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Cxaaona nosedinka min 3 nceeOONpYxHcHix i
NCeBOONPYHCHONAACMUNHUX MaAMePianié BUMAAE
PO36UMKY CREUIANbHUX AJIZOPUMMIE PO3PAXYHKY
nanpyoceno-oepopmosanozo cmany. Y oaniii poéomi
PO3pobaeno wucenvHUll Memood nidsuuleHoi MoUHOC-
mi 0na eupiwmenns Gazamosumipnux mnecmauionap-
HUX 3a0a4 meopii mepmo-npyrcHo-naAACMUMHOCHI 015
mis 3 NCe6OONPYINCHIX 1 NCEBOONPYICHONIACMUMHUX
Mmamepianie. Ile memod noxomnonenmmozo poszue-
NJeHHsl, AKUL CMBOpeHull HA 3ACMOCYBAHHI HOB020
supasy 0onsa 0806uMipHux cnaaun-Qynxuii. Bin 0o3-
6onue nideuwumu na 06a NOPAOKU MouHicms 06uuUC-
JleHb. 3a YmMoeu O0OMpuUMaHHs 00HAK080T MOUHOCMI
00YUCeHb 3 KAACUMHUM KIHUEBO-PIZHUUEGUM MemO-
dom danuii memoo 00360s€ weudule OMPUMYBAMU
pe3yavmamu 6 cuny 6ubopy Girvuwux Kpoxie inmeepy-
sanns 3a xoopounamamu. Ile npuzeooumv do 3men-
WeHHs Ha 084 NOPAOKU KINbKICMb 6UKOPUCMOBYBAHUX
8Y3J1i6 NPOCMOPOBOT CIMKU, W0 € BAHCTUBUM T KOPUC-
HUM 3 NPAKMUUHOT MOUKU 30pY.

Io6yodosana mamemamuuna modenv noeedinku
NCe8OONPYHCHONAACMUMHUX MAMEPIA8, AKA CKAAOA-
EMBCS 3 PIBHAHHS MENJIONPOBIOHOCMI, PIBHAHHS PYXY,
2eomempuuni cniesionowenns. Ilpu nodyooei isuu-
Hux cniesionouensv nepeddananocs, wo oedopmauis
8 MouYi NPedcmasascmocs y Uzl CYmu NPYHcHo0
cxnadoeoi, cmpubra depopmauii npu pazoeomy nepe-
X00i, nracmuunoi depopmauii i depopmauii, euxau-
Kanoi memnepamypnumu 3minamu. Y 3azanvHomy
U201 CPOPMYNbOBAHT ZDAHUUHI | NOUAMKOB] YMOBU.

IIpogedeno excnepumenmanvie 00TpYHMYyeanns
sapianma pernomenonozinnoi modeni nosedinku ma-
mepiany 3 nam'smmio popmu. Y uiii modeni 3axaadena
MOJNCAUBICMD KITOKICHOT OUITHKU CKAAOHUX 83AEMOOTH
MIHC HANPYHCEHHAMU, MeMNEPaAmyporo, 0ePopmMayicto
i WeUOKICMI0O HABAHMANCEHH Mamepiany, AKi npu-
damni i 011 M00eN0BAHHA KOHMUHYATILHOZO PIGHA.
Ha nidcmasi yv020 eupiweno axicio Hosuu kaac 060-
BUMIPHUX HECMAUIOHAPHUX 3a0au 0 Mamepianie 3
nam'asmmio popmu, Koau He6i0OMI 6eUMUHU POIULY-
KY1omvCs Y U201 060MIPHUX HANPYICEHUX CRIAUNIE

Kntouosi caoea: mnceedonpysxcnuii mamepian,
¢a3soei nepexoou, memood niosuuiernoi mounocmi, 060-
BUMIpHI cnaaiinu
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also characterized by the non-linear mechanical behavior,

high internal damping, and high yield strength.

Pseudoelasticity is the capability of a material at a

The list of alloys possessing shape memory (ASM), as

higher temperature mode to accumulate deformations of a
certain magnitude at loading and then return to its original
position after unloading (through the loop of hysteresis).
The basic mechanism is the inverse martensite transforma-
tion between the phases of a solid body, which can occur at
room temperature. Such a transformation might be due to a
change in temperature or a voltage change. The material is

well as pseudoelasticity, include the following: Ni-Ti, AgCd,
AuCd, CuAINi, CuSn, CuZn, FePt, MnCu, FeMnSi, CoNiAl,
CoNiGa, NiFeGa, TiPd, NiTi, NiTiNb, NiMnGa [1-7, 10].
Alloys possessing shape memory (ASM) constitute a
special group of alloys with the capability to restore previ-
ous shape even after rather large deformations. If ASM is
deformed plastically at low temperatures, this deformation




can be restored by applying a relatively small increase in
temperature. The underlying mechanism for such a recov-
ery is the transformation from a martensitic phase into
the original austenite phase. Martensitic transformations
are generally divided into two groups, thermoelastic and
non-thermoelastic.

