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1. Introduction

At the present stage of development of continuum me-
chanics, more intensive research is carried out into internal 
and surface waves in fluids of different types. Similar stud-
ies are among the most complex ones in modern science as 
they require construction of complex mathematical models. 
Practical use of the energy component of waves’ propagation 
and interaction was the impetus to study wave processes. 
The relevance of qualitative and quantitative analysis of 
energy characteristics of the internal wave motion in the 
areas where the ocean has a layered structure is determined 
by the substantial influence of wave energy distribution be-
tween the fluid layers on the navigation safety in such areas. 
Currently, there is a need to develop the theoretical basis for 
designing new methods for cancellation of internal waves.

2. Literature analysis and problem statement 

Numerous scientific developments address solving the 
problem on the generation and propagation of wave-packets, 
as well as studying the energy of wave processes in heteroge-
neous liquid media of different types.

In paper [1], asymptotic models of propagation of inter-
nal waves on the surface of the contact between two layers 
of immiscible fluids of different density with a rigid lid and 
a flat bottom were derived. Different asymptotic models 
were obtained by expanding non-local operators relative to 
correspondent small parameters, which in different ways 

depend on the relation of the amplitude, wavelength and the 
relation of the depth of two layers. In article [2], the prob-
lem of fluctuations of the contact surface of two immiscible 
viscous non-compressed liquids over a hard bottom in the 
gravitational field is explored. The correctness of the prob-
lem, both taking into account the surface tension and with-
out it, is proven and the case when a heavier fluid is above 
is considered. It was established that due to the significant 
surface tension, the non-stability of Rayleigh-Taylor stabi-
lizes. Papers [1, 2] contain significant mathematical results 
regarding construction of the new models and research into 
conditions of stability of hydrodynamic systems, the natural 
continuation of which would be application of the theoretical 
information to detection of new physical effects and patterns 
of wave motion in layered fluids.

In article [3], the theoretical research into inter-phase 
waves in a two-layered system with the free surface was 
conducted. It was shown that a great density difference 
or a relative wave height leads to greater drift velocity. In 
addition, trajectories and velocities of fluid particles were 
constructed with the help of the package of symbolic calcula-
tions. However, the results need development in the context 
of evaluation of energy characteristics of the given two-layer 
system and other more complex layered systems.

In paper [4], the dynamics of internal single waves in 
shallow water in an essentially non-linear three-layer system 
was explored. It was shown that the instability mechanism 
is manifested as instabilities of the Kelvin-Helmholtz type, 
similar to the MCC mode (Miyata, Choi, and Camassa) with 
two layers. An essentially non-linear three-layer system is 

ANALYSIS OF 
ENERGY OF 

INTERNAL WAVES 
IN A THREE-LAYER 

SEMI-INFINITE 
HYDRODYNAMIC 

SYSTEM
O .  A v r a m e n k o

Doctor of Physical and Mathematical Sciences, 
Professor, Head of Department*

Е-mail: oavramenko777@gmail.com
M .  L u n y o v a

Postgraduate student*
Е-mail: luneva.mariya@ukr.net

*Department of Applied Mathematics,  
Statistics and Economics

Volodymyr Vynnychenko Central  
Ukrainian State Pedagogical University

Shevchenka str., 1, Kropyvnytskyi, Ukraine, 25006

Вивчаються енергетичні характеристики по- 
ширення хвиль вздовж поверхонь контакту у гід-
родинамічній системі «рідкий півпростір – шар –  
шар з твердою кришкою». На основі розв’язків пер-
шого наближення слабконелінійної моделі отри-
мано співвідношення для енергії хвильового руху 
у кожному шарі та для сумарної енергії систе-
ми. Проаналізовано залежність енергії хвильового 
руху при різних геометричних та фізичних пара-
метрах системи

Ключові слова: слабконелінійна модель, три-
шарова гідродинамічна система, внутрішні хвилі, 
енергія хвильового руху

