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3anpononoeano memood poO3PAXYHKY HA 3eUHHI KOJU-
8aHHA BEPMUKANLHUX KOHCONbHUX KOHCMPYKUIH 3 Ypaxy-
8aHHAM 811ACHOI 8azu. Memod rpyHmyemovcs Ha MOUHOMY
P036’°A3KY 610N06i0H020 OuPepenuianviozo pieHAHH KOJU-
8aHb 8 HACMUHHUX NOXIOHUX 31 IMIHHUMU Koeiuienmamu. B
ananimuuHoMy 6u210i 3a 00n0M02010 0e3po3mipnux Qynoa-
MenmanvHux Qynkuii eunucani Gopmyau 0 OUHAMIMHUX
napamempie — nepemiuieHs, KYyma nogoOpPomy, 3eUHAILHOZ0
MOMeHmMY ma nonepeunoi Cunu, AKi NOBHICMI0 xapaxmepu3sy-
10Mb CIMAH CMPUICHA.

Y 3azanvnomy euensndi eunucano uwacmomme pPiGHAHHS
ma eusnaueno memood nowyxy tozo xopeuis. Illoxasano, wo
3a0aua 6U3HAYMEHHS YACMOM GAACHUX KOJIUBAHD 3600UMbCS
00 31HAX00%4CEHNA I3 HACMOMHUX PIBHAND 610N0BIOHUX 0e3P03-
MipHux Koedivieumie. 3naiioeni opmyau, aKumu eusHa1a-
1omuvcsa eaachi popmu xoaueans. Bunucano anzopumm, axuii
0036071€ 6U3HAMAMU UACMOMU MA POPMU BIACHUX KOJU-
8aHb KOHCOJIbHUX KOHCMPYKUIL 3 0061LIbHOI0 Haneped 3ada-
HO10 MmouHicmIO.

Anrzopumm peanizosano na npuxaaoi HackpizHoi cmpudic-
Hegoi Gawmu. Bcmanosneno, wo wucao6i 3HaveHus, ompu-
Mami asmopcoKum mMemooom, cnienaoaroms 3 pesyiomama-
MU, OMPUMAHUMU 30 OONOMOZ0I0 NPOPAMHOZ0 KOMNIEKCY,
AKUU peaizye Memoo CKiHueHHUX eJleMeHmie.

Hopieusano 3 nabauxncenumu memooamu, oanui memoo
00360a15€ ompumamu 00CMOBIPHIWY KAPMUHY KOJUBAHD
KOHCOIbHUX KOHCMPYKUi, OCKINbKU came MOUHUYU PO36’s-
30K Hece 6 001 inhopmauito axicnozo xapaxmepy ma gop-
MYy€e Haudiow noenHy Kapmuny Qizuunozo seuwa, siKe po3-
easdaemocs. 3a60AKU BUKOPUCMAHHIO AGHUX AHATLIMUMHUX
dopmya, nidsumyemocs mounicmv po3paxyHKy Ha 3euHHi
KOJIUBAHHSL.

3anpononosanuii. memod me nompedye oOuckpemusa-
Uil KOHCMPYKUii ma SA6NAAEMbCA PeanvHOl0 ajlbmepHamu-
6010 3ACMOCYBAHHIO HAONUINCEHUX MemOodie nPpu Po36’a3anHi
danoeo xnacy 3adan mexanixu depopmiciozo meepoozo mina
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1. Introduction

2. Literature review and problem statement

When designing vertical structures, it is necessary to
consider all possible impacts they may be exposed during
construction and operation. The majority of these impacts
have dynamic nature and lead to energy accumulation. The
amplitude of structural oscillations, as well as the intensity
of inertial forces gradually increases. This phenomenon is es-
pecially dangerous for high-rise buildings, which are widely
used in modern construction.

Evaluation of dynamic parameters of the structure can
be performed on the basis of analysis of such characteristics
as natural frequencies and mode shapes. When investigating
the structure in an unloaded state, the values of natural
frequencies and mode shapes allow concluding about the
rigidity and operability of the structure, evaluating the cor-
rectness of design solutions. Therefore, the determination
of these characteristics is an actual scientific and practical
problem.

