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1. Introduction

When designing vertical structures, it is necessary to 
consider all possible impacts they may be exposed during 
construction and operation. The majority of these impacts 
have dynamic nature and lead to energy accumulation. The 
amplitude of structural oscillations, as well as the intensity 
of inertial forces gradually increases. This phenomenon is es-
pecially dangerous for high-rise buildings, which are widely 
used in modern construction.

Evaluation of dynamic parameters of the structure can 
be performed on the basis of analysis of such characteristics 
as natural frequencies and mode shapes. When investigating 
the structure in an unloaded state, the values of natural 
frequencies and mode shapes allow concluding about the 
rigidity and operability of the structure, evaluating the cor-
rectness of design solutions. Therefore, the determination 
of these characteristics is an actual scientific and practical 
problem.

2. Literature review and problem statement

A large number of modern publications have been devoted 
to the study of bending oscillations of various structures with 
allowance for the longitudinal force. Thus, in [1] bending 
oscillations of uniform beams under various boundary con-
ditions and axial loads have been studied. The research is 
based on the energy method. Here the empirical formulas that 
allow finding oscillation frequencies without using the finite 
element method have been obtained. The paper [2] deals with 
the case when the axial force takes different constant values 
in different parts of the beam. Each of these parts of the beam 
corresponds to its own differential oscillation equation with 
constant coefficients. The general integrals of these equa-
tions are the basis for the solution of the problem. Here, the 
first three oscillation frequencies for various combinations 
of boundary conditions have been calculated. In [3], based 
on the Euler-Bernoulli hypothesis, free oscillations of beams 
with a set of lumped elements subjected to axial load have 
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Запропоновано метод розрахунку на згиннi коли-
вання вертикальних консольних конструкцiй з ураху-
ванням власної ваги. Метод ґрунтується на точному 
розв’язку вiдповiдного диференцiального рiвняння коли-
вань в частинних похiдних зi змiнними коефiцiєнтами. В 
аналiтичному виглядi за допомогою безрозмiрних фунда-
ментальних функцiй виписанi формули для динамiчних 
параметрiв – перемiщення, кута повороту, згинального 
моменту та поперечної сили, якi повнiстю характеризу-
ють стан стрижня.

У загальному виглядi виписано частотне рiвняння 
та визначено метод пошуку його коренiв. Показано, що 
задача визначення частот власних коливань зводиться 
до знаходження iз частотних рiвнянь вiдповiдних безроз-
мiрних коефiцiєнтiв. Знайденi формули, якими визнача-
ються власнi форми коливань. Виписано алгоритм, який 
дозволяє визначати частоти та форми власних коли-
вань консольних конструкцiй з довiльною наперед зада-
ною точнiстю.

Алгоритм реалiзовано на прикладi наскрiзної стриж-
невої башти. Встановлено, що числовi значення, отри-
манi авторським методом, спiвпадають з результата-
ми, отриманими за допомогою програмного комплексу, 
який реалiзує метод скiнченних елементiв.

Порiвняно з наближеними методами, даний метод 
дозволяє отримати достовiрнiшу картину коливань 
консольних конструкцiй, оскiльки саме точний розв’я-
зок несе в собi iнформацiю якiсного характеру та фор-
мує найбiльш повну картину фiзичного явища, яке роз-
глядається. Завдяки використанню явних аналiтичних 
формул, пiдвищується точнiсть розрахунку на згиннi 
коливання.

Запропонований метод не потребує дискретиза-
цiї конструкцiї та являється реальною альтернати-
вою застосуванню наближених методiв при розв’язаннi 
даного класу задач механiки деформiвного твердого тiла
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been investigated by the finite element method. The authors 
of [4] study oscillations of frame structures taking into 
account the influence of axial load. The load is calculated 
based on the total weight and number of floors of the build-
ing. Natural frequencies of frame structures are obtained by 
solving the differential equation written for an equivalent 
rod whose rigidity and weight must be uniformly distributed 
along the length.

In [5], the influence of the longitudinal force on free 
oscillations of a multi-span Tymoshenko beam with the 
mass-spring system has been studied. Here the solution of 
the problem is based on the general solution of the partial 
differential equation with constant coefficients. The publi-
cation [6] is devoted to an experimental study of the effect 
of axial force on the oscillation frequency of the rod. This 
paper is an attempt to find a connection between theoret-
ical models and the phenomenon, which takes place in the 
real world.

