ρ ρ π
− λ Î λ − λ +   ϕ = ρ    




(20)

where λi is the i-th center of quantization region; rj is the step 
of quantization for the j-th component of the input signal. 

Trigonometric functions also make it possible to easily 
calculate their derivatives. It is easy to make sure that in this 
case the minimum values for the association vector compo-
nents will slightly increase.

Fig. 1 shows a circuit of FСМАС for the n-dimensional 
case, which can possess different membership functions for 
different variables. In this figure, the basis functions, for 
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the sake of simplicity, are displayed as volumetric shapes, 
although, as demonstrated by (13)–(20), they are flat.

5. Robust algorithm for training a FСМАС neural 
network

Determining all network parameters, that is, in a general 
case, vector

θ(k)=(a0(k), w1(k), µ1 ( )T k , σ1(k),…, wN(k), µ ( )T
N k , σN(k))T,

is carried out by training it with a trainer. 
In this case, an estimation criterion (learning criterion) 

may be represented as follows:

[ ] ( )
=

= ρ∑
1

( ) ( ) ,
k

i

F e k e i  	 (21)

where ( )ρ ( )e i  is a certain loss function. 
The task of training implies finding an estimate q̂,  de-

fined as a solution to the extreme problem on minimum

( ) [ ]q = min ( )F F e k  	 (22)

or as a solution to the system of equations 

( )
=

∂ ∂
= ρ =′

∂q ∂q∑
1

( ) ( )
( ) 0,

k

ij j

F e e i
e i 	  (23)

where 

( ) ( )∂ρ
ρ =′

∂
( )

( )
( )

e i
e i

e i
 

is a function of influence. 
If we introduce a weight function 

( ) ρ′ω =
( )

,
e

e
e

 

the system of equations (23) can be written as follows:

( )
=

∂
ω =

∂q∑
1

( )
( ) ( ) 0,

k

i j

e i
e i e i  	 (24)

and minimization of functional (21) will be equivalent to the 
minimization of the weighted quadratic functional

( )
=

ω∑ 2

1

min .
k

l l
l

e e  	 (25)

When choosing 

( ) 21
( ) ( ),

2
e i e iρ =  

the influence function is ( )ρ =′ ( ) ( ),e i e i  that is, it increases lin-
early with an increase in e(i), which explains the instability of 
LSM estimation against emissions and interference whose dis-
tributions possess large tails. A variety of robust learning algo-
rithms for ANN, minimizing (21), are given in papers [20–24]. 

Training a traditional СМАС, which employs rectan-
gular basis functions, is executed at every cycle following 

the presentation of training pairs { ( ), ( )},k kx y  where y(k) 
is the value of function corresponding to x(k). The training 
implies correcting only those of its ρ weights that match 
singular components of the association vector for a given 
vector x(k). In this case, a learning rule for all i, j, for which 

= =( ) ( ) 1,i ja k a k  takes the form

=

 
+ = + γ − ρ ∑

1

1
( 1) ( ) ( ) ( ) ,

n

j j i
i

w k w k y k w k  	 (26)

where γ Î(0,1]  is a parameter that affects the speed of 
learning. 

When using membership functions that take the form other 
than rectangular, a given algorithm can be written as follows:

+ =

 − Φ
= + γ Φ 

Φ 
2

( 1)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ,

( ) ( )

T

w k

y k a k x w k
w k k x a k

x a k
 	 (27)

where γ(k) is a certain, in a general case, variable parameter. 
The properties of algorithm (27) depend largely on the 

choice of the parameter γ(k). It is easy to demonstrate that 
the optimal value for this parameter that provides a max-
imum learning rate in the absence of interference will be 
equal to 1. To ensure the convergence of algorithm (27) in 
the presence of measurement interference, parameter γ(k) 
must meet Dvoretzky conditions [25]. In this case, param-
eter γ(k) should not decrease too rapidly, in particular, it 
would suffice to select γ(k) of the type

αγ = γ( ) ,kk  	 (28)

where γ Î( ) (0,1),k  < α <<0 1.
M-estimation also represents the evaluation of q̂,  de-

fined as a solution to extreme problems (22) or as a solution 
to the system of equations (23), however, the loss function 

( )ρ ie  is chosen other than quadratic. Studying different 
classes of interference distributions made it possible to ob-
tain for these classes the least favorable distributions, that 
is, those that minimize the Fischer information. The use of 
these distributions, in turn, determines the form of a loss 
function and allows obtaining robust estimations that are 
applicable for almost any interference distributions [26, 27].

