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1. Introduction

The task on finding an effective analytical description 
of a time series is commonly in many application areas. The 
scope of application of interpolation splines is known to have 
been limited to processing experimental dependences that 
do not contain measurement errors or contain errors that 
can be ignored. In the opposite case, the smoothing splines 
are employed. There are many methods for smoothing. That 
relates to the fact that the smoothing conditions are chosen 
to match a particular applied problem. An expert in the 
subject often struggles to understand the peculiarities of 
different smoothing methods and to assign the required pa-
rameters of smoothing. Therefore, there is a need to develop 
algorithms of smoothing whose constraints are interpreted 
so that a user who may lack a proper mathematical training 
on this subject can understand them.

The task on constructing an optimal smoothing spline 
implies sorting out all the possible cases of distribution of 
grid knots among the links of the spline. It is clear that 

the resource intensity of algorithms that could fully solve 
such a problem makes them unsuitable for the application 
in real-time systems [1]. Therefore, it is a relevant task to 
build algorithms for constructing the smoothing splines, 
close to optimal, provided there is the possibility to modify 
a small number of spline links in proportion to the arrival 
of new data. 

Such algorithms would make it possible to achieve the 
approximation of an experimental dependence with accept-
able quality for much less time than when solving a given 
problem in classical statement.

2. Literature review and problem statement

The tasks on constructing smoothing splines in various 
statements have traditionally attracted attention of experts 
in computational methods and specialists in different subject 
areas that employ the apparatus of splines [2, 3]. However, 
these studies mainly concern the development of algorithms 
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for constructing smoothing splines, fulfillment of which is 
not strictly limited in time. The latter constraint is relevant 
for many applied contexts of using splines.

One of the important components of the task on con-
structing smoothing splines is the search for knots, in which 
spline links are joined. A solution to this auxiliary problem 
using a genetic algorithm is proposed in paper [4]. The 
same problem for B-splines is solved in article [5] using the 
author’s two-stage algorithm taking into consideration a 
curvature of the experimental dependence. 

In paper [6], in order to establish coordinates of the 
knots where spline links are joined, it is proposed first to 
form their redundant sequence followed by chopping using 
optimization methods. The framework of this approach in-
cludes the results obtained by authors of article [7].

The issue of constructing a robust smoothing B-spline is 
examined in paper [8]. The above list shows that most of the 
results were obtained for B-splines and rely on methods that 
are time-expensive. 

We shall consider two algorithms for constructing 
smoothing splines using which the problems on robustness 
and splitting a spline into links, close to optimal, can be 
solved simultaneously. These algorithms have the common 
feature that implies a partial imposing of the spline’s ad-
jacent links one on another. We note that the traditional 
approach to the construction of splines implies that adjacent 
links have one common point. Both algorithms are focused 
on the post-construction of a new link of the spline in pro-
portion to the arrival of new experimental data without 
changing all the preceding links of a given spline during 
approximation of a time series.

The first algorithm is described, in particular, in paper 
[9]. The algorithm allows the use of non-uniform grids. To 
describe a spline link, a polynomial with a specific structure 
is used, the properties of which are examined below. The 
algorithm is based on the synthesis of ideas about Hermitian 
interpolation and mean-square approximation. The result of 
its execution is the smoothing spline of order С0. 

The second algorithm is presented, for example, in paper 
[10]. The existence of a semi-local spline and its convergence 
were proven for uniform grids [11]. To describe a link of the 
spline, the authors used a polynomial with a representation 
in a power base. The result of the algorithm execution makes 
it possible to obtain a spline with a preset order of smooth-
ness [12].

Each of the algorithms has both undeniable advantages 
and certain disadvantages. Thus, a shortcoming of the first 
algorithm is the low degree of smoothness of the spline 
obtained. In addition, local estimation of part of the coef-
ficients of a polynomial from the current spline’s link for 
experimental dependences with significant measurement 
errors may lead to a significant worsening in the approximat-
ing properties of the spline in general.