The authors of [7] have calculated natural frequencies 
of the restrained rod with a mass at the end, applied with 
an eccentricity. Herewith, a linearly variable axial force 
representing the own weight of the rod has been consid-
ered. The method of solution is based on the Hamilton’s 
principle. In [8], oscillations of the cantilever column 
under the action of compressive load have been studied. 
The boundary-value problem is formulated on the basis 
of the Hamilton’s principle and Tymoshenko beam theo-
ry. A comparison of the numerical calculations obtained 
with the help of the Tymoshenko beam theory and the 
Euler-Bernoulli model has been carried out. The paper [9] 
deals with the study of bending oscillations of structures 
taking into account the own weight. Here the corre-
sponding partial differential equation of oscillations with 
variable coefficients has been written out. To solve the 
problem, an approximate shape of the deflection curve of 
the cantilever has been adopted.

It is common for these publications that the exact solu-
tions of the corresponding differential oscillation equations 
with variable coefficients are not given anywhere. In all such 
cases, approximate methods are used.

In real structures, longitudinal forces in different sec-
tions take different values. Examples of such structures 
are multi-storey buildings, columns of frame buildings, 
industrial structures (chimneys, water towers, through 
lattice towers), drill strings, wind generator supports, 
antennas, etc.

One of the most common computing schemes for study-
ing bending oscillations of these structures is a vertical can-
tilever rod. An example is a rod with uniform cross-section, 
which is under the influence of the variable longitudinal 
force, represented by its own weight. The mathematical 
model of such a physical phenomenon is a partial differen-
tial equation with variable coefficients [10–12]. Studies of 
bending oscillations of cantilever structures with allowance 
for their own weight, which would be based on the exact 
solution of the corresponding differential equation, have not 
been found. Probably, this is directly related to the mathe-
matical problem consisting in the lack of a universal method 
of direct integration of differential equations with variable 
coefficients.

It is quite clear that the exact solution carries informa-
tion of a qualitative nature and forms the most complete 
picture of the physical phenomenon under consideration. 

However, the variability of the coefficients of the equation 
introduces significant mathematical difficulties in the 
procedure of constructing the exact solution, which, owing 
to the above, has not been known until recently. For ex-
ample, the monograph [12] explicitly states that it is very 
difficult to obtain an exact solution because of the presence 
of variable parameters. This circumstance was one of the 
main reasons forcing researchers to resort to approximate 
methods.

Therefore, development of a method for calculating 
bending oscillations of structures with allowance for their 
own weight based on the exact solution of the correspond-
ing differential equation is promising. This became possible 
after the general integral of the differential equation of rod 
oscillations has been found in [13] and, as a consequence, 
all necessary formulas for the state parameters have been 
written out.

3. The aim and objectives of the study

The aim of the work is to develop a method for calcu-
lating bending oscillations of vertical cantilever structures 
with allowance for their own weight based on the exact 
solution of the oscillation equation.

To achieve the aim, the following objectives were accom-
plished:

– to determine a general view of the frequency equation;
– to obtain analytically the formulas determining natu-

ral frequencies and mode shapes of structures;
– to describe the algorithm for the numerical determi-

nation of natural frequencies and mode shapes of structures;
– to determine natural frequencies and mode shapes of 

the through lattice tower.

4. Fundamental functions and analytical representation of 
the oscillation frequency

Fig. 1 shows the general scheme of oscillations of the 
vertical cantilever rod, and Fig. 2 shows the external and 
internal forces acting on its element.

Fig. 1. Free transverse oscillations of the rod
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Fig. 2. Internal and external forces acting on the rod element

Here the following notations are used:
EI – bending rigidity of the rod;
E – elastic modulus of the material;
I – moment of inertia of the cross-section;
m – intensity of the distributed mass (mass per unit 

length) of the rod;
N(x)=qx – variable longitudinal (compressive) force, 

where q is the mass per unit length of the rod;
y(x, t) – cross motion of the axis point of the rod with the 

coordinate x  at time t (dynamic deflection);
( , )x tϕ  – dynamic angle of rotation;

M(x, t) – dynamic bending moment;
Q(x, t) – dynamic shear force;
f(x, t) – intensity of the inertia forces that arise during 

oscillation (the d’Alembert’s force).
The differential oscillation equation of the rod for this 

case has the form [10–12]

