3anpononosano mooudixauii aneopum-
My /1. 0. Cunaesa nodyoosu 321a0xicyouo-
20 cnaaina pisnux nopsaodxie znadxocmi:
610 HYb0B020 00 OPY2020, AKI CNPAMOEAHT
Ha nideuueHHs CMIUKoCmi 4b020 a2opum-
Mmy. O6rpynmoeano pexomenoauii w000
dopmu nodanns noninomie, saxi onucy-
10Mb JAHKU CRAQUNIE YKa3anozo éudy. Ha
00UUCAI06ANBHUX NPUKIAAX NOKAZAHO
MOJCUBICMD Y3aA2ANbHEHHS AJI20PUMMY
. 0. Cunaesa na nepisHoMipHi cimxu

Knouoei coea: 3enadxcyrouuil cnaaiin,
uacoeuil pao, cmikicmo anzopummy, 00y-
MOBIEHICMb MAMPUYi, pecypcoeEMHicms
anzopummy

[, yu

IIpeonoscenvt mooudurxauuu anzopum-
ma /l. A. Cunaesa nocmpoenus ceaaxcuea-
10We20 CNIAHG PAZHBLIX NOPAOKOE 2N1A0KO-
cmu: om Hyneeoz0 00 6mMopozo, KOmopwle
HANpaesenvL HA NOGbIULEHUE YCMOUMUBOCIMU
amoeo anzopumma. O60cHoB8anvL pexomen-
dayuu omuocumenvio popmvt npedcmas-
JleHUs. NOJUHOMOG, KOMOPble ONUCHLIBAIOM
36enbs cnaaunoe ykazaunozo euda. Ha
8LIMUCTUMETIBHBIX NPUMEPAX NOKA3A-
HA 6803MOJCHOCH 0000UWeHUs alzopumma
. A. Cunaeea na nepagHomepHovle cemxu

Knwouesvie cnosa: cenaxcusarowui
cnaaiin, épemMeHHou psod, Ycmouuueocmo
anzopumma, 00YCro8eHHOCHL MAMPUUDbL,
pecypcoemrocms anzopumma

1. Introduction

The task on finding an effective analytical description
of a time series is commonly in many application areas. The
scope of application of interpolation splines is known to have
been limited to processing experimental dependences that
do not contain measurement errors or contain errors that
can be ignored. In the opposite case, the smoothing splines
are employed. There are many methods for smoothing. That
relates to the fact that the smoothing conditions are chosen
to match a particular applied problem. An expert in the
subject often struggles to understand the peculiarities of
different smoothing methods and to assign the required pa-
rameters of smoothing. Therefore, there is a need to develop
algorithms of smoothing whose constraints are interpreted
so that a user who may lack a proper mathematical training
on this subject can understand them.

The task on constructing an optimal smoothing spline
implies sorting out all the possible cases of distribution of
grid knots among the links of the spline. It is clear that
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the resource intensity of algorithms that could fully solve
such a problem makes them unsuitable for the application
in real-time systems [1]. Therefore, it is a relevant task to
build algorithms for constructing the smoothing splines,
close to optimal, provided there is the possibility to modify
a small number of spline links in proportion to the arrival
of new data.

Such algorithms would make it possible to achieve the
approximation of an experimental dependence with accept-
able quality for much less time than when solving a given
problem in classical statement.

2. Literature review and problem statement

The tasks on constructing smoothing splines in various
statements have traditionally attracted attention of experts
in computational methods and specialists in different subject
areas that employ the apparatus of splines [2, 3]. However,
these studies mainly concern the development of algorithms




for constructing smoothing splines, fulfillment of which is
not strictly limited in time. The latter constraint is relevant
for many applied contexts of using splines.

One of the important components of the task on con-
structing smoothing splines is the search for knots, in which
spline links are joined. A solution to this auxiliary problem
using a genetic algorithm is proposed in paper [4]. The
same problem for B-splines is solved in article [5] using the
author’s two-stage algorithm taking into consideration a
curvature of the experimental dependence.

In paper [6], in order to establish coordinates of the
knots where spline links are joined, it is proposed first to
form their redundant sequence followed by chopping using
optimization methods. The framework of this approach in-
cludes the results obtained by authors of article [7].

The issue of constructing a robust smoothing B-spline is
examined in paper [8]. The above list shows that most of the
results were obtained for B-splines and rely on methods that
are time-expensive.

