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Busuaromuvca enepeemuuni xapaxmepucmuxu no-
WUpeHHs X6Ub 63006%iC NOBEPXOHbL KOHMAKMY Y 2i0-
poounamivniii cucmemi <pioxuil nienpocmip — wap —
wap 3 meepooro kpuwxoto>. Ha ocnosi po3e’sasxie nep-
w020 HAOMUINCEHHS CAAOKOHeNinIUHOT Modesi ompu-
MAHO CNiBBIOHOWEHHS Ol eHepeil X6UIb08020 PYXY
Y KOJXNCHOMY wiapi ma 0Js CYymapHoi emepeii cucme-
mu. Ilpoananizosano 3anexncHicmo enepeii X6Ub068020
PYXY npu pi3Hux zeomempudHux ma Qisuunux napa-
Mempax cucmemu

Kmouoei caosa: caadkoneniniiina mooenv, mpu-
waposa 2i0poounamiuna cucmema, 6HYmMpiUHi X6,
eHepeis X6Unb06020 pYxy

[m, ]

H3yuaromces snepeemuneckue xapaxmepucmuxu
pacnpocmpanenust 60aH 600Jb NOGEPXHOCMEU KOH-
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nOJYNPOCMPAHCME0 — CA0U — CJ0U C MBePOOU Kpblul-
xoii». Ha ocnose pewenuii nepeozo npudauicenust cia-
OoHenuHelnol MOOeau NOAYHeHo coomHnoulenue Ons
IHepeuUU BOTIHOB020 DBUNCEHUSL 8 KANHCOOM CJloe U Ot
cymmapnoi anepeuu cucmemol. Ilpoananusuposana
3A6UCUMOCHTb IHEPLUU BOTHOB020 OBUNCEHUS NPU PA3-
JUUHBIX 2e0MempuyecKux u Quaureckux napame-
mpax cucmemot

Knioueevie caoea: caabouenunennas mooenn,
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1. Introduction

At the present stage of development of continuum me-

chanics, more intensive research is carried out into internal
and surface waves in fluids of different types. Similar stud-
ies are among the most complex ones in modern science as
they require construction of complex mathematical models.
Practical use of the energy component of waves’ propagation
and interaction was the impetus to study wave processes.
The relevance of qualitative and quantitative analysis of
energy characteristics of the internal wave motion in the
areas where the ocean has a layered structure is determined
by the substantial influence of wave energy distribution be-
tween the fluid layers on the navigation safety in such areas.
Currently, there is a need to develop the theoretical basis for
designing new methods for cancellation of internal waves.

2. Literature analysis and problem statement

Numerous scientific developments address solving the
problem on the generation and propagation of wave-packets,
as well as studying the energy of wave processes in heteroge-
neous liquid media of different types.

In paper [1], asymptotic models of propagation of inter-
nal waves on the surface of the contact between two layers
of immiscible fluids of different density with a rigid lid and
a flat bottom were derived. Different asymptotic models
were obtained by expanding non-local operators relative to
correspondent small parameters, which in different ways

depend on the relation of the amplitude, wavelength and the
relation of the depth of two layers. In article [2], the prob-
lem of fluctuations of the contact surface of two immiscible
viscous non-compressed liquids over a hard bottom in the
gravitational field is explored. The correctness of the prob-
lem, both taking into account the surface tension and with-
out it, is proven and the case when a heavier fluid is above
is considered. It was established that due to the significant
surface tension, the non-stability of Rayleigh-Taylor stabi-
lizes. Papers [1, 2] contain significant mathematical results
regarding construction of the new models and research into
conditions of stability of hydrodynamic systems, the natural
continuation of which would be application of the theoretical
information to detection of new physical effects and patterns
of wave motion in layered fluids.

In article [3], the theoretical research into inter-phase
waves in a two-layered system with the free surface was
conducted. It was shown that a great density difference
or a relative wave height leads to greater drift velocity. In
addition, trajectories and velocities of fluid particles were
constructed with the help of the package of symbolic calcula-
tions. However, the results need development in the context
of evaluation of energy characteristics of the given two-layer
system and other more complex layered systems.