A large number of modern publications have been devoted
to the study of bending oscillations of various structures with
allowance for the longitudinal force. Thus, in [1] bending
oscillations of uniform beams under various boundary con-
ditions and axial loads have been studied. The research is
based on the energy method. Here the empirical formulas that
allow finding oscillation frequencies without using the finite
element method have been obtained. The paper [2] deals with
the case when the axial force takes different constant values
in different parts of the beam. Each of these parts of the beam
corresponds to its own differential oscillation equation with
constant coefficients. The general integrals of these equa-
tions are the basis for the solution of the problem. Here, the
first three oscillation frequencies for various combinations
of boundary conditions have been calculated. In [3], based
on the Euler-Bernoulli hypothesis, free oscillations of beams
with a set of lumped elements subjected to axial load have




been investigated by the finite element method. The authors
of [4] study oscillations of frame structures taking into
account the influence of axial load. The load is calculated
based on the total weight and number of floors of the build-
ing. Natural frequencies of frame structures are obtained by
solving the differential equation written for an equivalent
rod whose rigidity and weight must be uniformly distributed
along the length.

In [5], the influence of the longitudinal force on free
oscillations of a multi-span Tymoshenko beam with the
mass-spring system has been studied. Here the solution of
the problem is based on the general solution of the partial
differential equation with constant coefficients. The publi-
cation [6] is devoted to an experimental study of the effect
of axial force on the oscillation frequency of the rod. This
paper is an attempt to find a connection between theoret-
ical models and the phenomenon, which takes place in the
real world.

The authors of [7] have calculated natural frequencies
of the restrained rod with a mass at the end, applied with
an eccentricity. Herewith, a linearly variable axial force
representing the own weight of the rod has been consid-
ered. The method of solution is based on the Hamilton’s
principle. In [8], oscillations of the cantilever column
under the action of compressive load have been studied.
The boundary-value problem is formulated on the basis
of the Hamilton’s principle and Tymoshenko beam theo-
ry. A comparison of the numerical calculations obtained
with the help of the Tymoshenko beam theory and the
Euler-Bernoulli model has been carried out. The paper [9]
deals with the study of bending oscillations of structures
taking into account the own weight. Here the corre-
sponding partial differential equation of oscillations with
variable coefficients has been written out. To solve the
problem, an approximate shape of the deflection curve of
the cantilever has been adopted.

It is common for these publications that the exact solu-
tions of the corresponding differential oscillation equations
with variable coefficients are not given anywhere. In all such
cases, approximate methods are used.

In real structures, longitudinal forces in different sec-
tions take different values. Examples of such structures
are multi-storey buildings, columns of frame buildings,
industrial structures (chimneys, water towers, through
lattice towers), drill strings, wind generator supports,
antennas, etc.

One of the most common computing schemes for study-
ing bending oscillations of these structures is a vertical can-
tilever rod. An example is a rod with uniform cross-section,
which is under the influence of the variable longitudinal
force, represented by its own weight. The mathematical
model of such a physical phenomenon is a partial differen-
tial equation with variable coefficients [10—12]. Studies of
bending oscillations of cantilever structures with allowance
for their own weight, which would be based on the exact
solution of the corresponding differential equation, have not
been found. Probably, this is directly related to the mathe-
matical problem consisting in the lack of a universal method
of direct integration of differential equations with variable
coefficients.

It is quite clear that the exact solution carries informa-
tion of a qualitative nature and forms the most complete
picture of the physical phenomenon under consideration.

However, the variability of the coefficients of the equation
introduces significant mathematical difficulties in the
procedure of constructing the exact solution, which, owing
to the above, has not been known until recently. For ex-
ample, the monograph [12] explicitly states that it is very
difficult to obtain an exact solution because of the presence
of variable parameters. This circumstance was one of the
main reasons forcing researchers to resort to approximate
methods.

Therefore, development of a method for calculating
bending oscillations of structures with allowance for their
own weight based on the exact solution of the correspond-
ing differential equation is promising. This became possible
after the general integral of the differential equation of rod
oscillations has been found in [13] and, as a consequence,
all necessary formulas for the state parameters have been
written out.

3. The aim and objectives of the study

The aim of the work is to develop a method for calcu-
lating bending oscillations of vertical cantilever structures
with allowance for their own weight based on the exact
solution of the oscillation equation.

To achieve the aim, the following objectives were accom-
plished:

— to determine a general view of the frequency equation;

— to obtain analytically the formulas determining natu-
ral frequencies and mode shapes of structures;

—to describe the algorithm for the numerical determi-
nation of natural frequencies and mode shapes of structures;

— to determine natural frequencies and mode shapes of
the through lattice tower.