We shall consider two algorithms for constructing
smoothing splines using which the problems on robustness
and splitting a spline into links, close to optimal, can be
solved simultaneously. These algorithms have the common
feature that implies a partial imposing of the spline’s ad-
jacent links one on another. We note that the traditional
approach to the construction of splines implies that adjacent
links have one common point. Both algorithms are focused
on the post-construction of a new link of the spline in pro-
portion to the arrival of new experimental data without
changing all the preceding links of a given spline during
approximation of a time series.

The first algorithm is described, in particular, in paper
[9]. The algorithm allows the use of non-uniform grids. To
describe a spline link, a polynomial with a specific structure
is used, the properties of which are examined below. The
algorithm is based on the synthesis of ideas about Hermitian
interpolation and mean-square approximation. The result of
its execution is the smoothing spline of order Cj.

The second algorithm is presented, for example, in paper
[10]. The existence of a semi-local spline and its convergence
were proven for uniform grids [11]. To describe a link of the
spline, the authors used a polynomial with a representation
in a power base. The result of the algorithm execution makes
it possible to obtain a spline with a preset order of smooth-
ness [12].

Each of the algorithms has both undeniable advantages
and certain disadvantages. Thus, a shortcoming of the first
algorithm is the low degree of smoothness of the spline
obtained. In addition, local estimation of part of the coef-
ficients of a polynomial from the current spline’s link for
experimental dependences with significant measurement
errors may lead to a significant worsening in the approximat-
ing properties of the spline in general.

Effectiveness of applying the second algorithm is limited
by the requirement to construct links of the spline strictly
equal in length. For the plots of experimental sequences that
demonstrate the slow nature of changes, it is advisable to
apply longer links of the spline. This, in turn, makes it possi-
ble to bring down the cost of resources when maintaining a
description of the resulting spline and during its application.
Therefore, it is expedient to synthesize these algorithms in
order to improve their advantages and to eliminate disad-
vantages.

3. The aim and objectives of the study

The aim of present study is to examine a possibility to
generalize the D. A. Silaev algorithm for irregular grids and
to strengthen its computational stability. This would make
it possible to reduce resource intensity of the examined algo-
rithm when used in monitoring systems.

To accomplish the aim, the following tasks have been set:

—to substantiate the feasibility of transition from
representing a polynomial to describe links of the spline
in the power base to other types of bases, specifically the
bases of Hermite polynomials, the base of N. D. Dicoussar
polynomial;

— to show a relation between the N. D. Dicoussar polyno-
mial and other known types of polynomials;

— to examine the impact of the form of polynomial repre-
sentation to describe links of the spline on the magnitude of
the conditionality numbers of stability matrix and the Gram
matrix, which are used in the D. A. Silaev algorithm;

—to explore the effectiveness of constraints that are
applied to determine the length of the spline’s current link
in the N. D. Dicoussar algorithm, in order to use them
when generalizing on the irregular grids of the D. A. Silaev
algorithm;

— using test examples, to explore the resistance of the
D. A. Silaev algorithm, and modifications of this algorithm,
against the errors in experimental data.

4. Materials and methods of research

4. 1. Relation between the N. D. Dicoussar polynomi-
al and other kinds of polynomials

In cases when the study relates to one link of the spline
in order to reduce the number of indexes we shall equate the
region for determining this link to section [x,;x,].

Paper [9] proposed to describe a link of the cubic
smoothing spline by a polynomial of the following form:

P,(x)=r-d+6-Q, €))

where r=(/;; f; fo) is the vector of weight coefficients at
basis elements; d=(dy; ds; ds) is the vector of basis elements
in the form of polynomials of the second degree:

d = (r—a)(x—x,)

(20 =, ) (%, = ,)’

(rea)(e-,)
o=l ) )

(mx)eox)
b=l ) )

is the auxiliary “zero” cubic parabola.

The basis elements (in the terminology of paper [9]) (di;
doy; ds3) are the basis functions in the traditional sense, associ-
ated with knots x,, xo and x;. That is, these functions are equal
to 1 in their knot and are equal to 0 in all other knots. Func-
tion Q is zero in all three knots, as derived from its formula.



