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1. Introduction It is assumed that a set of points Q is defined implicitly
if a logical predicate S(P) such that Q={P: S(P)=true} is

Modeling of many natural and technical objects is asso-  defined for each point P=(x, y, z). The simplest form of such
ciated with the need to describe their shape in the form of  a predicate is the restriction to the sign of some real function
mathematical relations. A very common way of determining  in the form of the inequality F(P)>0. For example, the func-
the set of points belonging to some object is to use implicit  tion sphere(x, y, z)=r>—x?—y?—2z% is greater than zero at the
mathematical functions. points of the domain limited by a sphere of radius r centered




at the origin, equal to zero on the boundary of this domain
and less than zero at exterior points.

Implicit functions can be constructed step-by-step using
set-theoretic operations (negation, disjunction, conjunction).
Such operations are implemented in the form of systems of
R-functions [1, 2]. In most cases, a system of R-functions is
used in practice to construct F [2]

~h==/
TV LERHLANL L, M
hnly= kit =R+ 1

where f1 and f5 are the values of implicit functions.

Thus, the implicit function corresponding to a body in
the shape of a sphere of radius 1.0 centered at the origin with
a circular cylindrical hole of radius 0.5 with generatrices par-
allel to Oz (Fig. 1) can be defined by the formula

w1(x,y,z):(1—x2—y2—22)/\—|(0,25—x2—y2). 2)

A—_—
N L
0.38111
0.338764
0.296419
0.254073
0.211728
0.169382
O —————
0.084691
0.0423454 '
] ’ 4

c

Fig. 1. Sphere with a circular cylindrical hole: a — general
view; b — surface constructed by the marching cubes
method; ¢ — distribution of the values of the function (2) in
the plane section x=0

At the same time, in the problems of computer graphics
and numerical analysis, it becomes necessary to construct
meshes of the boundaries of the objects under study. The
use of existing methods [3—5] for generating meshes of
the boundaries of implicit functions can lead to an in-
accurate approximation of the boundary near features
(holes, breaks, etc.). The increase in the number of nodes
and elements in such areas allows achieving acceptable
results in terms of visualization, but leads to a significant
growth in the number of unknowns if the models are used
in numerical analysis. As a result, it is important to de-
velop methods for improving meshes of the boundaries of
geometric objects that do not require an increase in the
number of nodes.

2. Literature review and problem statement

The marching cubes method [3] is one of the first and
at the same time very popular algorithms for triangulation
of the boundaries of geometric objects defined by implicit
functions. This method uses a regular grid, at the tops of
cells of which the values of the implicit function define a set
of triangles (one of 16 possible templates) approximating
the section of the boundary. Its main disadvantages are
topological ambiguity, the presence of triangles with very
sharp angles and rough approximation of features (Fig. 1, b).
To eliminate cases of topological ambiguity of the marching
cubes method, it has been proposed in [4] to use bilinear in-
terpolation and the number of templates has been increased
to 33. In [5, 6], approaches to improving the results of the
marching cubes method using dual meshes [5] or metrics [6]
have been proposed. These approaches consider the devia-
tion of the nodes from the surface and normals of triangles
from the gradients of the implicit function.

In [7], in order to optimize the initial triangulation, it
has been proposed to minimize the energy functional when
searching for the positions of nodes and decreasing their
number. In [8], it has been suggested to use implicit surface
interpolation together with the energy functional.

A more accurate representation of singularities can be
obtained using adaptive meshes. In [9], it has been pro-
posed to use hierarchical structures (octrees) to increase
the number of nodes in regions with the greatest surface
curvature. The use of hierarchical structures for mesh
improvement in the adaptive finite element analysis has
been shown in [10]. In [11], features of implementation of
hierarchical structures to improve models using a graphic
processor have been considered.

An alternative to scanning a region with volume ele-
ments (hexahedra or tetrahedra) is scanning of the surface
with flat elements. Thus, in the marching triangles method,
the surface is filled with triangles, starting from an arbitrary
point of it. In [12], schemes for scanning implicit surfaces
by triangles, which allow generating adaptive meshes have
been given.

In [13], it has been proposed to use the Delaunay crite-
rion with constraints in the generation or improvement of
the coordinates of the vertices of triangles on the surface.

n [14], the scheme with the Delaunay criterion has been
applied for adaptive triangulation of surfaces with allowance
for materials (composite objects).

In [15], an approach to the search for surface singulari-
ties based on segmentation and clustering, when optimizing
the meshes of triangular elements has been proposed. To
solve a similar problem, it has been proposed in [16] to use
semantic optimization.