 Effectiveness of applying the second algorithm is limited 
by the requirement to construct links of the spline strictly 
equal in length. For the plots of experimental sequences that 
demonstrate the slow nature of changes, it is advisable to 
apply longer links of the spline. This, in turn, makes it possi-
ble to bring down the cost of resources when maintaining a 
description of the resulting spline and during its application. 
Therefore, it is expedient to synthesize these algorithms in 
order to improve their advantages and to eliminate disad-
vantages.

3. The aim and objectives of the study

The aim of present study is to examine a possibility to 
generalize the D. A. Silaev algorithm for irregular grids and 
to strengthen its computational stability. This would make 
it possible to reduce resource intensity of the examined algo-
rithm when used in monitoring systems.

To accomplish the aim, the following tasks have been set:
– to substantiate the feasibility of transition from 

representing a polynomial to describe links of the spline 
in the power base to other types of bases, specifically the 
bases of Hermite polynomials, the base of N. D. Dicoussar 
polynomial; 

– to show a relation between the N. D. Dicoussar polyno-
mial and other known types of polynomials;

– to examine the impact of the form of polynomial repre-
sentation to describe links of the spline on the magnitude of 
the conditionality numbers of stability matrix and the Gram 
matrix, which are used in the D. A. Silaev algorithm;

– to explore the effectiveness of constraints that are 
applied to determine the length of the spline’s current link 
in the N. D. Dicoussar algorithm, in order to use them 
when generalizing on the irregular grids of the D. A. Silaev 
algorithm;

– using test examples, to explore the resistance of the 
D. A. Silaev algorithm, and modifications of this algorithm, 
against the errors in experimental data.

4. Materials and methods of research

4. 1. Relation between the N. D. Dicoussar polynomi-
al and other kinds of polynomials

In cases when the study relates to one link of the spline 
in order to reduce the number of indexes we shall equate the 
region for determining this link to section [ ]; .a bx x

Paper [9] proposed to describe a link of the cubic 
smoothing spline by a polynomial of the following form:

= ⋅ + q⋅( ) ,DP x d Qr
				  

(1)

where r=(fa; fb; f0) is the vector of weight coefficients at 
basis elements; d=(d1; d2; d3) is the vector of basis elements 
in the form of polynomials of the second degree:
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is the auxiliary “zero” cubic parabola.
The basis elements (in the terminology of paper [9]) (d1; 

d2; d3) are the basis functions in the traditional sense, associ-
ated with knots xa, x0 and xb. That is, these functions are equal 
to 1 in their knot and are equal to 0 in all other knots. Func-
tion Q is zero in all three knots, as derived from its formula. 
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We shall show in advance that the set of functions (d1; 
d2; d3; Q) forms the basis of space of polynomials with de-
gree not higher than the third degree [13]. To this end, we 
shall construct a matrix from coefficients of the specified 
functions:

and compute the determinant:

( )( )( )=
− − −0 0

1
.

a b b a

D
x x x x x x

It is obvious that functions { d1; d2; d3; Q Q} are linearly 
independent and form a basis of the space of polynomials 
with a degree not higher than the third degree. 

Find the matrix that is inverse to matrix D and denote 
it VD:

−

 
 
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 
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By using the technology of block matrices for construct-
ing basis functions, which is described in paper [14] (in rela-
tion to the construction of basis functions in a finite element 
method), one can show that polynomial (1) in the matrix 
form can be recorded as:

( )
( )
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; ; ; .
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P x f f f D X

f f f V X−

= q ⋅ ⋅ =
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Author of paper [9] obtianed an estimate of the magni-
tude of parameter q through the value of function f(x) and 
its derivatives at the ends of segment [xa; xb]. We show that 
it can be achieved in another way. 

Let us consider the Hermitian polynomial, which hereaf-
ter is referred to as the Hermite polynomial of the first kind, 
defined by their values and the values of the first derivatives 
at the ends of current segment [xa; xb]. Paper [14] shows that 
it can be represented in the following matrix form:
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Because formulae (3) and (4) describe the same polyno-
mial in different bases, we can equate the right sides of these 
formulae:
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With respect to the structure of matrices 
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Hence, we obtain an expression for parameter q:
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which fully coincides with the expression, derived in the  
N. D. Dicoussar papers. 

We note that the value of this parameter does not depend 
on the localization of knot x0. 