Currently, there are many such functions ρ(e). Table 1 
gives several typical representatives of functionals and their 
derivatives, employed in the robust estimation. 

The gradient network learning algorithm will take the form

( )( )ˆ ˆ( ) ( 1) ( )
j

F e k
k k k

∂
q = q − + γ

∂q
	 (29)

or 

( ) ∂
q = q − + γ ρ′

∂q
( )ˆ ˆ( ) ( 1) ( ) ( ) ,

j

e k
k k k e k 	 (30)

where γ>0 is the parameter that affects learning rate and which 
can be selected different for various network parameters. 

Algorithms for configuring specific network parameters 
when selecting, for example, the Gaussian membership func-
tions, will take the following form:

 −
− s + = − γ ∏

2
( ) ( )

( )( 1) ( ) ( ) ( ) ( ) ;
i l

l

x k m k

k
j j j

l

w k w k k e k a k e  	 (31)
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It is easy to construct network learning algo-
rithms when selecting the membership functions of 
other forms. However, as already noted, some of the 
membership function (B-splines of the fourth, and 
higher, orders, the Gaussian function, and the modified 
Gaussian function) possess, near the border of a quan-
tization region, values that are close to zero. Therefore, 
the values for the association vector components will 
also approach zero, which will have a negative effect 
on the properties of the network. In this case, the use 
of normalization (5) is ineffective; moreover, even the 
introduction of certain regularization to learning algo-
rithms may not yield the desired result. 

In addition, when correcting the centers of member-
ship functions, one may find that these centers are be-
yond the respective intervals. Therefore, their values for 
these intervals will be equal to zero and a corresponding 
region of quantization of the input signal will not par-
ticipate in the processing of information. An attempt to 
impose constraints on the range of acceptable changes 
in the values of centers leads to a significant complica-
tion in correction algorithms and prolong the process of 
network learning. Therefore, it is often more effective to 
correct only the weight parameters of the network. 

Note that training only the weight parameters of a 
network is performed when using B-splines.

5. 1. Identification
A problem on the identification of a nonlinear 

dynamic object that is represented by the NARMAX 
model [31]

y (k+1)=f[y(k),…, y(k–m), 
u(k),…, u(k–n), k]+ξ(k+1), 	 (34)

where y (i), u(i) are the output and input signals of the 
object at time i, respectively; m, n are the orders of de-
lay for the output and input channels, respectively; f[•] 
is an unknown nonlinear function; ξ is the interference 
in the measurement of the output signal, implies the 
estimation of function f(•) based on the measurement 
of the input u(k) and the output y (k+1) variables. 

We shall denote a vector of the generalized input 
signal with a dimensionality of (n+m)x1 as

x(k)=[y(k), y(k–1),…, 
y(k–m), u(k), u(k–1),…,u(k–n)],

record equation (34) in the following form:

y (k+1)=f[x(k), k]+ξ(k+1),	  (35)

that is, reduce to form (1), applied at a neural-network 
representation. 

Thus, the problem on identification is reduced in 
this case to training a network, which implies configur-
ing its weight parameters based on the minimization of 
a certain functional in the identification error

+ = + − +ˆ( 1) ( 1) ( 1).i k y k y ke

Examples of using a СМАС network for the identi-
fication of nonlinear objects can be found, in particular, 
in [29‒31].

( )2 2( ) ( )

( )
3

( 1)

2 ( ) ( )
( ) ( ) ( ) ( ) ; (32)

( )

i l

l

ij

x k m k
i jk

ij j j
l j

k

x k m k
k k e k a k w e

k

 −
− s 

s + =

  −
 = s − γ

s  
∏

( )2
( ) ( )

( )
2

( 1)

2 ( ) ( )
( ) ( ) ( ) ( ) . (33)

( )

i l

l

ij

x k m k
i jk

ij j j
l j

m k

x k m k
m k k e k a k w e

k

 −
− s 

+ =

  −
 = − γ

s  
∏

Table 1

Functionals and their derivatives used in the robust estimation

Functional Derivative

[ ( )] ( )e k e k
λρ = 1

[ ( )] ( ) ( ( ))e k e k sign e k
λ−ρ = λ′

( )[ ( )] ln cosh ( )e k e kρ = ( )[ ( )] tanh ( )e k e kρ =′

( )
1 cos , ( ) ;