The analysis of the results of the above studies allows
concluding that the existing methods solve the problem
of mesh improvement mainly in relation to triangles. The
approaches and methods proposed in [6—10, 13, 14] require
the insertion of new nodes into a mesh, which makes it prac-
tically impossible to use them for quadrilaterals. The use of
hierarchical structures according to the scheme proposed in
[11] allows achieving an acceptable quality. However, this
will significantly increase the number of nodes and elements,
which will lead to an increase in the dimensionality of the
problem (for example, in applications to finite element anal-
ysis). Segmentation and clustering [14, 15] allow identifying



areas with geometric singularities, but also require the in-
sertion of additional nodes. Thus, effective approaches to the
improvement of meshes based on quadrangles have not been
identified in the works published at the moment.

3. The aim and objectives of the study

The aim of the paper is to develop an approach to improv-
ing meshes of implicitly defined geometric objects. This will
allow improving the quality of approximation of singulari-
ties of geometric objects. In the final result, the accuracy of
visualization and numerical solutions based on meshes will
increase.

To achieve the aim, it is necessary to accomplish the
following objectives:

— to develop a functional criterion for selecting the most
suitable coordinates of nodes on the surface;

— to develop an algorithm of improving surface meshes of
geometric objects defined by implicit functions.

4. Approach to improving surface meshes of implicitly
defined geometric objects

Let some three-dimensional geometric object Q be de-
fined by the implicit function F(x, y, z), which is greater than
zero at interior points of Q, equal to zero on the boundary
of Q and less than zero at exterior points of Q. Suppose that
the mesh M is constructed for the boundary of Q. Intuitive-
ly, the mesh of the boundary of a three-dimensional object
is a piecewise linear surface consisting of polygonal faces
connected along their edges. Formally, the surface mesh is a
pair of sets of the form

M=(V,E), ®3)
where

V:{U1:(‘X1y Y1, 21)7 02:(x2v y27 ZQ)y---v Um:(xmr Ym, Zm)}

is the set of node coordinates;

E={61=(k111,..., k1_n), 622(/32,1,..., kQYn),..A, eq=(kq,1,..., qun)}

is the set n-gonal (n>3) elements — tuples of node numbers
from the set V determining the position of the vertices of
the element; m is the number of nodes; ¢ is the number of
elements.

Further, the following notations are used: M[k] — the
radius vector to the node with the number & from the set
V of the mesh M; M.adjacent(k) — the set of node numbers
from V that have a common edge with v,eV; M.inci-
dent(k) — the set of numbers of elements from E incident
at the node vp; M(7) — the tuple with the number i (element
e;€E); M(i,j) — the node number in the j-th vertex of the
element e;.

4. 1. Distance-length functional

One of the most widely used and at the same time simple
methods of mesh improvement is local Laplacian smoothing
[10]. It moves each node to the geometric center of the poly-
gon formed by adjacent nodes (Fig. 2). This smoothing is
traditionally applied several times.
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Fig. 2. Laplacian smoothing for a fragment of a plane mesh
of triangles: a —original mesh; b — distribution of the values
of the function (5); ¢ — the result of smoothing

In Laplacian smoothing, each edge connected to the
central node can be considered as a spring with initial zero
length [7]. The sum of the forces acting at the i-th node of the
mesh M is defined by the formula

F = KZ(

where k is the spring stiffness; A=M.adjacent (7).
The potential energy of the spring system

|-M[i]), 4)

£, = X [MlE-Mi )

The equilibrium point of the spring system corresponds
to a minimum of the potential energy.

The formula (5) in the three-dimensional case can be
written in the form

E =53 () + (o

keA

-u) +(z-2)') (6)

By differentiating and equating to zero, we obtain

1
=_Zxk’ Y= | zykr Z= | Zkv )

X
|A keA keA keA

where |A] is the number of adjacent vertices (elements in the
set A).

The result is a simple and very efficient procedure from a
computing point of view. Its application for surface meshes re-
quires a search of the projection of a new position of a point onto
the boundary of the domain. Multiple iterative application of
such smoothing tends to provide equal length to the sides of the
elements. However, the lack of information about the accuracy
of approximation leads to destroyed surface features (Fig. 3).
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Fig. 3. Result of Laplacian smoothing of surface meshes
defined by the formula (2): @ — triangle; b — quadrangles

We consider the energy function of the form

E = K%"M[k]—M[i]"z +

+Z||Cq - projection(Cq,F(x, Y, z))"z , (®)

qel

where I=M.incident() is the set of numbers of elements inci-
dent at the node with the number i;

¢, = M[M(q.))]