4 2

4 2 0.
y y y

EI q x m
x x x t

∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂
	 (1)

Further calculations are based on the exact solution 
of (1). According to the results of [13], for the dynamic 
state parameters of the rod, the following representations 
take place:

( , ) ( ) ( );y x t v x T t=  ( , ) ( ) ( );x t x T tϕ = ϕ 	 (2)

( , ) ( ) ( );M x t M x T t=  ( , ) ( ) ( ),Q x t Q x T t= 	 (3)

where v(x), ϕ (x), M(x), Q(x) are the amplitude functions 
depending only on the variable x.

These functions are expressed through the dimension-
less fundamental functions ( ),nX x  ( ),nX x�  ( ),nX x

�
 ˆ ( )nX x   

(n=1, 2, 3, 4) by means of the formulas [13]:

1 2
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In turn, ( ),nX x  ( ),nX x�  ( ),nX x
�

 ˆ ( )nX x  (n=1, 2, 3, 4) 
are represented by uniformly convergent series in powers of 
the unknown dimensionless parameter K:

2
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In order to determine the dimensionless coefficients of 
the series (12), (13), the following set of recurrence formulas 
is used:

,0,0

1
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where

, , 4 3 1n k jf n k j= + + - 	 (20)

( 1,2,3,4)( 1,2,3,...)( 1,2,3,...).n k j= = =

The time function has the form

(0)
( ) (0)cos sin ,

.
‒T t T pt

p
T

pt= + 	 (21)

where T(0), 
.
T (0) are the parameters of the initial conditions 

of motion; p is the oscillation frequency of a weighty struc-
ture, for which the analytic representation is obtained [13]

2 .
K EI

p
l m

= 	 (22)

The dimensionless parameter K will further be called the 
oscillation coefficient.

We note that the formulas (2)-(22) given in [13] are 
universal in the sense that they are suitable for calculating 
bending oscillations of the rod under any possible boundary 
conditions.

The implementation of the given boundary conditions 
in each particular case leads to the frequency equation with 
respect to the unknown parameter K. After finding the 
required number of the roots K1, K2, K3, … of the frequency 
equation, according to the formula (22), we will have a range 
of oscillation frequencies of the rod with allowance for its 
own weight

2
j

j

K EI
p

l m
=  ( 1,2,3,...).j = 	 (23)

Thus, the problem of determining the frequencies is re-
duced to finding dimensionless oscillation coefficients.

5. Results of studies of oscillations of cantilever 
structures

The dynamic boundary conditions corresponding to the 
rod, whose lower end is restrained, and the upper end is free, 
have the form:

(0, ) 0;M t =  (0, ) 0;Q t =  ( , ) 0;y l t =  ( , ) 0.l tϕ =

Using the formulas (2), (3), we obtain equivalent bound-
ary conditions in the amplitude form:

(0) 0;M =  (0) 0;Q =  ( ) 0;v l =  ( ) 0.lϕ =

For the implementation of the conditions at the end x=l, 
we use the formulas (4), (5), where we first consider the con-
ditions at the end x=0. As a result, we will have the system 
of equations:

1 2

1 2

( ) (0) ( ) (0) 0;

1
( ) (0) ( ) (0) 0.

X l v lX l

X l v X l
l

+ ϕ =



+ ϕ =
� � 	 (24)

The solvability condition of this system is given by the 
frequency equation

1 2 1 2( ) ( ) ( ) ( ) 0.X l X l X l X l- =� � 	 (25)

Taking into account that the numerical series 1( ),X l  

1( ),X l�  2( ),X l  2( )X l�  converge, and also based on the known 
theorems of mathematical analysis, we conclude that the 
left-hand side of the frequency equation (25) is a convergent 
numerical series. Using (8), (9) and applying the rules for 
the product and the sum of the series, we transform (25) to 
the form

2 4 6
0 1 2 3 ... 0,K K Kh + h + h + h + = 	 (26)

where

0 1,h =  

1, 2, 1, 2,
0
( ( ) ( ) ( ) ( ))

k

k j k j j k j
j

l l l l- -
=

h = b b - b b∑ � �  ( 1, 2, 3,...).k = (27)

When calculating kh (k=1, 2, 3,…), we use the following 
relations, which obviously follow from the formulas (12), 
(13), (15):

1,0 2,0 2,0,0 2,0,
1

( ) 1; ( ) ( 1) ;j j
j

j

l l c c
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l c c
∞

=

b = + - a∑
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j

l f c f c
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=

b = + - a∑�

( 1,2)( 1,2,3,...).n k= =

The equations of the form (26) are often found in me-
chanics. To find solutions of such equations, the method 
of comparing the roots calculated for different numbers of 
retained terms of the series is used [14]. Such an approach 
makes it possible to calculate the roots of an equation with 
any given accuracy.