We shall show in advance that the set of functions (ds;
do; ds; Q) forms the basis of space of polynomials with de-
gree not higher than the third degree [13]. To this end, we
shall construct a matrix from coefficients of the specified
functions:

(L fy Jos 8)Vy'=
=(fs S LS KV

Hence, we obtain

XoX, B Xy + X, 1 0 (fa, L 6):
(xo—xa)(xb—xa) (xo—xa)(xb—xa) (xo—xa)(xb—xa) :(fa; fb; fa/§ fb/)'V;'VD-
X% _ Xyt X, 1 0
D= (xb —xo)(xb —xa) (xb —xo)(xb —xa) (xb —xo)(x,, —xa) (2) With respect to the structure of matrices
V,' and Vp, we obtain:
XXy _ Xy +xa 1 0 1
(o= )(w—x) (=)l —x)  (w-x)(x-x)
—X, XX, X, Xy +Xy- X, +X,- X, —(xa +x, +xb) 1 Lo (xb —X, )2(2x0 -3x, +xb) 2
and compute the determinant: 2'(xb - xa)s (xb Y )3
ID|= 1 ' 0 1 _(xo—x”)z(2x0+xu—3xb) 2
(xo _xa)(xo _xb)(xb _xu) vy 2~(xb —xu)3 (x, -x, )3
It is obvious that functions { dy; ds; ds; Q Q} are linearly e (xb —-x, )2 (xo —xa) 1
independent and form a basis of the space of polynomials 00 P )
with a degree not higher than the third degree. (x” B x“) (xb _x“)
Find the matrix that is inverse to matrix D and denote (x —x )(x —x )2 {
it Vp: 0 0 b oAt e ;
(%, —x,) (%=,

11 1 0

x, x, x, 0
V,=D"'=|"5 T 0 |

P x> x; x; 0

X x a1

By using the technology of block matrices for construct-
ing basis functions, which is described in paper [14] (in rela-
tion to the construction of basis functions in a finite element
method), one can show that polynomial (1) in the matrix
form can be recorded as:

Pyx)=(f; [ fy 6)D-X=
=(f S S 9)'V51~X. 3)

Author of paper [9] obtianed an estimate of the magni-
tude of parameter 6 through the value of function f(x) and
its derivatives at the ends of segment [x,; x5]. We show that
it can be achieved in another way.

Let us consider the Hermitian polynomial, which hereaf-
ter is referred to as the Hermite polynomial of the first kind,
defined by their values and the values of the first derivatives
at the ends of current segment [x,; x3]. Paper [14] shows that
it can be represented in the following matrix form:

P, (0=(fs S [ )V X 4)
where
1 1 0 0
Vo= x, x, 1 1
ol a? oxf 2x, 2x, |
x) x) 3x 3x;

Because formulae (3) and (4) describe the same polyno-
mial in different bases, we can equate the right sides of these
formulae:

Hence, we obtain an expression for parameter 6:

9212{ﬂ+ﬂ_20kﬁﬁ}

(xb - xa) Xy~ X,
which fully coincides with the expression, derived in the
N. D. Dicoussar papers.

We note that the value of this parameter does not depend
on the localization of knot x.

It will be shown below that it is appropriate to choose the
origin of a local coordinate system for the spline’s link at point
x9, that is, in this case, x9.=0. The matrix of the N. D. Dicous-
sar polynomial coefficients (2) then takes the form:

X, B 1
" oade (men)x
0 — = L 0
D= (x,, —xa) x, (xh xa) x,
{ X+, 1 0
X, X, X, X,
0 X, X, —(xb+xa) 1

This allows us to consider the N. D. Dicoussar polynomi-
al as a hierarchical form of the Hermitian polynomial.

4. 2. Approximating properties of the N. D. Dicoussar
polynomial

When executing both of the examined algorithms, a
system of linear algebraic equations is solved, which is
traditional for the least squares method. It is known the
matrix of this system coincides with the Gram matrix
for basis functions used to represent the approximating



polynomial. Therefore, an important characteristic of the
basis that is chosen to represent a polynomial is the condi-
tionality number of its Gram matrix. Not reducing the gen-
erality of results, we shall compute elements of the Gram
matrix for the basis functions of polynomial (1) for segment
[xa; 2] =[-151]:

1

(6)-( - s ©
-1

where ,je{1, 2, 3, 4} considering that d;=Q.