In paper [4], the dynamics of internal single waves in
shallow water in an essentially non-linear three-layer system
was explored. It was shown that the instability mechanism
is manifested as instabilities of the Kelvin-Helmholtz type,
similar to the MCC mode (Miyata, Choi, and Camassa) with
two layers. An essentially non-linear three-layer system is




examined in the framework of the model of shallow water
that, generally speaking, in this case is justified, but there
occurs the need to replace the model with a more complex
one at changing the relation of geometric parameters.

Papers [5, 6] focus on the study of phenomena of energy
loss and transfer in hydrodynamic systems. In particular,
paper [5] examines internal waves, which propagate over
the ridge in two-layered fluid, and considers three types of
interaction. It was found that different types of waves and
ridge interaction are associated with the modified blocking
degree. It was established that the maximum wave velocity,
loss of wave energy and amplitude have a self-similar charac-
teristic with the blocking degree. Work [6] is devoted to ex-
perimental study of formation of harmonic waves as a result
of interaction of internal waves. It was found that harmonics
by the sum and difference of multiple frequencies of waves’
collision are formed at collision of two non-resonance inter-
nal waves. The phenomenon of the transfer of relative kinetic
energy from non-resonance waves to harmonics formed after
the collision was experimentally found. It is desirable to con-
duct similar research into three-layer systems for more com-
plete coverage of the phenomena of energy loss and transfer.

The concept of maintaining the energy flow for internal
waves that propagate in non-homogeneous water in shallow
waters was considered in article [7]. The author made an
emphasis on application of the Korteweg-de Vries (KdV)
equation in the assigned form of cnoidal and single waves.
An increase in the wave height and a decrease in phase ve-
locity under condition of an insignificant value of the water
depth were demonstrated. The features of dynamics of inter-
nal waves under field conditions were established, kinematic
criteria of a break were explored in detail and critical heights
of internal waves were determined. Numerical modeling was
applied to the shallow waters of the southern Baltic Sea,
which is an important foundation for subsequent study of
energy characteristics of the wave process in hydrodynamic
layered systems of the finite or non-finite depth.

Research into propagation and interaction of wave-
packets in the system “ layer with a bottom — free surface
layer” was conducted in article [8]. Specifically, modula-
tion stability of wave packets was analyzed and conditions
of passage and the shape of waves were explored, as well
as dependences of motion energy of internal and surface
waves on geometrical and physical parameters of the
system were analyzed. Contribution of the second approx-
imation to the total energy of the system was assessed.
This article studies a two-layer system, characteristics
of which are useful but insufficient to explore fully the
complex processes that occur in the depths of the ocean on
the contact of layers of water of different density. Energy
characteristics of three-layer hydrodynamic systems are
of special interest.

In paper [9], a weakly non-linear model of waves
propagation and interaction along contact surfaces in
hydrodynamic system “liquid half-space — layer —layer
with a rigid lid” was considered, the first three linear
approximations were presented. The condition of waves’
propagation along the contact surfaces was obtained.
The dependence of the relation of waves’ amplitudes on
the contact surfaces at different geometrical and physical
parameters of the system was analyzed. The structure
of wave movements on the contact surfaces was studied.
Energy characteristics were not analyzed in this paper,

dependences of energy of the motion of internal and sur-
face waves on geometrical and physical parameters of the
system were not analyzed either.

Thus, based on an analysis of the literary sources, the
unresolved part of the problem of waves’ propagation in
hydrodynamic layered structures now is a qualitative and
quantitative analysis of energy characteristics of the hy-
drodynamic system “liquid half-space — layer —layer with a
rigid lid”. Estimation of the contribution of the wave motion
of every layer to the total energy of the system for different
geometric and physical properties of the system is of a par-
ticular interest. Such evaluation may reveal existence of the
phenomenon of energy pumping between the layers of the
system and other effects and patterns.

3. The aim and objectives of the study

The aim of present study is qualitative and quantitative
analysis of energy of internal waves that propagate along
contact surfaces in a three-layer hydrodynamic system
“liquid half-space — layer — layer with a rigid 1id”. This will
make it possible to analyze in more detail the energy com-
ponent of waves’ propagation and interaction in three-layer
systems.