It will be shown below that it is appropriate to choose the 
origin of a local coordinate system for the spline’s link at point 
x0, that is, in this case, x0.=0. The matrix of the N. D. Dicous-
sar polynomial coefficients (2) then takes the form:
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This allows us to consider the N. D. Dicoussar polynomi-
al as a hierarchical form of the Hermitian polynomial.

4. 2. Approximating properties of the N. D. Dicoussar 
polynomial

When executing both of the examined algorithms, a 
system of linear algebraic equations is solved, which is 
traditional for the least squares method. It is known the 
matrix of this system coincides with the Gram matrix 
for basis functions used to represent the approximating 
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polynomial. Therefore, an important characteristic of the 
basis that is chosen to represent a polynomial is the condi-
tionality number of its Gram matrix. Not reducing the gen-
erality of results, we shall compute elements of the Gram 
matrix for the basis functions of polynomial (1) for segment  
[xa; xb]=[–1;1]:

( ) ( )
−

 
= ⋅  ∫

1

1

,ij i jG d d dx 				    (5)

where i, jÎ{1, 2, 3, 4} considering that d4=Q.
We shall tabulate values for a conditionality number 

of the the Gram matrix from the position of point 0.x  Pa-
per [9] proposes fixing the positions of point x0 as second 
knot of approximation at segment [xa; xb]. Our calculations 
show that this recommendation may be disregared. The 
dependence of the Gram matrix conditionality number on 
the position of point x0 (Fig. 1) shows that a shift of the 
right end of segment xb leads to a rapid growth in the Gram 
matrix conditionality number (along with the accumulation 
of calculation errors). That is why knot x0 must be chosen 
in a spline grid knot, which is the closest to the midpoint of 
segment [xa; xb]. The results obtained (Table 1) correspond 
to the point of view on this issue, known from literature, for 
example, from ref. [15].

Fig. 1. Dependence (5) of conditionality number cond(G) of 
the Gram matrix G on the localization of point x0 at segment 

[−1; 1]

Table 1

Estimation of approximating properties of basis functions 
of the N. D. Dicoussar and Hermitian interpolation 

polynomials

Characteristic
N. D. Dicoussar 

basis 
(x0=0)

Hermitian basis

Gram matrix  
determinant

0.0027 0.000042

Gram matrix  
conditionality 

number
32.80 292.82

Based on data from Table 1, we conclude that the appli-
cation of the N. D. Dicoussar interpolation polynomial (1)  
in approximate calculations demonstrates considerable ad-
vantages in comparison with the Hermitian interpolation 
polynomial because its basis functions possess better ap-
proximating properties.

4. 3. Generalization of the D. A. Silaev algorithm
We shall introduce changes to the algorithm described in 

paper [10]. This relates to the quantity of points, used in the 
method of least squares, to find coefficients at senior degrees 
of the polynomial. We also propose changes to the form of a 
polynomial representation, which describes the current link 
of the spline. 

We shall consistently add knots to the grid at which the 
problem on the minimization of a functional of least squares 
is solved until the resulting polynomial deviates from ex-
perimental data by less than the specified number d>0. The 
final number of knots from the current interval at which this 
condition is fulfilled will be designated (M+1).

The number of points that finally remains in the com-
position of the current link of the spline will be designated 
(m+1).

To assess the impact of the form of representation of a 
polynomial on the stability of the modified algorithm, we 
shall use such kinds of polynomials.

When building a spline of smoothness С0, we shall apply:
– polynomials in a power basis;
– the N. D. Dicoussar polynomials of form (1).
When building a spline of smoothness С1, we shall use:
– polynomials in a power basis; 
– Hermitian polynomials of the first kind with two knots 

in which values for the function and its first derivatives are 
assigned;

– Hermitian polynomials of the second kind with three 
knots in which values for the function are assigned, an in the 
first knot ‒ values for the function’s derivative.

When building a spline of smoothness С2, we shall use:
– polynomials in a power basis; 
– Hermitian polynomials of the second kind with two 

knots in which values for the function are assigned, an in the 
first knot ‒ values for the derivatives of the first two orders.