Jj=1

is the center of mass of the element with the number g; pro-
jection(C,, F(x, y, 2)) is the projection of the point C, onto
the surface defined by the function F(x, y, 2).

The first term in (8) guarantees the existence of a mini-
mum [7]. The choice of the second term is made from the fol-

algorithm local minimum

lowing assumption. Each flat element of a mesh can be con-
sidered as an approximation of a part of the surface (Fig. 4),
and the distance from the center of the element to the surface
is an indicator of the accuracy of such approximation.

projection(CA,F(x,y,Z))
F(x,y,z)=0

MM (k,3)]

M[M (k1) =3 MMk, /]

MM (k,2)]

Fig. 4. Approximation of a part of the surface by a triangle

When calculating the value of the formula (8), the
search for the projection of a point onto the surface can
be carried out in the direction of a gradient (for exteri-
or points) or anti-gradient (for interior points). The use
of the side lengths of elements and distances from the
centers of elements to the surface determines the name
“distance-length functional”.

4. 2. Algorithm of search for a minimum of the dis-
tance-length functional

It is impossible to find an analytic expression for the
minimum point of the functional (8), as it is done in the
formulas (6), (7), due to the implicitness and, as a rule,
the nonlinearity of the function F(x, y, z). For a numerical
search for a minimum, one can use a modification of the
Gaussian method formalized in the form of the following
algorithm.

input:
F(x, y, z) — the function representing a geometric object;
M - the surface mesh, defined by the function F(x, y, z);
i — the number of the node for optimization;
k — spring stiffness;
¢ — the accuracy of the method;
output:
M - surface mesh
begin
A« M.adjacent(i);
I=M.incident(i)
for each kin A do
Py < M[i}
[<0,1;
2
f, K;"M[k] -M [z]||2 i ZHCq - projection(Cq , F(x,y,z))" ,
do A gel
M[i]« projection((i -)M[i]+ lM[k],F(x,y,z));
2
fie KkZHM[k] -M [z]"2 i Z"Cq - projection(Cq , F(x,y,z))" :
A gel
if f,</, then
M[i]« P;
h« ﬁ;
else 2
By < M[i}
endif
while 7>¢
endfor
end



The search is carried out in the /-coordinates of the poly-
gon formed by the nodes adjacent to the i-th nodes. Descent
is performed on each of the [-coordinates, while the objective
function decreases. An adaptive step is used: in each direc-
tion, starting with a step whose value is empirically assumed
to be 0.1, if the objective function ceases to decrease, then
the step is halved.

The application of the local algorithm to each node of a
mesh can be regarded as an iterative approximation to the min-
imum of the functional (8) in the global statement. As a result,
we obtain the following algorithm of mesh improvement.

algorithm boundary refinement

input:
F(x, y, z) — the function representing a geometric object;
M - the surface mesh, defined by the function F(x, y, 2);
K — spring stiffness;
¢ — the accuracy of the method;
output:
M - surface mesh
begin L
for each i= 1,|V| do
local minimum(F(x, y, 2), M, i, x, €);
endfor
end

By analogy with Laplacian smoothing, the boundary
refinement algorithm should be applied several times. More-
over, methods of improving meshes based on topological
changes (for example, flip [5, 14] for triangles) can addition-
ally be used in each iteration.
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5. Results of local minimization of the distance-length
functional for surface mesh improvement

Consider the results of applying the local algorithm
for improving the positions of nodes, based on minimizing
the distance-length functional, in order to improve the
surface mesh defined by the function (2). The original
model is shown in Fig. 1, b. Fig. 5 shows the results of
applying the proposed algorithm for k=103 and £=10-5.
The color of the element shows the value of the smallest
angle in degrees (it is assumed that the larger the mini-
mum angle, the better the model). It can be
noted that, starting with four iterations, the
surface break near the hole is approximated
by the nodes and edges of the elements, but
at the same time sharp (less than 10 degrees)
angles remain.

The proposed algorithm can also be used
to improve the meshes of quadrilateral ele-
ments. Fig. 6, a shows the original mesh, as
well as the results of applying the proposed
algorithm for k=102 and e=10-6 (Fig. 6, b—f).
The color of the element shows the value of
the largest angle in degrees (in the case of
quadrilaterals, the larger the maximum an-
gle, the closer it is to the degenerate element).
As in the case of triangles, starting with four
iterations, the surface break near the hole is
approximated by the nodes and edges of the
elements, but the elements close in shape to
triangles remain.
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Fig. 5. Application of local minimization of the distance-length functional to
improve the model of a sphere with a circular hole (triangles):
a— 1iteration; b — 2 iterations; ¢ — 4 iterations; d — 8 iterations; e — 16 iterations
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The function

cube(xy,z)= ([(1 —x? ) A (1 - yz) A (1 - 22)] v (0,25 —xt- 22)) A

A(025-2* - y*) A=(025- y* - ), )

corresponds to the model of a cube (Fig. 8) with two circular
holes (generatrices parallel to Ox and Oz) and cylindrical
handles with generatrices parallel to Oy. The side of the cube
is 2.0; the radiuses of the holes and handles — 0.5; the length
of the handles is 1.0.