To accomplish the aim, the following tasks have been set:

— to obtain the relations for estimation of wave motion
energy in each of the layers of a three-layer hydrodynamic
system “liquid half-space — layer —layer with a rigid lid”;

— to identify quantitative and qualitative features of
dependence of total energy of the system and energy of wave
motions in the layers on the wave number;

— to identify and analyze dependences of total wave
motion energy on thickness of the top layer at different am-
plitudes of progressive waves on contact surfaces.

4. Statement and methods for studying the problem on
waves propagation in a three-layer hydrodynamic system

We explore the problem on propagation of wave-packets
of finite amplitude on the surface of a liquid layer

Q ={(x,z): |oc| < o0, —ooSz<O}

with density p; and
Q,={(x.2): [x|<e, 0<z<h,}

with density pg, which are separated by the contact surface
z=n,(x,t) and Q,={(x,2): |x|<co, hy<z<h,+hy}

with density ps, which is separated from liquid layer Q, by
contact surface

z=h, +n,(x,t).

When solving the problem, forces of surface tension on
contact surfaces are taken into consideration. Gravity is
directed perpendicular to the contact surface in the neg-
ative z-direction, fluids are considered non-compressed

(Fig. 1).
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Fig. 1. Diagram of the tree-layer hydrodynamic system
“liquid half-space — layer —layer with a rigid lid”

The mathematical model in dimensionless values takes
the following form
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where ; (j=1, 2, 3) are the potentials of velocities in Q;, 1y
and n, are the contact surfaces of two liquid layers Q and Q,
Q, and Qs, respectively.

Mathematical statement of problem (1) was obtained by
means of introduction of dimensionless values with the help
of characteristic length H, which is equal to thickness of
internal layer hy, characteristic length of wave L, maximal
elevation a of the contact surface between layers Q, and Qs,

characteristic —, density of lower layer p;. We will pro-

ceed to dimensionless values, which will be designated with
an asterisk,

x=Lx', z=Hz, n;=an; (j=1,2),
. L £, o= gla ¢
JgH 0 \JeH
T12—Lp1g 120 p1,2.3=p1p;2,3- 2)

Values

2
a
=g and B=7r

are non-linearity coefficients and subsequently we will
consider the case when a<1, and B=1. The asterisks will be
subsequently omitted.

To solve the stated problem, we will use the method of
multi-scale expansions to the third order [10]. We will repre-
sent the sought-for functions of elevation of contact surfaces
and potentials of velocities in the form of

3
()= o, (g, Xy, 20,6, 8, ,) +O(0), =12,

n=1

0,(x,z,t)=

3
206"71([)]-"(960,961,XZ,Z,L“O,L“UL‘Z)+ O(O‘S)’ 7=123, 3

n=1

where x, =o,x and ¢, =a,¢ (k=0, 1, 2). From formulae (3),
we derived approximation of the studied system to the third
order [9] and performed detailed analysis of solutions of the
first approximation.

5. Estimation of wave motion energy of the system based
on solutions of the first approximation

While studying the first linear problem [9], dispersion
relation was derived

p,w’cth(khy)+

+ p2m2(_p2'0~)2 +(—P10~)2 + k(p1 — P2)+ T1k3 )Cth(khz)) —
—p,o’cth(kh,) +(=p,0” +k(p, —p,) + Tk")

= k(p, —P3)+T2k3, 4)

which has two pairs of roots ®; and m,. As it was found
earlier [9], the existence of two pairs of roots of dispersion



relation offers the possibility to obtain two pairs of inde-
pendent solutions of the first approximation
— for oy:

Ny = Acos(kx — ),

ny = P00y Ch(khq)+(p1(,01 kp1+kp2 TkS)Sh(kh)A
21

E =E,+E,+E, (10)
where Ei, Eo, E3 are the wave motion energy in half-
space, middle and upper layers, respectively; E is the total
energy of the three-layer system. Wave motion energy is
found by substitution of expressions

of potentials (5)—(6) in formulae (7)—

os(kx —wt), (9), all subsequent calculations are

P,0f performed in the package of symbol-

ic calculations due to awkwardness of

ol = 1exp(k2)Asin(kx—m1t), sub-integral expressions. In the course

k of calculations we take into account

, y that potentials ¢ and ¢} do not

oV = (=p®; +k(p, = p,) + Tk )ch(k(h, - 2)) + have a common perlod, sincej oy and oy