[ ( )]
2, ( ) .

e k
e k c

ce k
e k c

 π − ≤   ρ = 
 >

( )
sin , ( ) ;

[ ( )]
0, ( ) .

e k
e k c

c ce k
e k c

π π  ≤   ρ =′ 
 >

2

2

( )
[ ( )]

1 ( )
e k

e k
e k

ρ =
+ ( )22

2 ( )
[ ( )]

1 ( )

e k
e k

e k
ρ =′

+

2( )
2[ ( )] 0.5 1

e k
ce k c e

 −  
 

ρ = − 
  

2( )

[ ( )] ( )
e k

ce k e k e
 −  ρ =′
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5. 2. Control problem
The task on control over a non-linear object (34) implies 

finding a control action u(k), which minimizes an error of 
control

+ = + − +*( 1) ( 1) ( 1),ue k y k y k  

where *y  is the desired value of the output signal. This is 
equivalent to the problem of optimization

*

( )
min ( 1) ( 1)
u k

y k y k+ − +

or 

[ ]+ − … − + … − +*

( )
min ( 1) f ( ), , ( 1), ( ), , ( 1) .
u k

y k k y k m u k u k ny

When function •[ ]f  is unknown, it is required to 
solve a problem on identification, which implies obtaining 
an estimate •ˆ[ ]f , which is used in the control law. Thus, 
a control problem is reduced to solving the optimization 
problem

[ ]+ − … − + … − +*

( )

ˆmin ( 1) f ( ), , ( 1), ( ), , ( 1) .
u k

y k y k y k m u k u k n

The task to control, based on a traditional СМАС net-
work, the objects whose description represented particular 
cases (34), was addressed in many papers, specifically in 
[32–36]. 

If one selects quadratic +2 ( 1),u ke  as a criterion, the 
law of control that implements indirect adaptive control 
without a reference model represents a certain gradient 
procedure

+ = + γ∇ +ˆ( 1) ( ) ( ) ( 1),u uu k u k y k e k  	 (36)

where γ is a parameter that affects the algorithm configura-
tion rate:

=

∂Φ∂
∇ = =

∂ ∂∑
1

ˆ( )
ˆ( ) .

( ) ( )

n
i

u i i
i

k
k a w

k k
y

y
u u

Because in this case the use of a traditional СМАС 
network with membership functions of rectangular shape is 
not possible, implementation (36) may be based on FСМАС 
whose membership functions are differentiable.

6. Discussion of results of experimental study of the 
proposed method for identification and control

In the course of studying the proposed method for the 
identification and control of nonlinear dynamical systems 
using a FСМАС network, we conducted a series of exper-
iments. The aim was to demonstrate the effectiveness of 
using a robust FCMAC network to identify noisy dynamic 
objects. 

Experiment 1. We consider a problem on the identification 
of a nonlinear dynamic object described by equation [28] 

( )
 − + −

= β +  + − + − 
+ − + −

2 2

16 ( 1) 8 ( 1)
( ) 0.5075 ( )sin

0.7 3 4 ( 1) 4 ( 1)

0.2 ( 1) 0.2 ( 1),

u k y k
y k k

u k y k

u k y k 	 (37)

using a FСМАС network with different basis functions and 
applying hashing algorithms.

Fig. 2, 3 show results of the object identification (37) 
using the rectangular and Gaussian membership functions, 
respectively. Fig. 2, a and Fig. 3, a show the surfaces, re-
stored by a FСМАС network without application of hashing 
algorithms. The volume of memory required in this case 
amounted to 708 cells. Fig. 2, b and Fig. 3, b demonstrate 
results of the identification using the hashing, correspond-
ing to selecting in the algorithm (19) m=500; Fig. 2, c and  
Fig. 3, c ‒ m=400; Fig. 2, d and Fig. 3, d ‒ m=350.

 
 
 
 
 
 
 

a                                              b 

 
 
 
 
 
 

c                                               d  
Fig. 2. Results of the identification of object (37) using 
rectangular membership functions: a – surface restored 

without the use of hashing; b – results of the identification 
using hashing at m=500; c – at m=400; d – at m=350

Experiment 2. We solved a problem on the identification 
of a very noisy object described by equation

= + + x
+ 2

( )
( ) sin( ( )) ( ).