Изучаются энергетические характеристики 
распространения волн вдоль поверхностей кон-
такта в гидродинамической системе «жидкое 
полупространство – слой – слой с твердой крыш-
кой». На основе решений первого приближения сла-
бонелинейной модели получено соотношение для 
энергии волнового движения в каждом слое и для 
суммарной энергии системы. Проанализирована 
зависимость энергии волнового движения при раз-
личных геометрических и физических параме-
трах системы

Ключевые слова: слабонелинейная модель, 
трехслойная гидродинамическая система, вну-
тренние волны, энергия волнового движения

UDC 532.59
DOI: 10.15587/1729-4061.2018.128641



Applied physics

27

examined in the framework of the model of shallow water 
that, generally speaking, in this case is justified, but there 
occurs the need to replace the model with a more complex 
one at changing the relation of geometric parameters.

Papers [5, 6] focus on the study of phenomena of energy 
loss and transfer in hydrodynamic systems. In particular, 
paper [5] examines internal waves, which propagate over 
the ridge in two-layered fluid, and considers three types of 
interaction. It was found that different types of waves and 
ridge interaction are associated with the modified blocking 
degree. It was established that the maximum wave velocity, 
loss of wave energy and amplitude have a self-similar charac-
teristic with the blocking degree. Work [6] is devoted to ex-
perimental study of formation of harmonic waves as a result 
of interaction of internal waves. It was found that harmonics 
by the sum and difference of multiple frequencies of waves’ 
collision are formed at collision of two non-resonance inter-
nal waves. The phenomenon of the transfer of relative kinetic 
energy from non-resonance waves to harmonics formed after 
the collision was experimentally found. It is desirable to con-
duct similar research into three-layer systems for more com-
plete coverage of the phenomena of energy loss and transfer.

The concept of maintaining the energy flow for internal 
waves that propagate in non-homogeneous water in shallow 
waters was considered in article [7]. The author made an 
emphasis on application of the Korteweg-de Vries (KdV) 
equation in the assigned form of cnoidal and single waves. 
An increase in the wave height and a decrease in phase ve-
locity under condition of an insignificant value of the water 
depth were demonstrated. The features of dynamics of inter-
nal waves under field conditions were established, kinematic 
criteria of a break were explored in detail and critical heights 
of internal waves were determined. Numerical modeling was 
applied to the shallow waters of the southern Baltic Sea, 
which is an important foundation for subsequent study of 
energy characteristics of the wave process in hydrodynamic 
layered systems of the finite or non-finite depth.

Research into propagation and interaction of wave- 
packets in the system “ layer with a bottom – free surface 
layer” was conducted in article [8]. Specifically, modula-
tion stability of wave packets was analyzed and conditions 
of passage and the shape of waves were explored, as well 
as dependences of motion energy of internal and surface 
waves on geometrical and physical parameters of the 
system were analyzed. Contribution of the second approx-
imation to the total energy of the system was assessed. 
This article studies a two-layer system, characteristics 
of which are useful but insufficient to explore fully the 
complex processes that occur in the depths of the ocean on 
the contact of layers of water of different density. Energy 
characteristics of three-layer hydrodynamic systems are 
of special interest.

In paper [9], a weakly non-linear model of waves 
propagation and interaction along contact surfaces in 
hydrodynamic system “liquid half-space – layer –layer 
with a rigid lid” was considered, the first three linear 
approximations were presented. The condition of waves’ 
propagation along the contact surfaces was obtained. 
The dependence of the relation of waves’ amplitudes on 
the contact surfaces at different geometrical and physical 
parameters of the system was analyzed. The structure 
of wave movements on the contact surfaces was studied. 
Energy characteristics were not analyzed in this paper, 

dependences of energy of the motion of internal and sur-
face waves on geometrical and physical parameters of the 
system were not analyzed either.

Thus, based on an analysis of the literary sources, the 
unresolved part of the problem of waves’ propagation in 
hydrodynamic layered structures now is a qualitative and 
quantitative analysis of energy characteristics of the hy-
drodynamic system “liquid half-space – layer –layer with a 
rigid lid”. Estimation of the contribution of the wave motion 
of every layer to the total energy of the system for different 
geometric and physical properties of the system is of a par-
ticular interest. Such evaluation may reveal existence of the 
phenomenon of energy pumping between the layers of the 
system and other effects and patterns.