4. 4. Constructing a spline of smoothness С0

The matrices employed in the examined algorithm, when 
applying a polynomial with a power basis, are described in 
detail in the paper of its developer [9]. To maintain a unified 
approach, we shall rewrite basis functions of the N. D. Di-
coussar polynomial (1) in a local coordinate system with the 
origin at point xa=0. Then the other two knots will have the 
coordinates: xb=Mh, x0=qh, where q=[M/2], [ ]  is a whole 
part from the number, h is the distance between knots. Then 
the basis functions will be assigned by formulae:

( )( )= − −1 2

1
;d x qh x Mh

qMh  

( ) ( )= ⋅ −
−2 2

1
;d x x qh

M q Mh

( ) ( )= − ⋅ −
−3 2

1
;d x x Mh

M q qh
 

( )( )= − − .Q x x Mh x qh

				  
 
(6)

We shall write respective matrices when applying the 
N. D. Dicoussar polynomial (6). Basis function d1, which 
is associated with knot xa, will be used under conditions of 
smooth joining, and coefficients at functions d2, d3 and Q 
will be searched for by the method of least squares. 
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A condition for joining the l-th and (l+1)-th links of the 
spline with a smoothness of order С0 will be consistently 
written in the form:

+= 1( ) (0);l l
D DP mh P

( ) ( ) ( ) ( )+

 
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m m q m M m
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When implementing a least squares method, we shall 
use a local numbering of knots for index i, assuming xa=X0, 
Xi+1=Xi+h.

A matrix of the least squares method takes a traditional 
form:

or according to denotation applied, for example, in paper [12]:

 
 ⋅ + ⋅ = 
 θ 

0 1 0 .

l
b

l l l l l
a

l

f

A f A f P

Hence, we obtain

( ) ( ) ( ) ( )− − −

 
  = ⋅ − ⋅ = ⋅ − ⋅ 
 θ 

1 1 1
0 1 0 1 0 .

l
b
l l l l l l l l l

a b
l

f

f A P A f A P A f

Thus, we obtain a recurrent formula to calculate co-
efficient +1l

af  from the next link of the spline through the 
value of coefficient l

af  from the current link of the spline, 
which ensures smoothness of joining the links of the spline 
of order С0:

+ −= ⋅ ⋅ + ⋅1 1
1 1 ,l l l

a af B A P U f
			    

(7)

where

−= − ⋅ ⋅1

10 1 0U B B A A
 

is the stability matrix.
To examine stability of the algorithm depending on the 

form of a polynomial representation, we shall tabulate the 
values: 

– of the largest module of eigen number of stability ma-
trix U; 

– of the conditionality number of matrix of the least 
squares method A1, for different ratios of values of M to m. 

Table 2 will include ratios between M and m, which lead 
to the lowest of the largest modules of eigenvalues of stabili-
ty matrices U at a fixed value of M. We consider h=1 during 
tabulation.

Table 2

Stability parameters of the algorithm for constructing a 
smoothing spline of order С0

М m λmin max iM

Conditionality number of the matrix 
of least squares method A1

Polynomial with 
a power basis

N. D. Dicoussar 
polynomial

4 1 0.05797 32,952.12 18.26

4 3 0.05797 32,952.12 18.26

5 3 0.03306 58,995.13 115.20

6 4 0.02564 1.02∙105 309.58

7 4 0.05085 1.68∙105 1,019.02

8 5 0.00000 2.64∙105 2,157.58

9 2 0.02376 3.99∙105 5,179.17

10 6 0.01770 5.81∙105 9,454.08

Data from Table 2 testify to significant 
benefits of polynomials in the N. D. Di-
coussar form when applying them for the 
problem on the construction of a smooth-
ing spline. These benefits are ensured by 
a significant decrease in the conditional-
ity number of the matrix of least squares 
method А1.

4. 5. Constructing a spline of smoothness С1

It is obvious from the geometrical content of coefficients 
of the N. D. Dicoussar polynomial that the form of this 
polynomial representation leads to significant complication 
in the algorithm for constructing an approximating spline 
with a smoothness order larger than С0. Given the relation 
between the N. D. Dicoussar polynomials and the Hermitian 
polynomials, established in chapter 4, we shall explicitly re-
cord the matrices used in the D. A. Silaev algorithm for the 
Hermitian polynomial (4). 