Non-thermoelastic transformations are carried out main-
ly in alloys of iron and are linked to the non-mobile bound-
aries of the original martensite phase, fastened by constant
defects, and contribute to forming a growing core.

Thermoelastic martensitic transformations are associ-
ated with the mobile boundaries between the original and
martensite phases. These boundaries are capable of return-
ing movement at a reverse transformation at the expense of
the shrinking deformation of martensite plates rather than
the generation of the core of the original phase, which leads
to the crystallographically inverse transformation.

A key feature of ASM is the occurrence of a martensite
phase transformation between the phase of austenite and
different variants of the low-temperature, low-symmetric
martensitic phase. Martensite transformation is essentially
the shear, diffusion-free, phase transition of a solid body,
which is accompanied by the formation of a core and by an
increase in the martensitic phase at the expense of the origi-
nal phase of austenite.

The above-described characteristics make the alloys pos-
sessing shape memory suitable for use in new designs, which
defines the relevance of research. In this case, the calculation
of structural elements and devices, which exploit advanced
composite materials, for strength must be based on the new
methods of enhanced accuracy and taking into consideration
the possible phase transitions in a material.

2. Literature review and problem statement

The first ASM were designed in the middle of the
last century; however, at present there are no strict and
reliable defining patterns at the continual level required
for engineering applications of materials. As noted in
paper [1], the relation between the microscopic and mac-
roscopic behavior is very complex and not yet developed
to the extent required by such models. This is partly due
to the rather strong dependence of mechanical response
to temperature, loading rate, the range of deformation,
geometry of the investigated body, thermomechanical
history, the nature of the environment, as well as the
interaction between these very parameters. Examples of
such simulations are reported in paper [2]. Such alloys as
NiTi, CuZnAl, CuAINi, AuCd, and others, can restore the
deformation up to 3 %. Other important characteristics of
some of these materials are internal damping, pseudoelas-
ticity, and a high yield strength.

A characteristic feature of the ASM material diagram at
active loading is a region of perfect plasticity [7]. Similar re-
gions occur at unloading, although at certain temperatures.

Paper [12] solved a number of stationary and non-sta-
tionary problems from the theory of thermo-elastic-plas-
ticity. The authors applied physical correlations proposed in
studies [13, 14], which describe simple and similar processes
of deformation or the deformation processes along trajecto-
ries of small curvature. The thermo-viscoelastic-plastic pro-
cesses of complex deformation of structures' elements were
experimentally substantiated in work [15].

When solving nonstationary problems involving bodies
made from pseudoelastic-plastic materials, there arises a new
problem that is associated with the specification of physical
equations. Paper [8] proposed a new variant of the method
for the component-wise splitting of enhanced accuracy,
constructed for solving the nonstationary problems from
the theory of thermo-elasticity and thermo-plasticity. It was
employed to solve two-dimensional and three-dimensional
problems, respectively, from thermomechanics. An analy-
sis of these papers revealed that it is possible to solve the
two-dimensional problems of thermomechanics (when using
a mathematical apparatus of the two-dimensional splines)
without applying the splitting schemes based on geometrical
properties.

The method of component-wise splitting, proposed in
paper [12], is one of the most effective when solving numer-
ically the multidimensional nonstationary problems from
the theory of thermo-elastic-plasticity [9, 16]. In a combi-
nation with representing the desired quantities in the form
of spline-functions, it provides for the improvement in the
accuracy of calculations by two orders of magnitude.

The advantage of a given approach is due to the fact that
it is not more difficult to implement than the finite difference
method. In this case, a solution is found in the form of spline
functions throughout the entire determining domain, while
a difference solution is sought only in the spatial grid nodes.
Such an approach made it possible to increase the order of
approximation, and it allows the selection of a larger grid
based on coordinates compared with the finite-difference
method, provided that the same calculation accuracy is
attained.

3. The aim and objectives of the study

The aim of this study is to construct the finite difference
method with enhanced accuracy for solving two-dimension-
al problems from the theory of thermo- pseudoelastic-plas-
ticity. That would make it possible to improve the accuracy
of solution based on coordinates by two orders of magnitude
compared to the classic finite-difference method.