3. The aim and objectives of the study

The aim of present study is qualitative and quantitative 
analysis of energy of internal waves that propagate along 
contact surfaces in a three-layer hydrodynamic system 
“liquid half-space – layer – layer with a rigid lid”. This will 
make it possible to analyze in more detail the energy com-
ponent of waves’ propagation and interaction in three-layer 
systems.

To accomplish the aim, the following tasks have been set:
– to obtain the relations for estimation of wave motion 

energy in each of the layers of a three-layer hydrodynamic 
system “liquid half-space – layer –layer with a rigid lid”; 

– to identify quantitative and qualitative features of 
dependence of total energy of the system and energy of wave 
motions in the layers on the wave number; 

– to identify and analyze dependences of total wave 
motion energy on thickness of the top layer at different am-
plitudes of progressive waves on contact surfaces.

4. Statement and methods for studying the problem on 
waves propagation in a three-layer hydrodynamic system

We explore the problem on propagation of wave-packets 
of finite amplitude on the surface of a liquid layer 

( ){ }1 , :  ,  0x z x zΩ = < ∞ − ∞ ≤ <  

with density r1 and 

( ){ }2 2, :  ,  0x z x z hΩ = < ∞ ≤ <  

with density r2, which are separated by the contact surface 

1(x,t)z = η  and ( ){ }3 2 2 3, :  ,  x z x h z h hΩ = < ∞ ≤ < +  

with density r3, which is separated from liquid layer 2Ω  by 
contact surface 

2 2(x,t).z h= + η  

When solving the problem, forces of surface tension on 
contact surfaces are taken into consideration. Gravity is 
directed perpendicular to the contact surface in the neg-
ative z-direction, fluids are considered non-compressed 
(Fig. 1).
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Fig. 1. Diagram of the tree-layer hydrodynamic system  
“liquid half-space – layer –layer with a rigid lid”

The mathematical model in dimensionless values takes 
the following form
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where φj ( j=1, 2, 3) are the potentials of velocities in Ωj, η1 
and η2 are the contact surfaces of two liquid layers Ω1 and Ω2, 
Ω2 and Ω3, respectively.

Mathematical statement of problem (1) was obtained by 
means of introduction of dimensionless values with the help 
of characteristic length H, which is equal to thickness of 
internal layer h2, characteristic length of wave L, maximal 
elevation a of the contact surface between layers Ω2 and Ω3, 

characteristic ,
L

gH
 density of lower layer ρ1. We will pro- 

 
ceed to dimensionless values, which will be designated with 
an asterisk, 

*,x Lx=  *,z Hz=  *
j jah = h  ( j=1, 2), 
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L

t t
gH

=
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gLa

gH
ϕ = ϕ
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a
H

α =  and 
2

2

H
L

β =  

are non-linearity coefficients and subsequently we will 
consider the case when α<1, and β=1. The asterisks will be 
subsequently omitted.

To solve the stated problem, we will use the method of 
multi-scale expansions to the third order [10]. We will repre-
sent the sought-for functions of elevation of contact surfaces 
and potentials of velocities in the form of

3
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where k kx x= α  and k kt t= α  (k=0, 1, 2). From formulae (3), 
we derived approximation of the studied system to the third 
order [9] and performed detailed analysis of solutions of the 
first approximation.

5. Estimation of wave motion energy of the system based 
on solutions of the first approximation

While studying the first linear problem [9], dispersion 
relation was derived

  (4)

which has two pairs of roots w1 and w2. As it was found 
earlier [9], the existence of two pairs of roots of dispersion 
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relation offers the possibility to obtain two pairs of inde-
pendent solutions of the first approximation 

– for w1: 

(1)
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where (1)
21h  is the wave-response to wave (1)

11h  with frequency 
w1 and amplitude А that propagates on the lower contact 
surface; (2)

11h  is the wave-response to wave (2)
21h  with fre-

quency w2 and amplitude В that propagates on the upper 
contact surface. 