P, kch(kh,) are not, generally speaking, rational

0.0 h(F )+ (—0.00° + B0, — 0.+ T E Ysh( kb Nsh(k . numbers, sufficiently large values of the

+( o0 ch(kh,) + (=P, ;;m/e(:li(klz; 1 Jsh(kh,))sh(ke) Asin(kx-wt), (5) length of the integration section t are
251

used when calculating integral by ¢.
The formulae (7)—(10) give an es-
timate of the total energy and its com-

(p(1) _ (_pz(‘)?Ch(khz)"' (_p1(0f + k(p1 —Py)+ T1k3 )Sh(khz))Ch(k(hQ + hs -2)) %
31
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@) _

Beos(kx —,t),

Bsin(kx —0,t),

ponents based on solutions of the first
approximation; their analysis is repre-
sented in chapter 6.

6. Analysis of wave motion energy
based on solutions of the first
approximation

6. 1. Wave motion energy in limit
cases of the studied system

We will start the study of energy
characteristics of the system “liquid
half-space — layer —layer with a rigid
lid” with consideration of two limit
cases, in which a three-layer system de-
generates in a two-layer system “liquid

(6)

Dy

xBsin(kx — 0,t),

@ _ 0,ch(k(h,+h,-2)) , . _
o = sh(kh) Bsin(kx —@,t),

(1) (1)

where n; is the wave-response to wave m\, with frequency
®; and amphtude A that propagates on the lower contact
surface; n{» is the wave-response to wave 15> with fre-
quency » and amplitude B that propagates on the upper
contact surface.

Energy, transferred on the upper and lower contact sur-
faces by internal waves, will be studied according to [11]. We
will consider energy, transferred within period t by two-di-
mensional progressive waves, assigned by solutions (5) and
(6), through the plane x=const. Then the formulae are used

4T

E =t J dr I8(@&?+<p§f))8(<p‘“+<p§?) &,

7
ot ox @
f dr f 8(@2? + tpé?) APy +05) 4, ®)
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k(p,0ch(kh,) +(p,w; — kp, + kp, =Tk*)sh(kh,))ch(kh,) ~ kch(kh,)

cozsh(kz)] y

half-space — layer with a rigid lid”. The
obtained results will be compared with
calculation of energy, transferred by
waves in the hydrodynamic system “liquid half-space —layer
with a rigid 1id”, which was performed in [12]. Solutions to
this problem in a linear statement take the following form

C=2C cos(kx — wt),

_ 20Csin(kx - ot )e”
17 y
k

()

_ 20Csin(ky —wt)cosh(k(h- z))
.= ksinh(kh)

Energy, transferred by the waves in the mentioned
two-layer system, is calculated as follows

8(<p1) (9, , _ 210’ A
jdt j S A== (12)
J’ tJ'a((PQ)a(q)Q)d _
/ ox
_2mo ((:osh(khz)smh(/ehQ)+/ehQ)A2 (13)

k?sinh®(kh,) ’



Ec = E1(: + EZC’

(14)

The first limit case of degeneration of a three-layer
system “liquid half-space — layer — layer with a rigid lid”
in a two-layer system occurs on condition of equality of
two layers py=p3=0.9, in this case the amplitude of the
upper internal progressive wave B=0. In this case, we
have the layer of fluid, bounded from above by the rigid lid
and liquid half-space below it with the contact surface 1.
Fig. 2, a shows dependence Ey, Es, E3, E; and E, on thick-
ness of the upper layer for the following parameters: £=0.1,
Ti=T,=0, hy=1, amplitude of the lower internal progressive
wave A=0.1.