We shall tabulate values for a conditionality number
of the the Gram matrix from the position of point x,. Pa-
per [9] proposes fixing the positions of point xy as second
knot of approximation at segment [x,; x;]. Our calculations
show that this recommendation may be disregared. The
dependence of the Gram matrix conditionality number on
the position of point xy (Fig. 1) shows that a shift of the
right end of segment x; leads to a rapid growth in the Gram
matrix conditionality number (along with the accumulation
of calculation errors). That is why knot x¢ must be chosen
in a spline grid knot, which is the closest to the midpoint of
segment [x,; xp]. The results obtained (Table 1) correspond
to the point of view on this issue, known from literature, for
example, from ref. [15].

cond (G)
1400+

12001
1000+

800

600+
400+

200
Xo

-0,8 -0.6-0,4 02 0 02 04 06 08

Fig. 1. Dependence (5) of conditionality number cond(G) of
the Gram matrix G on the localization of point xyat segment

[-1;1]
Table 1

Estimation of approximating properties of basis functions
of the N. D. Dicoussar and Hermitian interpolation

polynomials
N. D. Dicoussar
Characteristic basis Hermitian basis
(x0=0)

Gram matrix 0.0027 0.000042
determinant

Gram matrix
conditionality 32.80 292.82

number

Based on data from Table 1, we conclude that the appli-
cation of the N. D. Dicoussar interpolation polynomial (1)
in approximate calculations demonstrates considerable ad-
vantages in comparison with the Hermitian interpolation
polynomial because its basis functions possess better ap-
proximating properties.

4. 3. Generalization of the D. A. Silaev algorithm

We shall introduce changes to the algorithm described in
paper [10]. This relates to the quantity of points, used in the
method of least squares, to find coefficients at senior degrees
of the polynomial. We also propose changes to the form of a
polynomial representation, which describes the current link
of the spline.

We shall consistently add knots to the grid at which the
problem on the minimization of a functional of least squares
is solved until the resulting polynomial deviates from ex-
perimental data by less than the specified number >0. The
final number of knots from the current interval at which this
condition is fulfilled will be designated (M+1).

The number of points that finally remains in the com-
position of the current link of the spline will be designated
(m+1).

To assess the impact of the form of representation of a
polynomial on the stability of the modified algorithm, we
shall use such kinds of polynomials.

When building a spline of smoothness Cy, we shall apply:

— polynomials in a power basis;

—the N. D. Dicoussar polynomials of form (1).

When building a spline of smoothness C1, we shall use:

— polynomials in a power basis;

— Hermitian polynomials of the first kind with two knots
in which values for the function and its first derivatives are
assigned,

— Hermitian polynomials of the second kind with three
knots in which values for the function are assigned, an in the
first knot — values for the function’s derivative.

When building a spline of smoothness C,, we shall use:

— polynomials in a power basis;

— Hermitian polynomials of the second kind with two
knots in which values for the function are assigned, an in the
first knot — values for the derivatives of the first two orders.

4. 4. Constructing a spline of smoothness Cy

The matrices employed in the examined algorithm, when
applying a polynomial with a power basis, are described in
detail in the paper of its developer [9]. To maintain a unified
approach, we shall rewrite basis functions of the N. D. Di-
coussar polynomial (1) in a local coordinate system with the
origin at point x,=0. Then the other two knots will have the
coordinates: x,=Mh, xg=gh, where g=[M/2], [ ] is a whole
part from the number, % is the distance between knots. Then
the basis functions will be assigned by formulae:

1
| =W(x—qh)(x—Mh);
1
= =g )
1
d3 = —Wx(x—Mh),
Q =x(x—Mh)(x—qh). (6)

We shall write respective matrices when applying the
N. D. Dicoussar polynomial (6). Basis function d;, which
is associated with knot x,, will be used under conditions of
smooth joining, and coefficients at functions ds, ds and Q
will be searched for by the method of least squares.



A condition for joining the /-th and (/+1)-th links of the
spline with a smoothness of order Cy will be consistently
written in the form:

Py (mh)=P}"(0);

fb[
(d1(mh)).(fa’)+(d2(mh) d,(mh) Q(mh))-| f; :(fam);
o'
fbl
Bo'(fal)+B1' fol =(fal+1),
o'
where
gM
(mln-a), (m-rm. 3
BF(M(M—CJ)’ (M=-q)q’ m(m=M)(m=q)h )

When implementing a least squares method, we shall
use a local numbering of knots for index i, assuming x,=X),
X 1=X;+h.