1 ( )
y k

y k u k k
y k

 	 (38)

The surface described by equation (38) is shown in  
Fig. 4, a. An output signal of the object was noisy due to an 
interference, uniformly distributed in interval [−0.4, 0.4], 
resulting in the noise equal to 20 % of the useful signal 
(Fig. 4, b). To solve the problem on identification, we used 
a FСМАС neural network with the following parameters: 
R=100, ρ=20, N=708 (volume of the required memory), 
membership functions are cosinusoidal. The network was 
presented with 100,00 training pairs. Fig. 4, c shows iden-
tification results when using algorithm (27) with γ =( ) 1k ;  
Fig. 4, d ‒ with γ( )k , modified in accordance with formula 
(28) at α = 0.01 and γ = 0.99.  The results of modeling show 
that algorithm (27) with a variable parameter γ( )k  produces 
significantly better results and almost completely eliminates 
the negative impact of an interference.

Experiment 3. We solve a problem on the identification 
and indirect control, without a reference model, of a very 
noisy object (38). Network parameters and noise parameters 
were taken similar to those from experiment 2. However, we 
chose the form of a membership function in a given example 
in a different way: membership functions for the network 
input signal y(k) that we selected were rectangular, while for 
the input control signal u(k) ‒ cosinusoidal. 

The network was trained on 100,00 training pairs. Fig. 5, a  
show results of the identification using algorithm (27) with 
γ =( ) 1,k  Fig. 5, b ‒ using algorithm (27) with a variable 
parameter γ( )k in line with (28) at α = 0.01  and γ = 0.95.   
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Fig. 5, c, d show the results of control over object (38). The 
desired object’s output signal change law was assigned in the 
following way:

[ ]
[ ]
[ ]

*

0.7sin( /100),  for 0,400 ;

( ) 0.5,  for 401,600 ;

0.5 0.003 ,  for 601,1000 .

x x

y k x

x x

 π Î


= − Î
− + Î

 
 
 
 
 
 

a                                           b 

 
 
 
 
 
 

c                                            d  
Fig. 3. Results of the identification of object (37) using 

the Gaussian membership functions: a – surface restored 
without the use of hashing; b – results of the identification 

using hashing at m=500; c – at m=400; d – at m=350

 
 
 
 
 
 
 

a
                                            

b 
 
 
 
 
 
 
 

c                                             d  
Fig. 4. Results of the identification of a very noisy object 

(38): a – reference surface; b – noisy surface; c – results of 
the identification using algorithm (27) with γ(k)=1; d – with 

γ(k) modified in accordance with formula (28)

Here, a solid line marks the desired output signal, dot-
ted ‒ actual output signal, solid with circles ‒ control signal. 

The results of modeling show algorithm (27) with 
γ = γ 0.01( ) kk  produces significantly better results, almost 
completely eliminating the negative influence of an interfer-
ence, which positively affects the results of control.

A choice of different basis functions for different input 
signals was justified because, first, the training time reduced 
significantly, second, computational costs decreased, and, 
third, the calculation rate of control signals grew. A slightly 

increased level of the identification error did not in this case 
affect the results of control. 

 
 
 
 
 
 
 

a                                                b 
 
 
 
 
 
 
 
 

c                                                 d 
 

Fig. 5. Results of the identification and indirect control, 
without a reference model, of a very noisy object (38):  

a – results of the identification using algorithm (27) with 
γ(k)=1; b – with parameter γ(k) that changes in line with 

(28); c, d – results of control

Experiment 4. In this experiment we solved a problem on 
the identification and control of a multidimensional object 
(MIMO) described by the following equations:

[ ]
− −

= +
+ −

+ − − − +

1 2
1 2

1

1 2

15 ( 1) ( 1)
( )

2 50 ( 1)

0.5 ( 1) 0.25 ( 1) 0.1;

u k y k
y k

u k

u k y k

π − − + −
= 2 1 2

2

sin( ( 1) ( 1)) 2 ( 1)
( ) .

3
u k y k u k

y k 	 (39)

To solve a given problem, we used a FСМАС network 
with four inputs and two outputs. The network had the 
following parameters: R=100, ρ=20, N=25,067 (volume of 
the required memory), membership functions for all network 
inputs are cosinusoidal. The network was trained using 106 
training pairs. 