4. Fundamental functions and analytical representation of
the oscillation frequency

Fig. 1 shows the general scheme of oscillations of the
vertical cantilever rod, and Fig. 2 shows the external and
internal forces acting on its element.
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Fig. 1. Free transverse oscillations of the rod
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Fig. 2. Internal and external forces acting on the rod element

Here the following notations are used:

EI — bending rigidity of the rod,;

E — elastic modulus of the material;

I — moment of inertia of the cross-section;

m — intensity of the distributed mass (mass per unit
length) of the rod;

N(x)=gx — variable longitudinal (compressive) force,
where ¢ is the mass per unit length of the rod;

y(x, ) — cross motion of the axis point of the rod with the
coordinate x at time ¢ (dynamic deflection);

o(x,t) — dynamic angle of rotation;

M(x, t) — dynamic bending moment;

Q(x, t) — dynamic shear force;

[f(x, t) — intensity of the inertia forces that arise during
oscillation (the d’Alembert’s force).

The differential oscillation equation of the rod for this
case has the form [10—12]

d'y d( oy o’y
El—+qg—| x— —=0. 1
o 4+qax( ax)“"atz O

Further calculations are based on the exact solution
of (1). According to the results of [13], for the dynamic
state parameters of the rod, the following representations
take place:

y(x,0) =0T (), @x,t)=(x)T(1); (2)
M(x,6)=M(X)T(2); Q(x,t)=Q(x)T (1), 3

where v(x), ¢ (x), M(x), Q(x) are the amplitude functions
depending only on the variable x.

These functions are expressed through the dimension-
less fundamental functions X, (x), X,(x), X,(x), X L(x)
(n=1, 2, 3, 4) by means of the formulas [13]
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In turn, X, (x), Xn(x), X'n(x), Xn(x) (n=1, 2, 3, 4)
are represented by uniformly convergent series in powers of
the unknown dimensionless parameter K:

X, (x)=B,(x)+ KZBn,l(x) +
+K'B,,(x)+ KB, ,(x)+...; )

X, (x) =B, () + KB, (x)+
+K4§M(x)+Kﬁfynvg(x)i..; )

X, (x)=B,,(x)+ KB, (x)+

+K'B,, () + KB, (1) +... (10)
X, ()=, (x)+ KB, (x)+
+KB, (1) + KB,y (x) +..y (11)
where
Bm(x) =1
Bno(x) = (%)rk [Cn,O,O + i (_1)j u’j Cn,O,j (%) j}
(n=2,3,4); (12)
n+hh-1 - 3j
B, (x)= (%) (Cn,k,o + 2 (D'’ Cukj (%) J
(k=1,2,3,...); 13)
_ql’.
T ET (14)
B, (0)=1B],(x), B, (x)=IB,,(x),
B, ()=, (x) (k=012..). (15)

In order to determine the dimensionless coefficients of
the series (12), (13), the following set of recurrence formulas
is used:

1

€00 =m§ (16)
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where

fn,k,j=n+4k+3j—1 (20)
(n=1,2,3,4)(k=1,2,3,.)(j=1,23,..).

The time function has the form

T()=T(0)cospt+ f;O) sin pt, (21)

where T(0), T (0) are the parameters of the initial conditions
of motion; p is the oscillation frequency of a weighty struc-
ture, for which the analytic representation is obtained [13]

K [EI
e (22)

The dimensionless parameter K will further be called the
oscillation coefficient.

We note that the formulas (2)—(22) given in [13] are
universal in the sense that they are suitable for calculating
bending oscillations of the rod under any possible boundary
conditions.

The implementation of the given boundary conditions
in each particular case leads to the frequency equation with
respect to the unknown parameter K. After finding the
required number of the roots Ky, Ks, K3, ... of the frequency
equation, according to the formula (22), we will have a range
of oscillation frequencies of the rod with allowance for its
own weight

L ic123.).
m

(23)
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Thus, the problem of determining the frequencies is re-
duced to finding dimensionless oscillation coefficients.

5. Results of studies of oscillations of cantilever
structures

The dynamic boundary conditions corresponding to the
rod, whose lower end is restrained, and the upper end is free,
have the form:

M(0,0)=0; Q(0,0)=0; y(1,)=0; (,1)=0.

Using the formulas (2), (3), we obtain equivalent bound-
ary conditions in the amplitude form:

M©0)=0; Q(0)=0; v()=0; @(/)=0.

For the implementation of the conditions at the end x=/,
we use the formulas (4), (5), where we first consider the con-
ditions at the end x=0. As a result, we will have the system
of equations:

X, (Do(0)+IX,(He(0)=0;

1 . (24)
7X1(l)v(0)+X2(1)<P(0) =0.