We shall also rewrite the basis functions of polynomial 
(4) in the local coordinate system with origin at point xa=0. 
In addition, we shall change the numbering order for basis 
functions in order to simplify the system of equations de-
scribing conditions for the smoothness of the spline. Thus, 
polynomial (4) takes the following form:

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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=
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=
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( ) −= ⋅ ⋅
1 1

/ / 1( ) ; ; ; ,H a a b b HP x f f f f V X
		   

(8)

where 

( )= − − ⋅ 2
3

1
.

2
w x Mh x

Mh

The basis functions of polynomial (8) will then be as-
signed by formulae:

( )( )= + − 2

1 3 3

1
2 ;u x Mh x Mh

M h  
( )= − 2

2 2 2

1
;u x x Mh

M h

( )= − − ⋅ 2
3 3 3

1
2 3 ;u x Mh x

M h  
( )= −2

4 2 2

1
.u x x Mh

M h

Coefficients at basis functions u1 and u2 will be found 
from the conditions for the smoothness of joining links of 
the spline, and the coefficients at functions u3 and u4 will be 
searched for by the method of least squares. 

Condition for joining the l-th and (l+1)-th links of the 
spline with a smoothness of order С1 will be consistently 
written in the form:

( ) ( )

+

+

 =



= = =

1 1

1 1
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/ /
1
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;
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l
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l

a
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u mh u mh f
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u x u x f f
x mh x mh
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f f f
B B

f f f

A matrix of the least squares method takes a traditional 
form:

or according to the notation used, for example, in paper [12]:

( ) ( )
   

⋅ + ⋅ =   
      
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l l
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f f
A A P
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(10)

Hence, we obtain

( ) ( ) ( )
−

    
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(11)

Recurrent formula (7) takes the following form in this 
case:

( ) ( )
+

−
+

   
= ⋅ ⋅ + ⋅   
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1

1
1 1 1/ /
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f f
B A P U

f f
	  

(12)

and ensures smoothness of joining links of the spline of 
order С1. 

We shall consider another form of representation of the 
Hermitian polynomial with three knots in which values for 
the function are assigned, in the first knot ‒ also the value of 
the function’s derivative:

( ) −= ⋅ ⋅
2 2

/ 1
0( ) ; ; ; ,H a a b HP x f f f f V X

	  
(13)

where
 

 
 
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3 3 3 3

1 0 1 1

0 1
,

0 0
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H

qh Mh
V

q h M h

q h M h

= ,bx Mh
 

=0 ,x qh
 [ ]= / 2 .q M

The basis functions of polynomial (13) will then be as-
signed by formulae:

( )( ) ( )( )= − − + +1 2 2 3

1
;v x Mh x qh M q x Mqh

q M h  

( )( )= − −2 2

1
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( ) ( )= − − ⋅
−

2
3 2 3

1
;v x Mh x

q M q h

( ) ( )= − − ⋅
−

2
4 2 3

1
.v x qh x

M M q h

Coefficients at basis functions n1 and n2 will also 
be found from the conditions for smoothness of joining 
links of the spline, and coefficients at functions n3 and 
n4 will be searched for by the method of least squares. 

Condition for joining the l-th and the (l+1)-th links 
of the spline with a smoothness of order С1 will be con-
sistently written in the following form:
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Other calculation formulae are similar to formulae (9)–
(12), which is why we shall not write them. 

Results of studying the stability of an algorithm depend-
ing on the form of a polynomial representation are given in 
Table 3.

Table 3

Stability parameters of the algorithm for constructing a 
smoothing spline of order С1

М т λmin max iM

Conditionality number of matrix of the 
least squares method A1

Polynomial 
with a pow-

er basis

Hermitian 
polynomial 

(8)

Hermitian 
polynomial 

(13)

4 2 0.2433 667.74 8.57 2.44

5 4 0.1315 915.45 7.60 2.17

6 5 0.1217 1,219.06 7.59 3.42

7 6 0.1156 1,576.11 8.13 2.98

8 7 0.1129 1,985.63 9.07 4.11

9 7 0.1332 2,447.17 10.31 3.61

10 8 0.1270 2,960.52 11.84 4.63

It is obvious that it is appropriate to use the Hermitian 
polynomials in the form (13), which, all other conditions 
being equal, ensure the best conditionality of matrix A1, 
which is applied in the implementation of the examined 
algorithm.