As it is noticeable in Fig. 2, at an increase in thickness of
the upper layer, energy E{, which is transferred on the half-
space, increases. At the same time, energy of the middle layer
E, falls to some level. Energy of the upper layer E3 increases
to its maximum value with an increase in thickness of the
upper layer hs, and at further increase falls to its limit value.
We will note that case h3€[—1, 0] is of a purely theoretical
nature, where components of energy gain conditional values.
As it can be seen from the diagram, total energy of system
E; coincides with the energy of the corresponding two-layer
system “liquid half-space — layer with a rigid lid” E, with
thickness of the upper layer A=hy+hs. Similar coincidence of
the diagrams in the final case proves physical accuracy of the
obtained results.

0.009
0.008 -
0.007 |

The second limit case of degeneration of a three-layer
system “liquid half-space — layer —layer with a rigid lid”
in a two-layer system occurs on condition of equality of
density of two lower layers p;=ps=1. In this case, we have a
liquid layer of thickness &3, bounded from above by the lid,
and half-space, between which there is the contact surface
n. Fig. 2, b shows dependence Ey, E5, E3, Es and E, on
thickness of the upper layer for the following parameters:
k=0.1, T\=T»,=0, hy=1, A=0, B=0.1. Similarly to the first
limit case, wave motion energy of half-space E; increases
at an increase in thickness of the upper layer. Energy of
the upper layer E3 also is ascending in character for small
values of thickness %3, but at an increase it starts falling
to a certain limit value. A significant difference between
the two limit cases lies in dependence of energy of the
middle layer E5 on thickness of the upper layer. In the
second case, energy of the middle layer does not decrease,
but rather increases to the level close to that observed in
the first case. We will note that in the second limit case,
total energy of system E, coincides with energy of system
E., which proves that physical accuracy of results for a
three-layer system.

6. 2. Analysis of dependence of wave energy on wave
number

Fig. 3 shows dependence of Ej, Es, E3, the sum Eg on
wave number k at different values of thickness of the upper
layer h3=10, h3=3, h3=1 for the following parameters of the
system

p1=1, p2=O.9, p3=0.8, T1=T2:0, /’l2:1, A=0.1, B=0.05.
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b Fig. 3. Diagram of dependence of wave motion energy on wave number

Fig. 2. Diagram of dependence £;, £, £3, Es and
E. on thickness of the upper layer hs: @ — first
degenerated case; b — second degenerated case

k at different values of thickness of the upper layer: a — wave motion
energy in half-space £7; b — energy of the middle layer £,; ¢ — energy of

the upper layer £3; d — total energy of system E;



Fig. 3, a shows that at an increase in the value of wave
number, the value of wave motion energy in half-space E;
first increases to the maximum value and after reaching it
quickly decreases to a certain limit value. Such dependence
is observed in the region of small wave numbers (for long
waves) for each thickness of the upper layer hs, in this case,
the higher hs, the higher the maximum value E;. We will
note that for large wave numbers (for short waves), half-
space energy hardly depends on thickness of the upper layer.

Fig. 3, b shows the diagram of dependence of energy of the
middle layer E5 on wave number & at different values of thick-
ness of the upper layer A3. Fig. 3 shows that at an increase in the
value of wave number k, the value of energy of the middle layer
is descending in character and quickly enough converge to a
specific limit value. That is, for short waves, energy of the mid-
dle layer almost does not depend on thickness of the upper layer.
Fig. 3 shows that dependence of energy of the upper layer E3 on
wave number k at different values of thickness of this layer A3
also has a descending character and on certain intervals of the
diagram does not depend on the value of its thickness.

The total energy of the three-layer system E; (Fig. 3, d)
decreases at an increase in the value of wave number &, and,
as it can be seen from the diagram, for large values, & does
not depend on the value of thickness of the upper layer /3.

6. 3. Analysis of dependence of energy of waves of
different length on thickness of the upper layer

In this chapter, we will consider three cases of depen-
dence of energy of waves of different length on thickness of
the upper layer at different amplitudes A and B of progressive
waves on the lower and upper contact surfaces, respectively:

1) A£0, B=0;

2) A=0, B#0;

mum value and starts
values of wave number

falling to the limit value. At other
(k=0.1, k=1, k=2), dependence of en-

ergy on thickness of the upper layer has a weakly descend-
ing character and converges to its limit value quite quickly.