Energy, transferred on the upper and lower contact sur-
faces by internal waves, will be studied according to [11]. We 
will consider energy, transferred within period τ by two-di-
mensional progressive waves, assigned by solutions (5) and 
(6), through the plane x=const. Then the formulae are used 
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where E1, E2, E3 are the wave motion energy in half-
space, middle and upper layers, respectively; Es is the total 
energy of the three-layer system. Wave motion energy is 

found by substitution of expressions 
of potentials (5)–(6) in formulae (7)–
(9), all subsequent calculations are 
performed in the package of symbol-
ic calculations due to awkwardness of 
sub-integral expressions. In the course 
of calculations we take into account 
that potentials (1)

1jϕ  and (2)
1jϕ  do not 

have a common period, since w1 and w2 
are not, generally speaking, rational 
numbers, sufficiently large values of the 
length of the integration section τ are 
used when calculating integral by t. 

The formulae (7)–(10) give an es-
timate of the total energy and its com-
ponents based on solutions of the first 
approximation; their analysis is repre-
sented in chapter 6.

6. Analysis of wave motion energy 
based on solutions of the first 

approximation

6. 1. Wave motion energy in limit 
cases of the studied system 

We will start the study of energy 
characteristics of the system “liquid 
half-space – layer –layer with a rigid 
lid” with consideration of two limit 
cases, in which a three-layer system de-
generates in a two-layer system “liquid 
half-space – layer with a rigid lid”. The 
obtained results will be compared with 
calculation of energy, transferred by 

waves in the hydrodynamic system “liquid half-space –layer 
with a rigid lid”, which was performed in [12]. Solutions to 
this problem in a linear statement take the following form
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Energy, transferred by the waves in the mentioned 
two-layer system, is calculated as follows

0 2 2
1 1

1 2

( ) ( )1 2
d d ,

t

с
t

A
E t z

t x k

+τ

−∞

∂ ϕ ∂ ϕ pw
= − =

τ ∂ ∂∫ ∫ 		  (12)

2 2 2
2

0

2 2
2 2 2

2 2
2

( ) ( )
d d

2 (cosh( )sinh( ) )
,

sinh ( )

t h

с
t

E t z
t x

kh kh kh A
k kh

+τr ∂ ϕ ∂ ϕ
= − =

τ ∂ ∂

pw +
=

∫ ∫
	  

(13)

2 3
(1) 1 1 1 2 1 2
21

2 1 2

2 2 3
2 1 2 1 1 1 2 1 2

1
2 1 2

( ( ) )ch( ( ))
ch( )

( ch( ) ( ( ) )sh( ))sh( )
sin( ), (5)

ch( )

k T k k h z
k kh

kh k T k kh kz
A kx t

k kh

 −r w + r − r + −
ϕ = + r w

−r w + −r w + r − r +
+ − wr w 

(2) 2
11

2
2 2

22 2 3
2 2 2 1 2 1 2 1 2

exp( )

sin( ), (6)
ch( ) ( )sh( )

kz
k

B kx t
kh k k T k kh

w
ϕ = ´

r w
´ − w

r w + r w − r + r −
(6)



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/5 ( 92 ) 2018

30

1 2 .с с сE E E= + 	 	 	 	  (14)

The first limit case of degeneration of a three-layer 
system “liquid half-space – layer – layer with a rigid lid” 
in a two-layer system occurs on condition of equality of 
two layers r2=r3=0.9, in this case the amplitude of the 
upper internal progressive wave В=0. In this case, we 
have the layer of fluid, bounded from above by the rigid lid 
and liquid half-space below it with the contact surface h1. 	
Fig. 2, а shows dependence E1, E2, E3, Es and Ec on thick-
ness of the upper layer for the following parameters: k=0.1, 
T1=T2=0, h2=1, amplitude of the lower internal progressive 
wave А=0.1.