4. 6. Constructing a spline of 
smoothness С2

To construct the smoothing spline 
of order С2, we shall use the Hermitian 
polynomial with two knots, in which 
values for the function and its two de-
rivatives are assigned in the first knot, 
and in the second knot ‒ only a value 
for the function:

( ) −= ⋅ ⋅
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(14)

where 
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The basis functions of polynomial 
(14) will then be assigned by formulae:
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Coefficients at basis functions w1, w2 and w3 will be 
found from conditions fpr smoothness of joining links of the 
spline, and coefficient at function w4 will be searched for by 
the method of least squares. 

Condition for joining the l-th and the (l+1)-th links of 
the spline with a smoothness of order С2 will be consistently 
written in the form:
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A matrix for the least squares method takes a traditional 
form:
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or according to the notation used, for example, in paper [12]:
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Recurrent formula (7) takes the form in this case:
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and ensures smoothness for joining the links of spline of 
order С2. 

Results of studying the stability of an algorithm, de-
pending on the form of a polynomial representation, will be 
given in Table 4. As matrix А1 is composed in this case of one 
element, its conditionality number for all the bases is unity.

Table 4

Stability parameters of the algorithm for constructing a 
smoothing spline of order С2

М т

λmin max iM

Polynomial with a power 
basis

Hermitian polynomial 
(14)

4 2 0.81040 0.65880

5 3 0.89022 0.62324

6 3 0.80712 0.65650

7 4 0.77350 0.63001

8 5 0.80456 0.62865

9 5 0.77790 0.63368

10 6 0.80270 0.62822

It is obvious from data in Table 4 that the application of 
Hermitian polynomials in the form (14) has advantages in 
comparison with polynomials with a power basis because 
it ensures better stability of the algorithm to the impact of 
measurement errors in experimental data.

5. Discussion of results on a possibility of the 
generalization of the examined algorithm for 

irregular grids

It is clear from the results of theoretical 
research that when constructing the spline of 
smoothness С0 it is appropriate to apply polynomi-
als in the N. D. Dicoussar form; that of smoothness 
С1 ‒ the Hermitian polynomials of second kind 
(13). To construct the spline of the examined kind 
of smoothness С2, it is expedient to apply polyno-

mials of higher power, since when applying the third-pow-
er polynomials, in order to determine by the method of 
least squares, there is only one coefficient, the model turns 
out to be too rigid and the stability of the algorithm is 
significantly worse than in the two previous cases. 

To generate an experimental sequence, we shall con-
struct a function that is a combination of the three Lorentz 
functions with parameters that are given in Table 5.

( )= =

= =
+ −

∑ ∑
23 3

22
1 1

0

( ) ( ) ,j j
j

j j
j j

A w
y x y x

w x x
	  

(15)

where Aj is the amplitude; wj is the semi-width; xj0 is the fre-
quency position of a maximum.

Table 5

Parameters of a test function

j Aj wj xj0

1 1 0.3 –2

2 3 0.5 0

3 2 0.2 3

We shall add to the values of function y(xi) an error 
that has a normal distribution law with parameters a=0; 
s=0.075.

We shall generate a sequence of N=120 in the inter-
val [−3; 5]. Using rule 2s, we shall add points to each 
spline’s link until the polynomial starts to deviate from 
experimental points by larger than 2s. The final number 
of points at which this requirement is fulfilled will be 
designated (М+1).