A matrix of the least squares method takes a traditional
form:

S4X)40) T(X)4(x) F(X)d(x) )
+ ida(xz)@(Xi) ids(X,)dg(Xl) iQ(Xz)dE»(Xz) fz
Sox)i(x) Tow)d(x) Fawelx)

or according to denotation applied, for example, in paper [12]:

fbl
A Sl AL S |=P
91

Hence, we obtain

f;}l
5y = (A) (P A )= () (P -5 ).
el

Thus, we obtain a recurrent formula to calculate co-
efficient f*' from the next link of the spline through the
value of coefficient fal from the current link of the spline,
which ensures smoothness of joining the links of the spline
of order Cy:

fal+1=B1‘Ai—1.Pl+U‘fal, (7)
where
U=B,-B A" A

is the stability matrix.

To examine stability of the algorithm depending on the
form of a polynomial representation, we shall tabulate the
values:

— of the largest module of eigen number of stability ma-
trix U;

—of the conditionality number of matrix of the least
squares method Ay, for different ratios of values of M to m.

Table 2 will include ratios between M and m, which lead
to the lowest of the largest modules of eigenvalues of stabili-
ty matrices U at a fixed value of M. We consider A=1 during
tabulation.

Table 2

Stability parameters of the algorithm for constructing a
smoothing spline of order

Conditionality number of the matrix
. of least squares method A4
M| m min max ‘Xl. ‘
M Polynomial with | N. D. Dicoussar
a power basis polynomial
411 0.05797 32,952.12 18.26
413 0.05797 32,952.12 18.26
513 0.03306 58,995.13 115.20
6| 4 0.02564 1.02:10° 309.58
714 0.05085 1.68-10° 1,019.02
8|5 0.00000 2.64-10° 2,157.58
912 0.02376 3.99-10° 5,179.17
10| 6 0.01770 5.81-10° 9,454.08

Data from Table 2 testify to significant
benefits of polynomials in the N. D. Di-
M coussar form when applying them for the
Zoryid3(xi) problem on the construction of a smooth-
Y ing spline. These benefits are ensured by
Z%Q(Xi) a significant decrease in the conditional-
i=0 ity number of the matrix of least squares
method Aj.

M
Zo,yidz (Xi)

4. 5. Constructing a spline of smoothness C;

It is obvious from the geometrical content of coefficients
of the N. D. Dicoussar polynomial that the form of this
polynomial representation leads to significant complication
in the algorithm for constructing an approximating spline
with a smoothness order larger than Cy. Given the relation
between the N. D. Dicoussar polynomials and the Hermitian
polynomials, established in chapter 4, we shall explicitly re-
cord the matrices used in the D. A. Silaev algorithm for the
Hermitian polynomial (4).

We shall also rewrite the basis functions of polynomial
(4) in the local coordinate system with origin at point x,=0.
In addition, we shall change the numbering order for basis
functions in order to simplify the system of equations de-
scribing conditions for the smoothness of the spline. Thus,
polynomial (4) takes the following form:



P, (0)=(fs [ S )V X 8)

where

1
w, = —M(x— Mh)-x*

The basis functions of polynomial (8) will then be as-
signed by formulae:

1 ; 1 ;
u, = M3h3(2x+Mh)(x—Mh)z; uZ:Wx(x—Mh)z;
1 1,
US = 3h3 (2]( 3Mh) 4 =Wx (X—Mh)

Coefficients at basis functions uy and u» will be found
from the conditions for the smoothness of joining links of
the spline, and the coefficients at functions u3 and u4 will be
searched for by the method of least squares.