For the main (natural) mode shapes, we take

( )j j j

x
v x C V

l
 =   

 ( 1,2,3,...),j =

where Cj is the dimensional constant factor; j

x
V

l
 
  

 is the  
 
dimensionless function determining the law of the corre-

sponding mode shape.
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The formula (4) in the case under consideration can be 
presented in the form

1 2( ) (0)( ( ) ( )),v x v X x X x= - z

where (0) (0)l vz = - ϕ  is the dimensionless parameter, for 
which from the first equation of the system (24) we find

1 2( , ) ( , ).X l K X l Kz =  

From this, we conclude that

1 2( ( , ) ( , )),j j j j

x
V X x K X x K

l
  = - z  

 

1 2( , ) ( , )j j jX l K X l Kz =  ( 1,2,3,...),j =

or

2
1, 2,

0

( ( ) ( )),k
j j k j k

k

x
V K x x

l

∞

=

  = b - z b   ∑  

2 2
1, 2,

0 0

( ) ( ).k k
j j k j k

k k

K l K l
∞ ∞

= =

z = b b∑ ∑ 	 (28)

Thus, the algorithm for calculating the bending oscil-
lations of vertical cantilever structures with allowance for 
their own weight is determined by the following sequence 
of operations:

1. For the given physicomechanical characteristics of the 
structure EI, q, l, using the formula (14), we calculate the 
value of the dimensionless parameter α.

2. Using the formula (27), we calculate the coefficients 

kh (k=1, 2, 3, …) and form the frequency equation (26).
3. Using the comparison method, we find the roots of the 

frequency equation.
4. Using the formula (23), we find oscillation frequen-

cies, and by the formula (28), the corresponding laws of the 
fundamental mode shapes of the structure.

Example. Let us investigate bending oscillations of a 
tower made of steel elements (Fig. 3). Similar structures are 
used in various industries and construction: as transmission 
towers, components of drill strings, TV and radio towers, 
bearing elements of industrial buildings.

The tower is a spatial truss frame structure of height-uni-
form square section. The load-bearing columns of the tower 
are made of Ø 245×12 mm round tubes and are interconnect-
ed by the lattice, also made of steel elements. The distance 
between the axes of the columns on one side is 6 m. The 
height of the tower is l=35 m.

To perform calculations, we consider the structure in the 
rod model (Fig. 4).

In order to verify the results, calculations in the 
SCAD computer system in parallel with calculations by 
the author’s method were also performed [15]. SCAD is a 
software system for analyzing structures by the finite ele-
ment method. It is used for calculation of the stress-strain 
state, stability study and solution of problems of statics 
and dynamics.

First, we determine the necessary parameters of the given 
mechanical system. The tower shown in the rod scheme will 
have the following characteristics: EI=2.0601×108 kN/m2; 
I=0.31646 m4; q=2.9 kN/m.

Fig. 3. Scheme of the through lattice structure of the tower

Fig. 4. Design scheme of the rod

We find the dimensionless parameter α by the formu- 
la (14):

⋅
a = =

⋅ ⋅

3

8

2.9 35
0.0019.

2.0601 10 0.31646

For the value α, we calculate the coefficients (27) and 
find the first three roots of the equation (26). As a result, 
we have the oscillation coefficients: K1=3.5162; K2=22.0340; 
K3=61.6968.

After that, according to the formula (23), we calculate 
natural frequencies of the tower, which are presented in Ta-
ble 1. The frequencies obtained as a result of the calculation 
in SCAD are also given there.

Similar calculations were also made for the tower 
height of l=50 m. The corresponding results are given in 
Table 2.