Fig. 8, a shows the original mesh of triangular elements,
as well as the results of applying the local minimization
algorithm of the distance-length functional for k=102 and
=10 (Fig. 8, b—d). Similarly, Fig. 9 shows the results for
improving the mesh of quadrilateral elements (Fig. 9, a—d).

The proposed algorithm can be applied to the improve-
ment of models of smooth surfaces. For example, for the
surface “genus3” [12], which can be defined by the formula

J:Z élz
— 4_2
genus3(xy,z)=—-r'z" +| 1-=—= [x
o

x((x—x1)2 +y? —7/12)((x+x1)2 +y’ —rf)(x2 +y’ —7’12), (10)

with the parameter values
r,=60, r,= 3,5, r,=4, =12 and x,=3.9,

the results of mesh improvement (k=10"2 and e=10-6) are
shown in Fig. 10.

8.51217
2.11104

a b

Fig. 10. Application of local minimization of the distance-
length functional to improve the “genus3” model: @ — original
triangular mesh; b — 8 iterations of improving the triangular
mesh; ¢ — original quadrilateral mesh; d — 8 iterations of
improving the quadrilateral mesh

Thus, the application of the proposed algorithm to
smooth surface meshes will lead to an increase in the number
of nodes in regions with the greatest curvature.

6. Discussion of the results of application of local
minimization of the distance-length functional for surface
mesh smoothing

The obtained results of modeling surfaces of geometric
objects (Fig. 5-10), defined by implicit functions, show
that the proposed approach to local minimization of the
distance-length functional allows improving the accuracy of
meshes near features (surface breaks).
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Fig. 8. Application of local minimization of the distance-length functional to improve the “cube” (triangles) model:
a — original mesh; b — 4 iterations; ¢ — 8 iterations; d — 16 iterations
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Fig. 9. Application of local minimization of the distance-length functional to improve the “cube” (quadrilateral) model:
a — original mesh; b — 4 iterations; ¢ — 8 iterations; d — 16 iterations




The accuracy of the approximation of features depends
on the stiffness parameter of the edges of the elements of the
original mesh, as shown in Fig. 7.

The advantage of the proposed approach is that (unlike
the results of [6—10]) it can be applied to both triangles and
quadrangles, and also does not require the insertion of addi-
tional nodes and elements.

It should be noted that this approach to mesh improvement
does not consider quality metrics (minimum or maximum
angles, aspect ratios). As a result, the possibility of obtaining
models with very sharp or obtuse angles can be indicated as
a drawback. Also, as can be seen from Fig. 6, 9, quadrangles
similar in shape to triangles (one of the angles is greater than
160 degrees) can be obtained near surface breaks, which cannot
be eliminated without additional topological modification.

The results of the work can be applied when implement-
ing the module for mesh improvement in computer-aided
engineering based on numerical methods. For example, in
the finite and boundary element methods, a more accurate
representation of the geometric singularities of objects al-
lows improving the quality of the models.

The proposed approach can be used in common with the
scheme of local smoothing proposed by the authors in [17] for
internal nodes of meshes of objects. As a result, a single proce-
dure for all nodes of the model of a three-dimensional object
based on spatial elements (for example, tetrahedra or hexahe-
drons) can be formed. The prospect of further improvement
is the consideration of metrics of the quality of elements while
minimizing the functional. For example, the addition of algo-
rithms for local topological modification of elements will allow
controlling the values of angles and aspect ratios in elements.

7. Conclusions

1. The proposed approach to smoothing meshes of im-
plicitly defined surfaces, based on local minimization of the
distance-length functional, allows improving the accuracy
of the approximation of singularities. At the same time, for
the numerical implementation of the search for a minimum,
a modification of the Gaussian method for the case of
search in /-coordinates is proposed. As a result of applying
the approach, minimum angles for triangles increase from
2 to 12-16 degrees, while the boundary singularities are
more qualitatively represented.