To accomplish the aim, the following tasks have been set:

—to derive an interpolation expression for the two-di-
mensional interpolation strained spline, which has the fourth
order of approximation;

—to substantiate experimentally the variant of a phe-
nomenological model of the performance of a material with
shape memory.

4. Defining correlations in the theory of thermo-elasto-
plasticity

One of the aspects in a general task on solving the
non-stationary problems for inelastic bodies is the choice of
defining correlations for the relationship between stresses and
deformations. This choice is substantiated by its alignment
with the experiment and is closely connected to the examined
processes of deformation. In a general case, the values of defor-
mations represent functions of the process of change in stress-
es and temperatures, which are defined by characteristics of
the entire preceding process of change in the physical factors,
rather than the current values only. Detailed information on
this issue can be found in papers [9, 11, 16].



It was assumed when constructing the physical correla-
tions that the deformation at a point is represented as the sum
of the elastic component, a jump in deformation during phase
transition, plastic deformation and the deformation caused
by temperature changes. Upon solving the problem on the
geometry of deformation trajectory, one can argue about the
reliability of the employed defining correlations.

Based on the experiment on simple stretching of a sam-
ple at different fixed temperatures, the following function is
constructed

o=F(e(e)T). )

This equation defines the so-called instantaneous ther-
momechanical surface whose existence was experimentally
confirmed with reasonable accuracy in paper [13].

Paper [15] experimentally confirmed with a certain de-
gree of accuracy the independence of function (1) on the type
of the stressed state for certain classes of originally isotropic
materials. As a result, expression (1) can be recorded using
the experimental data obtained from stretching the cylin-
drical samples. Specification of the defining equations comes
down to assigning the instantaneous thermomechanical
surface. Typically, while solving numerically, the equation of
instantaneous thermomechanical surface of form (1) can be
assigned as a table of experimental data (o);, (€);, i=0, 1,..., N
at the fixed temperature values.

Fig. 1 shows typical stress-deformation dependence
charts, which are derived from experiments. Fig. 1a depicts
a typical diagram for a construction material. Fig. 15 shows
a diagram with the horizontal area, which is typical for the
pseudoelastoplastic alloy.

c ‘ c
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Fig. 1. Diagram of a material: a — diagram of the construction
material; b — diagram of the pseudoelastoplastic alloy

Each of the shown diagrams has an initial linear sec-
tion OA. Deformation processes along it are reversible. An
increase and decrease in the stress proceeds along a single
straight line; in this case, the deformations are small. The
yield limit depends on temperature and is defined by the
coordinate of point a. At points A, B, C, D, deformations are
assigned as a percentage, stress — in Gpa.

Table 1 gives experimental data obtained in papers [3, 4].

If we unload the sample at the stress that corresponds
to point C in the diagram, part of deformation (an elastic
component of the overall deformation of the model) will
disappear. Segment AB for the pseudoelastoplastic alloys
will disappear in a jump as well, and the deformation that
remains is called plastic deformation.

Thus, the complete deformation tensor can be represent-
ed in the form

Table 1
Dependence of diagrams of pseudoelastic material on
temperature

T, °C A(g, 0) B(e, o) C(g, 0) D(e, 0)
100 1.00; 0.82 | 6.50;0.82 | 6.05;0.45 | 0.55;0.45
90 1.00; 0.78 | 6.50;0.78 | 6.03;0.41 0.53; 0.41
80 1.00; 0.67 | 6.50;0.67 | 6.07;0.38 | 0.57;0.38
70 1.00; 0.59 | 6.30;0.59 | 5.81;0.30 | 0.51;0.30
60 1.00; 0.44 | 6.20;0.44 | 5.72;0.23 | 0.52;0.23
50 1.00; 0.42 | 5.80;0.42 | 5.16;0.15 | 0.36;0.15
40 1.00; 0.39 | 5.70;0.39 | 4.88;0.07 | 0.18;0.07

We denote

. af,  9f, .
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where functions
fv(é)zo’ fp(6)=0,

which, respectively, assign the boundaries of surfaces in
the space of stresses. When passing through surface f,(6)=0,
the elastic deformation abruptly increases, and when passing
through surface f,(6)=0, a body undergoes plastic defor-
mation.

Fig. 1 also shows the elastic unloading of the sample
along straight line CD, which is accepted to be parallel to
line OA. Such an assumption about the unloading mech-
anism represents only generally the actual pattern in the
deformation of a material at small deformations. At larger
deformations (10 % and larger), the unloading of a sample
would be non-linear.