Results of the work of a neural controller that imple-
ments algorithm (36) are shown in Fig. 6. In all these 
figures, a dotted line shows the desired output signal 

*( ),iy k  solid ‒ actual ˆ ( ),iy k  a line with circles ‒ a cor-
responding change in control signal ui(k) (i=1, 2). The 
required values for output signals, for the example of 
solving a control problem, shown in Fig. 6, a, b, were 
assigned as follows:

= π + π*
1 ( ) 0.4sin( /100) 0.1cos( / 200);y k k k

*
2

0.2  for   1,500;
( )

0.1  for  501,1000,

k
y k

k

 == 
=

for the example shown in Fig. 6, c, d, signal *
1 ( )y k  remained 

unchanged and a saw-shaped signal was chosen to serve as 
*
2( ).y k
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a                                              b 
 
 
 
 
 
 
 

c                                               d  
Fig. 6. Results of the work of a neural controller: a – for the 

first channel for a sinusoidal reference signal; b – for the 
second channel for a sinusoidal reference signal; c – for the 
first channel for a saw-shaped reference signal; d – for the 

second channel for a saw-shaped reference signal

Experiment 5. We solved a problem of control over a non-
linear object [28]

+ = − +( 1) [ ( ), ( 1)] ( ),y k f y k y k u k  	 (40)

where 

[ ]− +
− =

+ + −2 2

( ) ( 1) ( ) 2.5
[ ( ), ( 1)] ,

1 ( ) ( 1)
y k y k y k

f y k y k
y k y k

	  (41)

using a reference model and hashing algorithms. 
Control using a reference model rendered the following 

form to the neural network model

+ = − +ˆˆ( 1) [ ( ), ( 1)] ( ).y k f y k y k u k  	 (42)

As the input signal u(k), we selected a stationary ran-
dom sequence with a uniform law of distribution in interval  
[−5, 5]. This object’s identification was carried out based on 
20,000 training pairs at the following network parameters: 
R=100, ρ=20, membership functions are cosinusoidal (17), 
length of the association vector totaled 708 bits. 

A model of the following form was assigned as the refer-
ence model

+ = + − +* * *( 1) 0.4 ( ) 0.1 ( 1) ( )y k y k y k r k  	 (43)

with a reference input signal = π( ) sin( /150).r k k
Because control action u(k) is linearly included in equa-

tion (40), its value can be calculated as follows:

[ ]= − − +
+ + − +

ˆ( ) ( ),  y( 1)

0.4y( ) 0 1 ( 1) ( ),

u k f y k k

k . y k r k
	

 (44)

where •ˆ( )f  is the non-linearity (41), restored by using a 
neural network model (42). 

Results of the experiment are shown in Fig. 7, 8. Fig. 7, a 
shows the surface described by equation (34); Fig. 7, b ‒ the 
surface restored by the neural network СМАС without 
hashing the information (M=708). Fig. 7, c, d shows results 

of the identification using a hashing algorithm at, respective-
ly, m=500, m=400, and m=350.

Fig. 8, a shows results of control without using hashing 
algorithms; Fig. 8, b ‒ those that correspond to selecting in 
algorithm (19): m=500; Fig. 8, c ‒ m=400; Fig. 8, d ‒ m=350. 
In all figures, a dashed line corresponds to the desired output 
signal, solid ‒ to the actual one when sending to the input of 
the object of control signal computed from formula (44) and 
shown in figures with a solid line with circles. Control error, 
as demonstrated by the figures, increases when the amount 
of the required memory decreases.

 
 
 
 
 
 

a                                                b 
 
 
 
 
 
 
 

c                                                d 
 
 
 
 
 
 

e  
Fig. 7. Results of experiment 5: a – surface described by 
equation (34); b – surface restored without hashing the 

information; c – results of the identification using hashing at 
m=500; d – at m=400; e – at m=350

 
 
 
 
 
 
 a                                                 b 

 
 
 
 
 
 

c                                                  d  
Fig. 8. Results of experiment 5: a – results of controls 

without using the hashing; b – using the hashing at m=500; 
c – at m=400; d – at m=350

As shown by the results of present study, the proposed 
structure of a robust FСМАС neural network, which is the 
result of combining a traditional СМАС network with the 
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apparatus of fuzzy logic and the robust M-estimation, makes 
it possible to realize a robust approach to the problems on 
identification and control of nonlinear dynamic systems in 
the presence of non-Gaussian noise. The choice of member-
ship functions of FSMAS depends on the specific task to be 
solved, in particular, in order to synthesize control systems 
with a reference model, one should select membership func-
tions of a rectangular shape, and when solving a problem on 
indirect control without a reference model ‒ trigonometric 
functions or Gaussian functions. A distinctive feature of a 
given approach is the possibility to apply various types of 
membership functions for different input signals of FСМАС.