Condition for joining the /-th and (/+1)-th links of the
spline with a smoothness of order C; will be consistently
written in the form:

Py, (mh)=P;" (0);

/ +1
(@) | =(Rr@) |,

u1(mh) uQ(mh) fl
/ /
() [y (| [<f/)J

u,(mh) “4(7”h) ! S
+ . 1|~ I+ |5

(M +2m)(M —m) ;\n/[f};(M—m)2 [ /! ]
‘h%ns( —m) #(M—Bm)(M—m) ()
iZ(SM—2m) —T\;?(M—m) [ fh/ ] [ f,,M }
6m m 7 1= 7/ 141 5

th (M_ ) —W(2M—3m) ( ) ( )

N [J/])J {J)J[J)]

A matrix of the least squares method takes a traditional
form:

Su SuXu(x)]

S, guz(Xl)ui(Xi) '[(f/)]]

S (X)) S (X)u(x)] oy [Sum
' fu guﬁ(Xi)uAX) {(f/ )’J_ fyu

or according to the notation used, for example, in paper [12]:

g4l w
Hence, we obtain
[(fj:fl)z}(flf )’ ~[P’ A [(ff:) D (i1)

Recurrent formula (7) takes the following form in this
case:

[(;)11} B -Al'-P'+U- [(Ji:jl)l}

and ensures smoothness of joining links of the spline of
order Cj.

We shall consider another form of representation of the
Hermitian polynomial with three knots in which values for
the function are assigned, in the first knot — also the value of
the function’s derivative:

(12)

111(37) (fuv 1 T fb) u, X, 13)
where
1.0 1 1
V. < 0 1 gh Mh
L0 0 g*h* MR
0 0 g*n* M

x,=Mh, x,=qh, q=[M /2]

The basis functions of polynomial (13) will then be as-
signed by formulae:

1
U1 =m(x—Mh)(x—qh)((M+q)x+Mqh),
02=th2x(x—Mh)(x—qh);
v ——;(ac—Mh)-x2
g (M-q)® '
v =—;(x—qh)~x2
Y M (M-q)R’

Coefficients at basis functions v; and vy will also
be found from the conditions for smoothness of joining
links of the spline, and coefficients at functions v3 and
v; will be searched for by the method of least squares.

Condition for joining the /-th and the ([+1)-th links
of the spline with a smoothness of order C; will be con-
sistently written in the following form:

Py, (mh) = Py (0);

/
(Pr@) | _

(Pl+1(x))



0 (mh) % (mh) /! P, =(fs £ 5) Vil X, (14)
(01(95))/ 7 (vz( ))/ mh . (fa/)l where
1.0 0 1
Z):;(mh) 04(771/’1) (fo] fl+1 . . 01 0 Mh
(2,(2)) , () ‘ IRAN) B0 0 2 MR
00 0 MM
M —m)(Mm+ M _m M- The basis functions of polynomial
42M2 =l m)(Mm-+ M-+ mq) Mc](m )l m) { s 1]+ (14) will then be assigned by formulae:
2 2 1 9 /
_than (2(M +Mm+m )—3m(M+q)) —M(2m(M+q)—(Mq+3m )) (fa) B
W =—— 3(x MK )
2 m? M°’h
W(M—Tn) W(M—CI) 7 I
+ . i : (f/)] = (f/)m ; 0, = 1 (it - MR,
1
w0, =~ (x—Mh)-x*
" 2Mh
Bo' flz (fo) fa, i+ |
(/) L)) 0= —

Other calculation formulae are similar to formulae (9)—
(12), which is why we shall not write them.

Results of studying the stability of an algorithm depend-
ing on the form of a polynomial representation are given in
Table 3.

Table 3

Stability parameters of the algorithm for constructing a
smoothing spline of order C;

Coefficients at basis functions wq, ws and w3 will be
found from conditions fpr smoothness of joining links of the
spline, and coefficient at function w4 will be searched for by
the method of least squares.

Condition for joining the /~th and the (/+1)-th links of
the spline with a smoothness of order C, will be consistently
written in the form:

Py, (mh)= Py (0);