2. For best results, the proposed approach should be
applied consistently several times, due to the local nature
of the minimum search procedure. The studies have shown
that with a small number of iterations (less than 4), poor
quality meshes are obtained. Starting with the fourth iter-
ation, geometric singularities are already approximated by
the nodes. The subsequent iterations improve the quality
of the mesh by moving the nodes along singularities. When
performing more than eight iterations, the results do not
change significantly.
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Pozensanymo 3adauy cmpyxmypuszauii pynoeux excnepmuux
OUiHOK, chopmoBaHux 6 ymoseax HeeusHaueHocmi pizHoi npu-
poou i Hasenocmi KOHDAIKMYyIOUUX eKcnepmHUxX ceidoume.
3anpononosano Memoouxy azpesyeéanHs zpYnoGUX eKCREPMHUX
OUTHOK, WO POPMYIOMBC 8 YMOBAX PI3HUX 6U0I6 HeGUHAUEHOCMI,
AaKaA 00360A€ CUHMEIYEAMU 2PYNOGE PIMEHHS 3 YPAXYBAHHAM Pi3-
Hux (popm npedcmasnenns excnepmnux nepeeaz (inmepeanvii,
HewimKi, mouKoei excnepmui oyinku) . 3anpononosana npoueoypa
0036015€ cCuHmMe3y8amu epynose piuleHHs Y pasi, AKu0 6 epyni exc-
nepmie € epyna abdo dexinvka epyn excnepmis, AKi 6UCT06II0I0Mb
c60i nepesazu 3 BUKOPUCMAHHAM PIZHUX POpM nodanns excnepm-
HOi iHopmauii.

Taxuil niodxio 0036019€ MAKCUMANLHO MOUHO 6i000pacamu
excnepmui nepesazu w000 anaaizoeamnozo 00’ckma, e 0oMmedHcyIo-
YU excnepmis HoPCmKo010 QGopmoro nodanns OUiHoK.

Jna ananizy ompumanoi excnepmnoi ingpopmauii, ma ompu-
MaHHA THOUGIOYANLHUX EKCNEPMHUX PAHICYBAHL AHANIZ0BAHUX
06’cxmie, 6 pobomi euxKopucmaHuii Memoo NAPHUX NOPIEHAHb i
1020 mooudixauii.

Bcmanoeneno, wo 0 azpezyéanHs mMouKOSUX eKCNEPMHUX
OUIHOK, Oivl MOUHI pe3yiomamu KoOMOTHYEAHHA MONHCYMb Oymu
ompumani Ha 0CHOGL 3ACMOCYEAHHS NPABUT NEPEPOINOOINY KOH-
Qaixmie meopii npaedonodionux i napadoxcarvHuUx MipKyeaus.
Jlna azpesysanns inmepeanvHux eKCnepmuux ouiHoK peKxomeHoy-
e€mbes 3acmocosyeamu 00He 3 NPAGUNL KOMOIHYEanns meopii cei-
douyme. Bcmanosneno, wo 0 nidsumenns AKocmi pe3yiomamie
KOMOTHY8aHHA 00UINbHO 6UIHAMAMU NOPAOOK KOMOIHYBAHNA eKC-
nepmuux ceéidoume, Hanpuxaad, epaxo8youu Mipy eiominnocmi i
CMpyKmypy excnepmuux céidoymas.

O0eporcani pesyaomamu NOKIUKAHT CRPUSIMU NIO0BUWEHHIO KO-
cmi ma epexmuenocmi npoyecié nid20moeKu i NPUUHAMMS piuets
w000 ananizy ma CmpyKkmypusauii epynoeux eKcnepmHux OuiHox

Kntouosi cnosa: excnepmui ouinku, azpeeysanns eKcnepmHux
OUIHOK, MEMOO NAPHUX NOPIEHAND, NPABULA KOMOTHYEANHS
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1. Introduction

In general terms, the technology of structuring group
expert judgments can be presented in the form of successive
steps, Fig. 1. o

A panel of experts E={E,;[j=1¢} is given one and
the same set of options (objects of expertise, alternatives)
A={A |i=1,m} and the same instruction containing infor-
mation as to what type of scorecard in which the experts will
express their preferences will be used. It depends on the type
of information received from the experts (words, conditional
gradations, numbers, rankings, breakdowns or other types of
objects of non-numeric nature).

As a result, a plurality of individual expert judgments
0={0,]i=1t} is formed. The established set of expert
judgments (EJs) enters the block of structuring proce-
dures to perform operations of ranking, clusterization,
and others. The obtained data fall into the block of eval-
uating the results of structuring, which contains a set of
conditions that determines the correctness of the struc-
turization block.

When solving problems of analysing group expert judg-
ments and choosing appropriate methods (Fig. 2), two im-
portant circumstances should be taken into account:

— availability of diverse scales of expert measurements
and a large number of different forms of representing expert