The solvability condition of this system is given by the
frequency equation

X, (D)X (DX, (DX, (1) =0. (25)

Taking into account that the numerical series X,(/),
X, (), X,(I), X,(I) converge, and also based on the known
theorems of mathematical analysis, we conclude that the
left-hand side of the frequency equation (25) is a convergent
numerical series. Using (8), (9) and applying the rules for
the product and the sum of the series, we transform (25) to
the form

M, +N,K> +M,K* +M,K° +...=0, (26)
where
n, =1

n,= jﬁo By, (DB (D =By (DB, ; (D) (k=1,2,3,..).(27)

When calculating n, (k=1, 2, 3,...), we use the following
relations, which obviously follow from the formulas (12),

(13), (15):

Bio(D=1 Byy(D)=cyp0+ 2(_1)j o C0,
=
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Bn,k(l) = Cn,k,O + Z(_1)l (X’j Cn,k,j ;
=

Bn,k(l) = fn,k,() Corot 21,(_1)j o/ nhj Cnkj
=

(n=1,2)(k=1,2,3,..).

The equations of the form (26) are often found in me-
chanics. To find solutions of such equations, the method
of comparing the roots calculated for different numbers of
retained terms of the series is used [14]. Such an approach
makes it possible to calculate the roots of an equation with
any given accuracy.

For the main (natural) mode shapes, we take

0,(x)=CV, (ﬂ (j=123..),

. . . x) .
where C; is the dimensional constant factor; ‘/](7) is the

dimensionless function determining the law of the corre-

sponding mode shape.



The formula (4) in the case under consideration can be
presented in the form

o(x) = v(0)(X,(x) - X, (x)),

where {=-19(0)/v(0) is the dimensionless parameter, for
which from the first equation of the system (24) we find

§=X,(1,K)/X,(,K).

From this, we conclude that
x
‘6(7)=(X1(X,Kj)—§jX2(x,Kj))y

g,= X1(l,Kj)/X2(l,Kj) (j=123,..),

or

Vj(ﬂ:gK?"(BMm—Cjﬁz,k@)%

CJ' = iK?kBLk(Z) iK]szzk(Z) (28)
k=0 k=0

Thus, the algorithm for calculating the bending oscil-
lations of vertical cantilever structures with allowance for
their own weight is determined by the following sequence
of operations:

1. For the given physicomechanical characteristics of the
structure EI, g, [, using the formula (14), we calculate the
value of the dimensionless parameter .

2. Using the formula (27), we calculate the coefficients
n, (k=1, 2, 3, ...) and form the frequency equation (26).

3. Using the comparison method, we find the roots of the
frequency equation.

4. Using the formula (23), we find oscillation frequen-
cies, and by the formula (28), the corresponding laws of the
fundamental mode shapes of the structure.

Example. Let us investigate bending oscillations of a
tower made of steel elements (Fig. 3). Similar structures are
used in various industries and construction: as transmission
towers, components of drill strings, TV and radio towers,
bearing elements of industrial buildings.

The tower is a spatial truss frame structure of height-uni-
form square section. The load-bearing columns of the tower
are made of @ 245x12 mm round tubes and are interconnect-
ed by the lattice, also made of steel elements. The distance
between the axes of the columns on one side is 6 m. The
height of the tower is /=35 m.

To perform calculations, we consider the structure in the
rod model (Fig. 4).

In order to verify the results, calculations in the
SCAD computer system in parallel with calculations by
the author’s method were also performed [15]. SCAD is a
software system for analyzing structures by the finite ele-
ment method. It is used for calculation of the stress-strain
state, stability study and solution of problems of statics
and dynamics.

First, we determine the necessary parameters of the given
mechanical system. The tower shown in the rod scheme will
have the following characteristics: EI=2.0601x10% kN/m?;
1=0.31646 m*; g=2.9 kN/m.

35m

6 m >
Fig. 3. Scheme of the through lattice structure of the tower
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Fig. 4. Design scheme of the rod

We find the dimensionless parameter a by the formu-
la (14):

o 2.9-35"
2.0601-10°-0.31646

=0.0019.

For the value a, we calculate the coefficients (27) and
find the first three roots of the equation (26). As a result,
we have the oscillation coefficients: K;=3.5162; K,=22.0340;
K35=61.6968.

After that, according to the formula (23), we calculate
natural frequencies of the tower, which are presented in Ta-
ble 1. The frequencies obtained as a result of the calculation
in SCAD are also given there.

Similar calculations were also made for the tower
height of /=50 m. The corresponding results are given in
Table 2.

The laws of the fundamental mode shapes of the tower
are determined by the formula (28).