Conditionality number of matrix of the i / [+1 .
least s}clluares method A4 (PH3 (x)) x= (P (x)) =0
M| m minm}\z}x‘ki‘ Polynomial | Hermitian | Hermitian /7
with a pow- | polynomial | polynomial (P}]I (x)) ( M( )) ;
er basis ) (13) ’ =mh =0
4 | 2 0.2433 667.74 8.57 2.44
5| 4 0.1315 915.45 7.60 217
65| 01217 1,219.06 7.59 3.42 w,(mh) w,(mh) w,(mh)
76 [ o156 | 157611 8.13 2.98 , , ,
8 | 7| o1129 1,985.63 9.07 411 () = mh (,()) x=mh (w0, (%) wemh I¥
9 7 0.1332 2,447.17 10.31 3.61
0] 8] 01270 2,960.52 11.84 4.63 (w,(x))” - (w,(x))” i (w,(x))” -
It is obvious that it is appropriate to use the Hermitian
polynomials in the form (13), which, all other conditions /! w,(mh) £
being equal, ensure the best conditionality of matrix Ay, I , , |
whici is applied in the implementation O%, the examined (f”/) +| (i) x=mh (f”): (f/)
algorithm. ( 1 )l ( fa//)’+1
, , ()| _
4. 6. Constructing a spline of x=m
smoothness C,
To construct the smoothing spline (a3 —m3  mh , 22 m®
of order Cy, we shall use the Hermitian M (M —m ) oM (M -m) 7 e i
polynomial with two knots, in which 3m? { wh ‘, 3m? o
values for the function and its two de- - —Z(M2 -3 2) (2M -3m) (fa/) + : ( bl)z (fa/) :
rivatives are assigned in the first knot, M°h M oM ; Mh 11
and in the second knot — only a value _ _bm _ bm iA(M—Sm) (fa//) 6m (fa//)
for the function: MR M*h M MR’



f;l f;;lﬂ
B| () ()= () |
(f;l//)l (fa//)lﬂ

A matrix for the least squares method takes a traditional
form:

/!
w () (%) Yo (3)u, () ;;ug(Xi)%(Xi)). (7
f,//)l

+(iu (X)u, (x,.))(ﬂ){iyiué (Xl-)]

or according to the notation used, for example, in paper [12]:

Hence, we obtain
fl
P )
(1)

1

(£)=(a)

Recurrent formula (7) takes the form in this case:

f1+1
(fa/)m =B1 -A{1~PI+U- (fa/

(fa//)l+1 (fa//)l

and ensures smoothness for joining the links of spline of
order Cs.

Results of studying the stability of an algorithm, de-
pending on the form of a polynomial representation, will be
given in Table 4. As matrix A1 is composed in this case of one
element, its conditionality number for all the bases is unity.

fal

Table 4

Stability parameters of the algorithm for constructing a
smoothing spline of order G,

min max ‘7\.1. ‘
M| m Polynomial with a power Hermitian polynomial
basis (14)
4 2 0.81040 0.65880
5 3 0.89022 0.62324
6 3 0.80712 0.65650
7 4 0.77350 0.63001
8 5 0.80456 0.62865
9 5 0.77790 0.63368
10 ] 6 0.80270 0.62822

It is obvious from data in Table 4 that the application of
Hermitian polynomials in the form (14) has advantages in
comparison with polynomials with a power basis because
it ensures better stability of the algorithm to the impact of
measurement errors in experimental data.

5. Discussion of results on a possibility of the
generalization of the examined algorithm for
irregular grids

I
) + It is clear from the results of theoretical
research that when constructing the spline of
smoothness Cy it is appropriate to apply polynomi-
als in the N. D. Dicoussar form; that of smoothness
Cy — the Hermitian polynomials of second kind
(13). To construct the spline of the examined kind
of smoothness Cy, it is expedient to apply polyno-
mials of higher power, since when applying the third-pow-
er polynomials, in order to determine by the method of
least squares, there is only one coefficient, the model turns
out to be too rigid and the stability of the algorithm is
significantly worse than in the two previous cases.

To generate an experimental sequence, we shall con-
struct a function that is a combination of the three Lorentz
functions with parameters that are given in Table 5.

3

>

W)+

2
Ajw].

27
(x_xm)

where A; is the amplitude; wj is the semi-width; xjo is the fre-
quency position of a maximum.

y(x)= Z,y_;(x) = (15)

Table 5
Parameters of a test function
J 4 @ %o
1 1 0.3 -2
2 3 0.5 0
3 2 0.2

We shall add to the values of function y(x;) an error
that has a normal distribution law with parameters a=0;
6=0.075.

We shall generate a sequence of N=120 in the inter-
val [-3; 5]. Using rule 26, we shall add points to each
spline’s link until the polynomial starts to deviate from
experimental points by larger than 26. The final number
of points at which this requirement is fulfilled will be
designated (M+1).