As it is noticeable in Fig. 2, at an increase in thickness of 
the upper layer, energy E1, which is transferred on the half-
space, increases. At the same time, energy of the middle layer 
E2 falls to some level. Energy of the upper layer E3 increases 
to its maximum value with an increase in thickness of the 
upper layer h3, and at further increase falls to its limit value. 
We will note that case h3∈[–1, 0] is of a purely theoretical 
nature, where components of energy gain conditional values. 
As it can be seen from the diagram, total energy of system 
Es coincides with the energy of the corresponding two-layer 
system “liquid half-space – layer with a rigid lid” Ec with 
thickness of the upper layer h=h2+h3. Similar coincidence of 
the diagrams in the final case proves physical accuracy of the 
obtained results.

а   

b 

Fig. 2. Diagram of dependence E1, E2, E3, Es and 
Ec on thickness of the upper layer h3: а – first 

degenerated case; b – second degenerated case 

The second limit case of degeneration of a three-layer 
system “liquid half-space – layer –layer with a rigid lid” 
in a two-layer system occurs on condition of equality of 
density of two lower layers r1=r2=1. In this case, we have a 
liquid layer of thickness h3, bounded from above by the lid, 
and half-space, between which there is the contact surface 
h2. Fig. 2, b shows dependence E1, E2, E3, Es and Ec on 
thickness of the upper layer for the following parameters: 
k=0.1, T1=T2=0, h2=1, А=0, В=0.1. Similarly to the first 
limit case, wave motion energy of half-space E1 increases 
at an increase in thickness of the upper layer. Energy of 
the upper layer E3 also is ascending in character for small 
values of thickness h3, but at an increase it starts falling 
to a certain limit value. A significant difference between 
the two limit cases lies in dependence of energy of the 
middle layer E2 on thickness of the upper layer. In the 
second case, energy of the middle layer does not decrease, 
but rather increases to the level close to that observed in 
the first case. We will note that in the second limit case, 
total energy of system Es coincides with energy of system 
Ec, which proves that physical accuracy of results for a 
three-layer system.

6. 2. Analysis of dependence of wave energy on wave 
number

Fig. 3 shows dependence of E1, E2, E3, the sum Es on 
wave number k at different values of thickness of the upper 
layer h3=10, h3=3, h3=1 for the following parameters of the 
system 

r1=1, r2=0.9, r3=0.8, T1=T2=0, h2=1, A=0.1, B=0.05.

 
 

 
 

 
 

 
 

  

 

  

 

а                                                      b 

 
 
 
 
 
 
 
 
 
 
 
 

c                                                      d  
Fig. 3. Diagram of dependence of wave motion energy on wave number 
k at different values of thickness of the upper layer: а – wave motion 

energy in half-space E1; b – energy of the middle layer E2; c – energy of 
the upper layer E3; d – total energy of system Es
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Fig. 3, a shows that at an increase in the value of wave 
number, the value of wave motion energy in half-space E1 
first increases to the maximum value and after reaching it 
quickly decreases to a certain limit value. Such dependence 
is observed in the region of small wave numbers (for long 
waves) for each thickness of the upper layer h3, in this case, 
the higher h3, the higher the maximum value E1. We will 
note that for large wave numbers (for short waves), half-
space energy hardly depends on thickness of the upper layer.

Fig. 3, b shows the diagram of dependence of energy of the 
middle layer E2 on wave number k at different values of thick-
ness of the upper layer h3. Fig. 3 shows that at an increase in the 
value of wave number k, the value of energy of the middle layer 
is descending in character and quickly enough converge to a 
specific limit value. That is, for short waves, energy of the mid-
dle layer almost does not depend on thickness of the upper layer. 
Fig. 3 shows that dependence of energy of the upper layer E3 on 
wave number k at different values of thickness of this layer h3 
also has a descending character and on certain intervals of the 
diagram does not depend on the value of its thickness.

The total energy of the three-layer system Es (Fig. 3, d) 
decreases at an increase in the value of wave number k, and, 
as it can be seen from the diagram, for large values, k does 
not depend on the value of thickness of the upper layer h3.

6. 3. Analysis of dependence of energy of waves of 
different length on thickness of the upper layer

In this chapter, we will consider three cases of depen-
dence of energy of waves of different length on thickness of 
the upper layer at different amplitudes A and B of progressive 
waves on the lower and upper contact surfaces, respectively:

1) А≠0, В=0; 
2) А=0, В≠0; 
3) А≠0, В≠0.
1) We will consider a three-layer system on 

condition of passage of a progressive wave with 
amplitude А≠0 on the lower contact surface in 
the absence of a progressive wave on the upper 
contact surface. 