The laws of the fundamental mode shapes of the tower 
are determined by the formula (28).
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Table 1

Comparison of natural frequencies of a 35 m tower 

Frequency, s–1 Author’s 
method

SCAD Error, %

p1 42.6258 42.6220 0.009

p2 267.1139 267.0457 0.026

p3 747.9385 747.5797 0.048

Table 2

Comparison of natural frequencies of a 50 m tower 

Frequency, s-1 Author’s 
method

SCAD Error, %

p1 20.8883 20.8865 0.009

p2 130.8803 130.8887 0.008

p3 366.4856 366.4856 0.0

Fig. 5–7 for the case of l=35 m show the graphs of the 
first three laws of oscillation, constructed in two ways, using 
both the formula (28) and SCAD.

Fig. 5. The law of the mode shape I in the dimensionless 

coordinate system V1 and 
x
l

Fig. 6. The law of the mode shape II in the dimensionless 

coordinate system V2 and 
x
l

As you can see, the graphs constructed in the software 
system almost completely coincide with the graphs con-
structed by the author’s method. Represented in the same 
coordinate system, the graphs visually form a single line.

Fig. 7. The law of the mode shape III in the dimensionless 

coordinate system V3 and 
x
l

6. Discussion of analytical and numerical results of 
studies of oscillations of cantilever structures

The above studies are a logical continuation of the re-
search initiated in [13] and are entirely based on the results 
obtained there. In fact, the idea is the application of the gen-
eral solutions obtained in [13] for the case of oscillations of 
vertical cantilever structures.

Due to the fact that the proposed research method is 
based on the exact solution of the differential equation, it 
allows obtaining information of a qualitative nature and 
forming the most reliable picture of oscillations. At the same 
time, the calculation procedure does not require the discret-
ization of the structure, as is customary with approximate 
methods. Using explicit analytical formulas, the accuracy 
of calculations is increased. The method allows determining 
natural frequencies and mode shapes of cantilever structures 
with any predetermined accuracy.

As can be seen from the above data, the results of calcu-
lations by the author’s method and the finite element method 
by means of the SCAD software system practically coincide. 
This confirms the reliability of calculations by the author’s 
method.

We pay attention to the role of the dimensionless param-
eter α, which is an important characteristic of a mechanical 
system. In particular, as can be seen from the formula (14), 
the value of α=0 will correspond to the case of a design 
scheme in the form of a weightless rod. In this case, the fun-
damental functions (8) degenerate into the known Krylov 
functions [16]. Generally, the larger the parameter α, the 
more the values of the calculated oscillation parameters will 
differ, taking into account the own weight of the structure 
from the values of the similar parameters calculated without 
the own weight.

In general, the results obtained make it possible to sim-
plify the procedure and improve the accuracy of calculations 
of bending oscillations of cantilever structures with allow-
ance for the own weight. This allows designing these me-
chanical systems with the desired properties that are more 
economic at a given level of reliability.

In addition to cantilever structures, structures with 
other ways of end restraint are often found in the industry. 
Therefore, in the future this method can be extended to 
other cases of boundary conditions. The limitations of the 
method include the fact that it is applicable only to struc-
tures with uniform cross-section. To distribute it for the case 
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of structures with variable cross-section, the exact solution 
of the corresponding differential equation is required.

The drawbacks of this work include the fact that it does 
not cover the actual issue of the effect of the magnitude of 
the longitudinal load q on oscillation frequencies of struc-
tures. The authors plan to devote a separate paper to this 
issue, which will become one of the directions for further 
development of this study.

7. Conclusions

1. The research is based on the partial differential 
oscillation equation of rod structures with variable co-
efficients. Based on the exact solution of this equation, 
the method for calculating bending oscillations of can-
tilever structures with allowance for their own weight 

is developed. For the method, it is fundamental that the 
exact solution is expressed in terms of dimensionless fun-
damental functions. The cross-section of the structure is 
assumed to be uniform.

2. The frequency equation of the problem is obtained in a 
dimensionless form. The roots of this equation, correspond-
ing to the given mechanical and geometric parameters of the 
structure, can be found with any given accuracy. Through 
the dimensionless roots of this equation, oscillation frequen-
cies of the structure are expressed.

3. Mode shapes of the structure are expressed through 
the dimensionless fundamental functions and roots of the 
frequency equation.

4. Comparison of frequencies and graphs of mode shapes 
of the lattice tower, obtained by the proposed method and 
the finite element method, indicates the reliability of calcu-
lations by the author’s method.
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