In the first interval, we shall solve an auxiliary task on
approximation with additional constraints that take into
consideration the physical essence of the problem. Spe-
cifically: the approximating polynomial at the beginning
of the segment accepts a positive value and has a positive
first derivative at the same point. Under such conditions,
the algorithm selected 12 links of the spline with smooth-
ness Cy with the polynomials from the current link of
the spline represented in the N. D. Dicoussar form (1)
(Fig. 2). As follows from the conditions for the construc-
tion of such a spline, its derivative at the points of connec-
tion has gaps (Fig. 3).



Computational experiments to construct the spline of
smoothness C; with the representation of polynomials from
current links in the second Hermitian form (13) revealed
the following. The best approximation results, in terms of
their robustness, are obtained when the imposing depth of
the spline’s links increases by one point relative to the num-
ber of points that are determined based on the estimates of
eigenvalues modules of stability matrices. In this case, the
algorithm selects 14 links (Fig. 4).

-1 0 1 2 3 q 3

Fig. 2. Results of the approximation with a spline of
smoothness Cj by the modified algorithm: 1 — experimental
dependence; 2 — chart of function (15); 3 — chart of the
spline

_'3 2\/ - 20 / 2 ..,..3-.,/\7 ‘/"s'.
N
V

Fig. 3. Results of the approximation with a spline of
smoothness Cj by the modified algorithm: 1 — experimental
dependence; 2 — chart of the derivative from spline with
gaps at points

Fig. 4. Results of the approximation with a spline of
smoothness Cj by the modified algorithm: 1 — experimental
dependence; 2 — chart of function (15); 3 — chart of the
spline

It is clear that the spline derivative chart in this case is
continuous.

Fig. 2—4 show that at segments with a slow change in
the examined parameter the algorithm selects longer spline
links than at sections with a fast ascending or descending of

experimental dependence. As expected, this makes it possi-
ble to reduce the total number of the spline’s links compared
to their number at uniform splitting. Thus, while ensuring
an acceptable quality of approximation, the resulting spline
requires less memory for its storing and using.

The disadvantages that remain inherent to the algo-
rithm after its generalization include subjective determin-
ing of the acceptable magnitude of deviation in the chart
of a polynomial from the current link of the spline from
experimental data. Note that in the case of an unknown
probabilistic law of distribution (or its parameters), by
which measurement errors abide, such a disadvantage is
common to all the algorithms for constructing the smooth-
ing splines of such kind.

Prospects for the further research include the extension
of algorithm to use, in its composition, polynomials of higher
degrees to ensure the second order of smoothness of joining
links of the spline with the simultaneous avoidance of the
emergence of parasitic oscillations at an increase in the
length of experimental dependence. It is also expedient to
devise a formal criterion for determining the length of the
current link of the spline in order to ensure the property of
robustness for a smoothing spline. Further research will also
relate to studying the question of alignment of the specified
criterion with the criterion of algorithm stability.

6. Conclusions

1. It is shown that in a transition from representing a
polynomial in a power basis to the representation in the
basis of the N. D. Dicoussar polynomial (when construct-
ing a spline of smoothness Cy) or to the representation in
the bases of the appropriate Hermitian polynomials (in the
construction of a spline of smoothness C; and C»), there is
a significant reduction in the conditionality number of the
Gram matrix for the basis functions of the recommended
forms of a polynomial representation. This ensures better
approximating properties of the examined spline.

2.1t is shown that the N. D. Dicoussar polynomial is a
special case of the Hermitian polynomial, which is represent-
ed in a hierarchical form.

3. It was established that the form of a polynomial repre-
sentation affects the magnitude of eigenvalues of the stabil-
ity matrix, starting at the second order of smoothness while
joining links of the spline. Such an impact is missing at the
lower orders of smoothness of joining the links of the spline.

4. In all the test examples, investigated by Authors, the
use of constraints, suggested by N. D. Dicoussar for prelim-
inary determining the length of a link of the spline, made it
possible to obtain a smoothing spline, based on the general-
ized D. A. Silaev algorithm, of acceptable quality, with links
of different lengths.

5. An analysis of the quality of the obtained solutions to
test problems revealed that in the processing of experimen-
tal dependences with significant measurement errors, there
may occur the need to reduce the final lengths of spline’s
links compared to the lengths that are determined by the
D. A. Silaev rule. Therefore, in the presence of significant
errors in experimental data, it is appropriate to run a pre-
liminary analysis employing the methods of mathematical
statistics. This would make it possible, when executing the
algorithm, to pay special attention to ensuring its stability.
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