When solving the nonstationary problems, physical cor-
relations are reduced to the form

6, =a,; -8, |:KocT +e¥}i
where i, j, k, [=1, 2, 3, as well as the Kronecker symbol and
the constants of a material for the elastic case which, in the
case of a pseudoelastic behavior of the material, depend on
the jump in deformation during phase transition and may
depend on the deformation process parameters in the case of
plastic deformations [12].

5. The method with enhanced accuracy based on the
interpolation expression for a two-dimensional spline

The main problem in the nonstationary theory of ther-
mo-elasto-plasticity is determining the displacement veloc-
ities and the components of stress and deformation tensors.
They arise in a three-dimensional body resulting from load-
ing and heating.

Loading process will be considered to change over time,
which can start the motion of separate body parts.

The originally isotropic and homogeneous three-dimen-
sional body V, limited by surface S, at the initial time is in
the natural non-stressed state at an assigned temperature.



The body is then heated and loaded with external forces.
These could be the volumetric forces acting on each element
of the body and the surface forces acting on one part of the
body surface. At another part of the body surface, which
can be fixed in a certain way, we assign the displacement
velocities as functions of coordinates and time. Suppose
that the heating and loading of the body proceed so that the
emerging deformations can affect the temperature change in
this element. We shall consider such processes of loading and
temperatures levels at which the rheological properties of a
material do not manifest themselves. Body configuration is
specified by the equation of the surface that restricts it. In
addition, it is required to assign the thermal-physical and
mechanical characteristics of a body's material, as well as
the conditions for its heat exchange with the environment.

Thermophysical properties of a material are character-
ized by coefficients of thermal conductivity and thermal dif-
fusivity, which may depend on temperature. Heat exchange
conditions are assigned in the form of appropriate boundary
conditions. Mechanical characteristics of a material are as-
signed as the integral averaged diagrams for the stretching of
samples acquired at different fixed temperatures.

In addition, one sets the values for the Poisson coefficient
and a linear thermal expansion coefficient.

Based on the data specified, it is necessary to determine
the temperature, three components of the displacement
velocity vector, six stress tensor components and six com-
ponents of the deformation tensor. Therefore, we are to de-
termine 16 unknown time functions and functions of three
coordinates. To this end, one must employ the equations of
motion, geometrical and physical equations, as well as the
thermal conductivity equation. These equations are solved
under certain initial and boundary conditions. The initial
conditions are defined for all the unknowns.

Upon determining a temperature field for different
points in time, we find components of the displacement
velocity vector and components of the stress and deforma-
tion tensors. We shall determine these unknowns in the
following way. The basic unknowns are accepted to be the
three components of the displacement velocity vector and
six components of the stress tensor, for which we directly
formulate the boundary conditions. In this case, we exclude
from six physical equations, by applying the Cauchy geomet-
ric correlations, all deformation tensor components, which
are then determined based on the known constituents of the
displacement velocity vector.

As follows from paper [9], the basic methods for solving
the non-stationary problems from the theory of thermo-elas-
tic-plasticity are the difference method, the finite element
method, the method of splitting based on geometrical prop-
erties.

In the framework of the difference method and the finite
element method, solving a non-stationary problem from the
theory of thermo-elastic-plasticity comes down to solving
the systems of algebraic equations. This system is built ac-
cording to the classical scheme when one replaces differen-
tial operators of the complete system of equations with their
difference analogs.

Depending on the type of physical correlations that con-
nect stress, deformation and temperature, there are various
variants of these methods. Paper [12] applied a variant of the
method of component-wise splitting of enhanced accuracy,
developed for solving the non-stationary problems of the
theory of thermo-elastic-plasticity. The original system of

equations was replaced with an equivalent system of three
one-dimensional equations. The basic unknowns are the
velocities of displacement, stress, deformation, and tempera-
ture. If necessary, the displacements are determined by inte-
gration. In this case, the complete system is reduced to form

S5}

oW & oW o
= EA 5 +B, )
where W is the vector whose components are the displace-
ment velocities, components of the stress and deformation
tensors.

Subsequently, within the framework of the method of
component-wise splitting, system (2) and the thermal con-
ductivity equation is replaced with the equivalent systems of
three one-dimensional equations. To this end, one introduces
the time grid for consideration, with respect to a fractional
step. A solution to the preceding equation is employed as the
initial condition for the next one.

The original non-stationary spatial problem in the form
(2) could be also reduced to a system of three sequentially
solved two-dimensional problems based on fractional steps
in time (the Peaceman, Rachford, Douglas scheme). To
build a solution to the complete system (2), we shall employ
two-dimensional strained splines. Unknown magnitudes are
sought in the form of a linear combination of two-dimension-
al splines [12].