Fig. 4 shows dependence of energy Es on 
thickness of the upper layer h3 at different val-
ues of wave number k=0.01, k=0.1, k=1, k=2 for 
the following parameters of the system: r1=1, 
r2=0.9, r3=0.8, T1=T2=0, h2=1, wave amplitude 
on the lower contact surface A=0.1 and on the 
upper one B=0.

As the diagram shows, the total energy of 
system Es (Fig. 4) is descending in character at 
an increase in thickness of the upper layer and 
for long waves has a larger value compared with 
short waves. 

2) We will consider a three-layer system on 
conditions of passage of a progressive wave with 
amplitude B≠0 on the upper contact surface, pro-
vided there is no progressive wave on the lower 
contact surface, i. e. A=0.

Fig. 5 shows dependence of total energy Es 
on thickness of the upper layer h3 at different 
values of wave number k=0.01, k=0.1, k=1, k=2 
for the following parameters of the system: r1=1, 
r2=0.9, r3=0.8, T1=T2=0, h2=1, amplitude of the 
upper internal progressive wave B=0.05. Total 
energy of the system for a small value of wave 
number (k=0.01) increases, reaches the maxi-

mum value and starts falling to the limit value. At other 
values of wave number (k=0.1, k=1, k=2), dependence of en-
ergy on thickness of the upper layer has a weakly descend-
ing character and converges to its limit value quite quickly.

Fig. 4. Diagram of dependence of total energy of system Es 
on thickness of the upper layer h3 at different values of wave 

number k

3) We will consider a three-layer system on condition of 
simultaneous passage of a progressive wave with amplitude 
B≠0 on the upper contact surface and passage of a progres-
sive wave with amplitude A≠0 on the lower contact surface. 

Consider dependence Es (Fig. 6) on thickness of the up-
per layer for different wave numbers k=0.01, k=0.1, k=1, k=2 
and the following parameters of the system: r1=1, r2=0.9, 
r3=0.8, T1=T2=0, h2=1, А=0.1, В=0.05.

 

 

Fig. 5. Dependence of energy of system Es on thickness of the upper layer 
h3 at different values of wave number k

 

Fig. 6. Diagram of dependence of energy Es on thickness of the upper 
layer h3 at different values of wave number k
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Fig. 6 shows the total energy of the system, which in-
creases at an increase in thickness h3 for a small wave number 
(k=0.01), reaches maximum value and begins falling to the 
limit value. At the same time, for larger values of wave num-
ber, the total energy of the system rather quickly falls to its 
limit value. 

We should note that in this specific case of propagation 
of progressive waves along both contact surfaces, total ener-
gy of the system is close to the sum of energies of the system 
in cases, in which a wave does not propagate on one of the 
contact surfaces.

7. Discussion of results of the study of wave processes in 
a three-layer hydrodynamic system

The study of energy characteristics of a three-layer hy-
drodynamic system “liquid half-space – layer –layer with a 
rigid lid” was conducted within the framework of a weakly 
non-linear model, specifically, in its first approximation.

The main attention was paid to the study of the influence 
of different physical and geometrical parameters both on the 
total energy of the system and the energy of separate layers. 
Research into reciprocal influence of changes of physical 
and geometrical parameters of the system on energy charac-
teristics allows us to assess qualitatively and quantitatively 
energy processes in each layer separately and in the system 
in general. The obtained results essentially complement and 
enrich the picture of the wave process, which was presented 
in detail in the previous studies. To prove physical reliability 
and to test the computer program in the package of symbolic 
computation, two systems, degenerated to a two-layer sys-
tem “liquid half-space – layer –layer with a rigid lid”, were 
explored. In both cases the obtained results coincided with 
the results of the test problems. Practical application of the 
obtained results involves studying energy characteristics of 
wave processes in the ocean with the layer structure in the 
presence of the ice cap. As it is known, such phenomena oc-
cur at mouths of rivers, as well as in the open ocean in areas 
adjacent to a thermal wedge. The advantage of this study is 
the consistent study of energy characteristics for dispersion 
relations between physical and geometrical parameters of 
the hydrodynamic system “liquid half-space – layer –layer 
with a rigid lid”. In particular, it is important in the cases of 
absence of progressive waves on one of the contact surfaces 
and simultaneous passage of waves on both contact surfaces, 
since it makes possible to reveal the peculiarities of propaga-
tion of energy of progressive waves both taken separately and 
in interaction. A natural extension of this research should be 
obtaining and studying higher approximations of a weakly 
non-linear problem with subsequent deriving evolutionary 
equations of envelopes of wave packets on the contact sur-
faces and plotting the diagrams of modulation stability. In 