0.0015
0.0010+
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0.00057
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0- . : ‘
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Fig. 4. Diagram of dependence of total energy of system £
on thickness of the upper layer A5 at different values of wave

number k

3) We will consider a three-layer system on condition of
simultaneous passage of a progressive wave with amplitude
B#0 on the upper contact surface and passage of a progres-
sive wave with amplitude A#0 on the lower contact surface.

Consider dependence E; (Fig. 6) on thickness of the up-
per layer for different wave numbers £=0.01, k=0.1, k=1, k=2
and the following parameters of the system: p;=1, p»=0.9,
p3:0.8, T1:T2=0, h2:1, AZO.L B=0.05.

0.0015

3) A£0, B#0.

1) We will consider a three-layer system on
condition of passage of a progressive wave with
amplitude A#0 on the lower contact surface in
the absence of a progressive wave on the upper
contact surface.

Fig. 4 shows dependence of energy E; on
thickness of the upper layer hs at different val-
ues of wave number £=0.01, k=0.1, k=1, k=2 for
the following parameters of the system: p;=1,

0.0010

0.0005

k=1 k=2

p2=0.9, p3=0.8, T1=T,=0, hy=1, wave amplitude

on the lower contact surface A=0.1 and on the !
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upper one B=0.

As the diagram shows, the total energy of
system E; (Fig. 4) is descending in character at
an increase in thickness of the upper layer and

Fig. 5. Dependence of energy of system £ on thickness of the upper layer

h3 at different values of wave number &

for long waves has a larger value compared with 0.0025 0003
short waves. % ' m
2) We will consider a three-layer system on 0.0024, i
conditions of passage of a progressive wave with N k=01
amplitude B#0 on the upper contact surface, pro- 0.00151 I |
vided there is no progressive wave on the lower |Es E, ' /](:0'1
contact surface, i. e. A=0. 0.0011 i
Fig. 5 shows dependence of total energy Eg k=1 0.001 el
on thickness of the upper layer hs at different 0.00054 —
values of wave number £=0.01, 2=0.1, k=1, k=2 \
for the following parameters of the system: p;=1, ol 0 k=2
p2=0.9, p3=0.8, T;=T»=0, hy=1, amplitude of the 1 2 3 4 sh 6 7 8 9 10 200 60 1?]? 140 180
3

upper internal progressive wave B=0.05. Total
energy of the system for a small value of wave
number (k=0.01) increases, reaches the maxi-

Fig. 6. Diagram of dependence of energy £ on thickness of the upper
layer h5 at different values of wave number k



Fig. 6 shows the total energy of the system, which in-
creases at an increase in thickness /13 for a small wave number
(k=0.01), reaches maximum value and begins falling to the
limit value. At the same time, for larger values of wave num-
ber, the total energy of the system rather quickly falls to its
limit value.

We should note that in this specific case of propagation
of progressive waves along both contact surfaces, total ener-
gy of the system is close to the sum of energies of the system
in cases, in which a wave does not propagate on one of the
contact surfaces.

7. Discussion of results of the study of wave processes in
a three-layer hydrodynamic system

The study of energy characteristics of a three-layer hy-
drodynamic system “liquid half-space — layer —layer with a
rigid lid” was conducted within the framework of a weakly
non-linear model, specifically, in its first approximation.

The main attention was paid to the study of the influence
of different physical and geometrical parameters both on the
total energy of the system and the energy of separate layers.
Research into reciprocal influence of changes of physical
and geometrical parameters of the system on energy charac-
teristics allows us to assess qualitatively and quantitatively
energy processes in each layer separately and in the system
in general. The obtained results essentially complement and
enrich the picture of the wave process, which was presented
in detail in the previous studies. To prove physical reliability
and to test the computer program in the package of symbolic
computation, two systems, degenerated to a two-layer sys-
tem “liquid half-space — layer —layer with a rigid lid”, were
explored. In both cases the obtained results coincided with
the results of the test problems. Practical application of the
obtained results involves studying energy characteristics of
wave processes in the ocean with the layer structure in the
presence of the ice cap. As it is known, such phenomena oc-
cur at mouths of rivers, as well as in the open ocean in areas
adjacent to a thermal wedge. The advantage of this study is
the consistent study of energy characteristics for dispersion
relations between physical and geometrical parameters of
the hydrodynamic system “liquid half-space — layer —layer
with a rigid 1id”. In particular, it is important in the cases of
absence of progressive waves on one of the contact surfaces
and simultaneous passage of waves on both contact surfaces,
since it makes possible to reveal the peculiarities of propaga-
tion of energy of progressive waves both taken separately and
in interaction. A natural extension of this research should be
obtaining and studying higher approximations of a weakly
non-linear problem with subsequent deriving evolutionary
equations of envelopes of wave packets on the contact sur-
faces and plotting the diagrams of modulation stability. In