Table 1
Comparison of natural frequencies of a 35 m tower
Author’s
-1 o,
Frequency, s method SCAD Error, %
1 42.6258 42.6220 0.009
D2 267.1139 267.0457 0.026
P3 747.9385 747.5797 0.048
Table 2

Comparison of natural frequencies of a 50 m tower
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Fig. 7. The law of the mode shape lll in the dimensionless

Fig. 5-7 for the case of /=35 m show the graphs of the
first three laws of oscillation, constructed in two ways, using
both the formula (28) and SCAD.

n
1.0 08 06 04 02 0

02 04 06 08 1.0
0 T T T T

0.2]

0.4]

~I=

0.6 |

0.8]

1.0°
- - results obtained in SCAD
—— results obtained by the author's method

Fig. 5. The law of the mode shape | in the dimensionless

. x
coordinate system V; and 7

v,
1.0 08 06 04 02 0 02 04 06 08 1.0

0
02]

~Il=

1.0
- - results obtained in SCAD
—— results obtained by the author's method

Fig. 6. The law of the mode shape Il in the dimensionless

. x
coordinate system V,and 7

As you can see, the graphs constructed in the software
system almost completely coincide with the graphs con-
structed by the author’s method. Represented in the same
coordinate system, the graphs visually form a single line.

} Author’s o
Frequency, s method SCAD Error, % coordinate system V3 and %
P1 20.8883 20.8865 0.009
Do 130.8803 130.8887 0.008 6. Discussion of analytical and numerical results of
studies of oscillations of cantilever structures
s 366.4856 366.4856 0.0

The above studies are a logical continuation of the re-
search initiated in [13] and are entirely based on the results
obtained there. In fact, the idea is the application of the gen-
eral solutions obtained in [13] for the case of oscillations of
vertical cantilever structures.

Due to the fact that the proposed research method is
based on the exact solution of the differential equation, it
allows obtaining information of a qualitative nature and
forming the most reliable picture of oscillations. At the same
time, the calculation procedure does not require the discret-
ization of the structure, as is customary with approximate
methods. Using explicit analytical formulas, the accuracy
of calculations is increased. The method allows determining
natural frequencies and mode shapes of cantilever structures
with any predetermined accuracy.

As can be seen from the above data, the results of calcu-
lations by the author’s method and the finite element method
by means of the SCAD software system practically coincide.
This confirms the reliability of calculations by the author’s
method.

We pay attention to the role of the dimensionless param-
eter a, which is an important characteristic of a mechanical
system. In particular, as can be seen from the formula (14),
the value of a=0 will correspond to the case of a design
scheme in the form of a weightless rod. In this case, the fun-
damental functions (8) degenerate into the known Krylov
functions [16]. Generally, the larger the parameter o, the
more the values of the calculated oscillation parameters will
differ, taking into account the own weight of the structure
from the values of the similar parameters calculated without
the own weight.

In general, the results obtained make it possible to sim-
plify the procedure and improve the accuracy of calculations
of bending oscillations of cantilever structures with allow-
ance for the own weight. This allows designing these me-
chanical systems with the desired properties that are more
economic at a given level of reliability.

In addition to cantilever structures, structures with
other ways of end restraint are often found in the industry.
Therefore, in the future this method can be extended to
other cases of boundary conditions. The limitations of the
method include the fact that it is applicable only to struc-
tures with uniform cross-section. To distribute it for the case



of structures with variable cross-section, the exact solution
of the corresponding differential equation is required.

The drawbacks of this work include the fact that it does
not cover the actual issue of the effect of the magnitude of
the longitudinal load ¢ on oscillation frequencies of struc-
tures. The authors plan to devote a separate paper to this
issue, which will become one of the directions for further
development of this study.

7. Conclusions

1. The research is based on the partial differential
oscillation equation of rod structures with variable co-
efficients. Based on the exact solution of this equation,
the method for calculating bending oscillations of can-
tilever structures with allowance for their own weight

is developed. For the method, it is fundamental that the
exact solution is expressed in terms of dimensionless fun-
damental functions. The cross-section of the structure is
assumed to be uniform.

2. The frequency equation of the problem is obtained in a
dimensionless form. The roots of this equation, correspond-
ing to the given mechanical and geometric parameters of the
structure, can be found with any given accuracy. Through
the dimensionless roots of this equation, oscillation frequen-
cies of the structure are expressed.

3. Mode shapes of the structure are expressed through
the dimensionless fundamental functions and roots of the
frequency equation.

4. Comparison of frequencies and graphs of mode shapes
of the lattice tower, obtained by the proposed method and
the finite element method, indicates the reliability of calcu-
lations by the author’s method.
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