terms of continuation of the study of energy characteristics 
of a three-layer “liquid half-space – layer – layer with a rigid 
lid”, it is necessary to obtain estimation of the energy con-
tribution of higher harmonics. The obtained results can be 
compared with the known data for a two-layer system and 
energy pumping in a wave packet can be explored.

8. Conclusions

1. We obtained the relations for quantitative and quali-
tative evaluation of energy of three layers of fluid and total 
energy of a hydrodynamic system “liquid half-space – layer –  
layer with a rigid lid” in the form of integrals for time and 
vertical space variable over product of derivatives of po-
tentials of velocities by time and horizontal space variable. 
Symbolic transformations and related calculations were 
performed in the software package.

2. It was found that energy of the middle and upper layer 
of a three-layer hydrodynamic system is descending in char-
acter at an increase in the value of wave number k and con-
verges fast enough to a certain limit value, which for short 
waves does not depend on thickness of the upper layer. At the 
same time, energy of the lower layer increases to a certain 
value, and after reaching the maximum quite quickly falls to 
its limit value. In this case, the energy of the system, which 
is the sum of energies of three layers, also is descending in 
character and fast enough converges to its limit value.

3. An analysis of the influence of geometrical parameters 
of the system on energy characteristics of the system showed:

– if the amplitude of a progressive wave on the upper 
contact surface is equal to zero and the amplitude of a pro-
gressive wave on the lower contact surface is different from 
zero, energy of the system is descending in character at an 
increase in thickness of the upper layer and has a higher val-
ue for long waves in comparison with short waves;

– if the amplitude of a progressive wave on the lower con-
tact surface is equal to zero and the amplitude of a progres-
sive wave on the upper contact surface is different from zero, 
the total energy reaches maximum values for some values of 
thickness of the upper layer and tends to its limit value at an 
increase in thickness of the upper layer;

– if both amplitudes of progressive waves on the upper 
and the lower contact surfaces are different from zero, the 
total energy of the system from thickness of the upper layer 
also has maximum values, and at an increase in thickness 
of the upper layer falls and tends to the limit value. At the 
same time, for short waves, the total energy of the system is 
descending in character and rather quickly falls to its limit 
value. We will note that in the case of non-zero amplitudes 
of waves on both contact surfaces, the total energy of the 
system is close to the sum of energies of the system in the two 
above mentioned cases.
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1. Introduction

Acoustic locators (sodars) are important sources of  
information about velocity, wind direction and the degree 
of turbulence of air masses at altitudes of up to 1 km. 
Information of sodars is widely used for studies of the at-
mosphere [1–3], local and global weather forecasts [4, 5],  
air traffic control services [1, 6], for monitoring the at-
mosphere at wind farms [7–10], near potential sources of 
hazardous emissions [1], etc.

As a rule, monostatic three-beam sodars with one 
vertical beam and two beams, deviated from the ver-
tical by 20...30o in mutually perpendicular directions 
are used [1, 2, 5–10]. The range to scattering volume is 

determined by the time of an echo signal delay, and wind 
projection onto the direction of sounding is determined 
by the Doppler frequency shift. Turbulence intensity is 
estimated by the power of a return signal and the width 
of the Doppler spectrum. The general tendency of so-
dars improvement is to increase reliability and operative 
measurements [1–10]. This is especially important when 
detecting hazardous meteorological phenomena, for ex-
ample, in the aircraft takeoff-landing area [6]. Taking 
into consideration the increasing requirements for mea-
surement accuracy and temporal resolution of sodars, 
the relevant task is to improve the methods for obtain-
ing meteorological information from parameters of echo  
signals.