terms of continuation of the study of energy characteristics
of a three-layer “liquid half-space — layer — layer with a rigid
lid”, it is necessary to obtain estimation of the energy con-
tribution of higher harmonics. The obtained results can be
compared with the known data for a two-layer system and
energy pumping in a wave packet can be explored.

8. Conclusions

1. We obtained the relations for quantitative and quali-
tative evaluation of energy of three layers of fluid and total
energy of a hydrodynamic system “liquid half-space — layer —
layer with a rigid 1id” in the form of integrals for time and
vertical space variable over product of derivatives of po-
tentials of velocities by time and horizontal space variable.
Symbolic transformations and related calculations were
performed in the software package.

2. It was found that energy of the middle and upper layer
of a three-layer hydrodynamic system is descending in char-
acter at an increase in the value of wave number k and con-
verges fast enough to a certain limit value, which for short
waves does not depend on thickness of the upper layer. At the
same time, energy of the lower layer increases to a certain
value, and after reaching the maximum quite quickly falls to
its limit value. In this case, the energy of the system, which
is the sum of energies of three layers, also is descending in
character and fast enough converges to its limit value.

3. An analysis of the influence of geometrical parameters
of the system on energy characteristics of the system showed:

—if the amplitude of a progressive wave on the upper
contact surface is equal to zero and the amplitude of a pro-
gressive wave on the lower contact surface is different from
zero, energy of the system is descending in character at an
increase in thickness of the upper layer and has a higher val-
ue for long waves in comparison with short waves;

— if the amplitude of a progressive wave on the lower con-
tact surface is equal to zero and the amplitude of a progres-
sive wave on the upper contact surface is different from zero,
the total energy reaches maximum values for some values of
thickness of the upper layer and tends to its limit value at an
increase in thickness of the upper layer;

—if both amplitudes of progressive waves on the upper
and the lower contact surfaces are different from zero, the
total energy of the system from thickness of the upper layer
also has maximum values, and at an increase in thickness
of the upper layer falls and tends to the limit value. At the
same time, for short waves, the total energy of the system is
descending in character and rather quickly falls to its limit
value. We will note that in the case of non-zero amplitudes
of waves on both contact surfaces, the total energy of the
system is close to the sum of energies of the system in the two
above mentioned cases.
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1. Introduction

Acoustic locators (sodars) are important sources of
information about velocity, wind direction and the degree
of turbulence of air masses at altitudes of up to 1 km.
Information of sodars is widely used for studies of the at-
mosphere [1-3], local and global weather forecasts [4, 5],
air traffic control services [1, 6], for monitoring the at-
mosphere at wind farms [7—10], near potential sources of
hazardous emissions [1], etc.

As a rule, monostatic three-beam sodars with one
vertical beam and two beams, deviated from the ver-
tical by 20...30° in mutually perpendicular directions
are used [1, 2, 5-10]. The range to scattering volume is

determined by the time of an echo signal delay, and wind
projection onto the direction of sounding is determined
by the Doppler frequency shift. Turbulence intensity is
estimated by the power of a return signal and the width
of the Doppler spectrum. The general tendency of so-
dars improvement is to increase reliability and operative
measurements [1—10]. This is especially important when
detecting hazardous meteorological phenomena, for ex-
ample, in the aircraft takeoff-landing area [6]. Taking
into consideration the increasing requirements for mea-
surement accuracy and temporal resolution of sodars,
the relevant task is to improve the methods for obtain-
ing meteorological information from parameters of echo
signals.