Despite significant positive results of the application 
of a given network in the synthesis of indirect control sys-
tems with or without a reference model under conditions 
of non-Gaussian noise, there are a number of problems that 
arise in the practical application of the proposed robust 
FСМАС network: the following ones are worth mentioning. 

First, still unresolved is the task on the most efficient 
encoding of information, implying the selection of network 
parameters ρ and R, because, on the one hand, an increase 
in the values of these parameters leads to improved accuracy 
of signal representation, on the other hand, to an increase 
in the time for obtaining the model and the inconvenience 
of using this approach when solving problems in real time.

Second, there is currently no recommendations for 
choosing the most effective learning criterion, while solu-
tions obtained at the minimization of different criteria have 
different properties. It seems therefore appropriate to under-
take a study into comparative analysis of the effectiveness of 
the application of different criteria for different problems, as 
well as the development of relevant recommendations. 

Third, using in a given network such a powerful appa-
ratus as the hashing of information can significantly reduce 
the amount of memory required for network implementation, 
however, leads, because of the emergence of collisions, to 
the deterioration in the approximating properties of the 
network. Increasing the dimensionality of the problem that 
is being solved, that is an increase in the dimensionality of 
input signals N, predetermines the hashing of the informa-
tion employed, as it often is not possible to realize a FСМАС 
network without reducing the amount of memory.

Finally, fourth, it should be noted that in the application 
of gradient algorithms in order to train a network and solve 
the tasks of identification and control, there is a problem 
related to the selection of the optimal values of parameter 
γ(k), which is part of expressions (29)–(33), also (36), which 
ensure maximal speed of algorithms convergence (minimum 
time for training). It is obvious that the values of these algo-
rithm’s parameters will depend on the statistical properties 
of signals and interference. But because the latter are often 
not known, it is necessary to apply certain recurrent proce-
dures to obtain the estimates (mathematical expectations, 
variances, covariances, etc.) and use these estimates in order 
to select or correct algorithms’ parameters.

7. Conclusions

1. We have proposed a structure of the robust FСМАС 
neural network, which is the result of combining a tradition-
al СМАС with the apparatus of fuzzy logic and the robust 
M-estimation. This neural-network structure makes it pos-
sible to implement a robust approach to solving the problems 
on identification and control of nonlinear dynamic systems.

2. The following practical recommendations were de-
vised for choosing the membership functions of a FСМАС 
neural network.

– If a high speed and a relatively low accuracy of ap-
proximation are required, one should choose membership 
functions of a rectangular shape. The same choice is effective 
in the synthesis of control systems with a reference model.

– If a high accuracy of approximation is required, it is 
necessary to select B-splines of the second or fourth order, 
the Gaussian functions, or trigonometric functions, as mem-
bership functions.

– To solve a problem on indirect control without a refer-
ence model, it is required to use either Gaussian function or 
a trigonometric function as membership functions.

– In order to reduce computing costs and increase net-
work performance, it is possible to employ different forms of 
membership functions for different input signals of FСМАС.

3. We have designed a robust algorithm to configure a 
FСМАС network that makes it possible to utilize a given 
network in control systems in the presence of non-Gauss-
ian noise.

4. A study was conducted into information hashing 
algorithms in a F FСМАС network. The study revealed 
that hashing, while ensuring a significant reduction in the 
amount of memory required to implement a network, leads, 
because of collisions, to the deterioration in the approximat-
ing properties of the network. This has an adverse effect, in 
a greater extent, on the accuracy of solution to the identi-
fication problem, and, to a lesser degree, to the problem of 
control.

5. We have conducted simulation modeling, which con-
firmed that a FСМАС network, when choosing the appro-
priate membership functions, can be applied for the synthesis 
of indirect control systems with and without a reference 
model. However, it is more efficient to use it in control 
systems with the reference model. This sharply reduces the 
number of training pairs and simplifies the coding due to the 
narrower range of the applied values for input signals. It is 
also possible to significantly reduce the amount of required 
memory owing to hashing the information; while executing 
the control algorithm, there are no any problems associated 
with the application of gradient procedures (jamming at lo-
cal extrema, plateaus, etc.). In the cases when the reference 
model is not assigned, or if the structure of an object is not 
known and control is implemented without a reference mod-
el, it is rather effective to employ a FСМАС network that 
uses differentiable membership functions.
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