5.	 Numerical simulation of interaction between internal solitary waves and submerged ridges / Zhu H., Wang L., Avital E. J., Tang H., 

Williams J. J. R. // Applied Ocean Research. 2016. Vol. 58. P. 118–134. doi: 10.1016/j.apor.2016.03.017 

6.	 Smith S., Crockett J. Experiments on nonlinear harmonic wave generation from colliding internal wave beams // Experimental 

Thermal and Fluid Science. 2014. Vol. 54. P. 93–101. doi: 10.1016/j.expthermflusci.2014.01.012 

7.	 Massel S. R. On the nonlinear internal waves propagating in an inhomogeneous shallow sea // Oceanologia. 2016. Vol. 58, Issue 2. 

P. 59–70. doi: 10.1016/j.oceano.2016.01.005 

8.	 Avramenko O. V., Naradovyi V. V., Selezov I. T. Energy of Motion of Internal and Surface Waves in a Two-Layer Hydrodynamic 

System // Journal of Mathematical Sciences. 2018. Vol. 229, Issue 3. P. 241–252. doi: 10.1007/s10958-018-3674-7 

9.	 Avramenko O., Lunyova M., Naradovyi V. Wave propagation in a three-layer semi-infinite hydrodynamic system with a rigid lid // 

Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 5 (89). P. 58–66. doi: 10.15587/1729-4061.2017.111941 

10.	 Nayfeh A. H. Nonlinear Propagation of Wave-Packets on Fluid Interfaces // Journal of Applied Mechanics. 1976. Vol. 43, Issue 4. 

P. 584. doi: 10.1115/1.3423936 

11.	 Tarapov I. E. Continuum Mechanics. Vol. 3. Mechanics of Inviscid Liquid. Kharkiv: Zolotye Stranitsy, 2005.

12.	 Avramenko O. V., Hurtovyi Yu. V., Naradovyi V. V. Analiz enerhiyi khvylovoho rukhu v dvosharovykh hidrodynamichnykh syste-

makh // Naukovi zapysky. Seriya: Matematychni nauky. 2014. Issue 73. P. 3–8.

STUDY OF THE 
METHOD FOR 
ASSESSING 

ATMOSPHERIC 
TURBULENCE BY 

THE ENVELOPE OF 
SODAR SIGNALS

S .   S h e i k o
PhD

Department of Media Engineering and 
Information Radio Electronic Systems

Kharkiv National University of  
Radio Electronics 

Nauky ave., 14, Kharkiv, Ukraine, 61166 
E-mail: sergiy.sheiko@nure.ua

Досліджено метод оцінки атмосферної турбулентності за 
статистичними характеристиками обвідної сигналів сода-
ра. Показано, що обвідна ехо-сигналів розподілена по закону 
Райса, параметр закону розподілу пов'язаний з інтенсивніс-
тю турбулентності. Отримані значення параметра зако-
ну розподілу ехосигналів для турбулентності певних класів. 
Використання дослідженого методу додатково до вже засто-
сованих дозволить збільшити точність і часове розрізнення 
содарів

Ключові слова: акустичне зондування, содар, турбулент-
ність, ехо-сигнал, обвідна, авіаційна метеорологія, вітрова 
енергетика

Исследован метод оценки атмосферной турбулентности 
по статистическим характеристикам огибающей сигналов 
содара. Показано, что огибающая эхо-сигналов распределе-
на по закону Райса, параметр закона распределения связан с 
интенсивностью турбулентности. Получены значения пара-
метра закона распределения эхо-сигналов для турбулент-
ности определённых классов. Использование исследованного 
метода дополнительно к уже применяемым позволит увели-
чить точность и временное разрешение содаров

Ключевые слова: акустическое зондирование, содар, тур-
булентность, эхо-сигнал, огибающая, авиационная метеоро-
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