In the first interval, we shall solve an auxiliary task on 
approximation with additional constraints that take into 
consideration the physical essence of the problem. Spe-
cifically: the approximating polynomial at the beginning 
of the segment accepts a positive value and has a positive 
first derivative at the same point. Under such conditions, 
the algorithm selected 12 links of the spline with smooth-
ness С0 with the polynomials from the current link of 
the spline represented in the N. D. Dicoussar form (1)  
(Fig. 2). As follows from the conditions for the construc-
tion of such a spline, its derivative at the points of connec-
tion has gaps (Fig. 3).
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Computational experiments to construct the spline of 
smoothness С1 with the representation of polynomials from 
current links in the second Hermitian form (13) revealed 
the following. The best approximation results, in terms of 
their robustness, are obtained when the imposing depth of 
the spline’s links increases by one point relative to the num-
ber of points that are determined based on the estimates of 
eigenvalues modules of stability matrices. In this case, the 
algorithm selects 14 links (Fig. 4).

Fig. 2. Results of the approximation with a spline of 
smoothness С0 by the modified algorithm: 1 – experimental 

dependence; 2 – chart of function (15); 3 – chart of the 
spline

Fig. 3. Results of the approximation with a spline of 
smoothness С0 by the modified algorithm: 1 – experimental 

dependence; 2 – chart of the derivative from spline with 
gaps at points 

Fig. 4. Results of the approximation with a spline of 
smoothness С1 by the modified algorithm: 1 – experimental 

dependence; 2 – chart of function (15); 3 – chart of the 
spline

It is clear that the spline derivative chart in this case is 
continuous. 

Fig. 2–4 show that at segments with a slow change in 
the examined parameter the algorithm selects longer spline 
links than at sections with a fast ascending or descending of 

experimental dependence. As expected, this makes it possi-
ble to reduce the total number of the spline’s links compared 
to their number at uniform splitting. Thus, while ensuring 
an acceptable quality of approximation, the resulting spline 
requires less memory for its storing and using.

The disadvantages that remain inherent to the algo-
rithm after its generalization include subjective determin-
ing of the acceptable magnitude of deviation in the chart 
of a polynomial from the current link of the spline from 
experimental data. Note that in the case of an unknown 
probabilistic law of distribution (or its parameters), by 
which measurement errors abide, such a disadvantage is 
common to all the algorithms for constructing the smooth-
ing splines of such kind.

Prospects for the further research include the extension 
of algorithm to use, in its composition, polynomials of higher 
degrees to ensure the second order of smoothness of joining 
links of the spline with the simultaneous avoidance of the 
emergence of parasitic oscillations at an increase in the 
length of experimental dependence. It is also expedient to 
devise a formal criterion for determining the length of the 
current link of the spline in order to ensure the property of 
robustness for a smoothing spline. Further research will also 
relate to studying the question of alignment of the specified 
criterion with the criterion of algorithm stability.

6. Conclusions

1. It is shown that in a transition from representing a 
polynomial in a power basis to the representation in the 
basis of the N. D. Dicoussar polynomial (when construct-
ing a spline of smoothness С0) or to the representation in 
the bases of the appropriate Hermitian polynomials (in the 
construction of a spline of smoothness С1 and С2), there is 
a significant reduction in the conditionality number of the 
Gram matrix for the basis functions of the recommended 
forms of a polynomial representation. This ensures better 
approximating properties of the examined spline.

2. It is shown that the N. D. Dicoussar polynomial is a 
special case of the Hermitian polynomial, which is represent-
ed in a hierarchical form.

3. It was established that the form of a polynomial repre-
sentation affects the magnitude of eigenvalues of the stabil-
ity matrix, starting at the second order of smoothness while 
joining links of the spline. Such an impact is missing at the 
lower orders of smoothness of joining the links of the spline.

4. In all the test examples, investigated by Authors, the 
use of constraints, suggested by N. D. Dicoussar for prelim-
inary determining the length of a link of the spline, made it 
possible to obtain a smoothing spline, based on the general-
ized D. A. Silaev algorithm, of acceptable quality, with links 
of different lengths.

5. An analysis of the quality of the obtained solutions to 
test problems revealed that in the processing of experimen-
tal dependences with significant measurement errors, there 
may occur the need to reduce the final lengths of spline’s 
links compared to the lengths that are determined by the  
D. A. Silaev rule. Therefore, in the presence of significant 
errors in experimental data, it is appropriate to run a pre-
liminary analysis employing the methods of mathematical 
statistics. This would make it possible, when executing the 
algorithm, to pay special attention to ensuring its stability.
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