2

E_,T] :zszr/ﬁ»n 2D &n) (3)
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Here, for example, for the first equation in the scheme of
variable directions

1
:E(B_B/)’

ae [(Xi,OLM], BE[B]'VBJ'-H]'

For the second and third vector equation of the split sys-
tem, dimensionless coordinates are similarly derived. Ay, A3,
hs denote the integration steps based on coordinates.

Note that in an ideal elastoplastic environment, in the
case of smooth and piecewise-smooth yield surfaces, there
may exist the nonstationary displacement velocity disconti-
nuity surface. At these surfaces, the stresses are continuous
while the components of plastic deformation are disrupted.
The components of displacement velocities, normal to the
break surfaces, are continuous, and the surface itself coin-
cides with the surface of maximum rate in the plastic shift.
Such discontinuity surfaces can exist only under condition
when the stressed state is reduced to the condition for plas-
ticity of the maximum shear stress.

Stationary surfaces of the displacement velocity dis-
continuity cannot exist in ideal elastoplastic bodies [11]. A
characteristic feature in the diagram of ASM material at its
active loading is the section of perfect plasticity. Similar sec-
tions are observed at unloading as well, although at certain
temperatures. This circumstance makes it possible, when
solving the static problems of thermomechanics, to employ
the methods that are used in order to solve the non-station-
ary problems.

In each auxiliary domain, a two-dimensional strained
spline is derived in the form



S,p= [ao +ag+ azsh(ﬁ&) + azsch(x/iﬁ)] X
x[bo +b1n+b23h(x/5n)+b3ch(\/§n)], (4)

where
Ee[0;1], me[o1],

and to determine the magnitudes a; b; i=0; 1; 2; 3,we use
docking conditions. Surface (4) is symmetrical relative to
the coordinate axes and consists of sixteen parts of three
types. It should be noted that in an arbitrary cross section, a
line is automatically built, corresponding to the one-dimen-
sional strained spline reported in paper [12].

For a corner region, these conditions at the vertices of
square A(0;0), B(0;1), C(1;0), D(1;1) take the form

95,,(00)_ 95,,(0:0)

S.p(0:0)=0, S0, 8BS0,
5, (0)=0, aszg &EOA) o, aszg 1(10;1) _o,

5,0 (£0)=0, 852g g;o) o, 8523 ](10;0) _o,

S, (51)=W,, ('?Sz)gg;l)zwéy 8525121,1) Wy,

The right sides contain the value of the function or its
derivatives. Satisfying these conditions, taking into consid-
eration the symmetry of surface (4) relative to the diagonal,
we obtain

S,y = [ko (1-ehﬁ§)+kg+k2shﬁ§]x

><[k0 (1 - C/’l\/ET]) +kn+ kzshﬁn], )
where

ko=—0,57235; k{=—0,37114; ky=0,26244.

For the central subdomain, conditions at the vertices of
square D(0;0), N(0;1), F(1;0), M(1;1) take the form:

5, (0:0)=1W,, BSQSQO;O) _w, aSQST(]O;O) _w,
S, (0:1)=W,, 852520;1) - W, 35251(10;1) -0,
S, (10)=W,, %5 Zgg;o) o, & 2;(11;0) =W},
S, (51)=Wy, 8523&(1;1) o, & 25’151;1) -0.

Note that the surface assigned by spline (5) is symmetri-
cal relative to the diagonals of square DNMF.
Satisfying the conditions in the nodes, we obtain

Sop= [no + &+ n,sha28 + nsch\/EF,] X

x[no + M+ n,sh2n + n3ch\/§n], (6)
where

no=—0.42838; n1=2.56711;

ny=—-1.39527; n3=0.6325.

For areas that combine the corner and central regions,

at the vertices of square C(0;0), D(0;1), E(1;0), F(1;1) the
following conditions are met

95, (0:0)_ 95, (0:0)

S.p(0:0)=0, 2220, S PRS0,
5. (0=, asﬂa, éon) W, 8523 120;1) _w,
5, (10)=0, 85235;0):0’ 85231(11;0):0’

5,0 (51) =W, aszS ém) o, aszg T51;1) _w.

We can record based on this

S,pEM)= (mo +m&+ m2shx/§§ + mschx/iﬁ) X
><|:m4(1—ch\/§n)+m5 (sh\/gn—\/f)]. 7
Here

my=3.78066; m1=—10.62084;

my=7.28425; m3=-4.31838;

m4=0.19552; m5=0.29351.

We introduce an expression for the two-dimensional

basis strained spline for the domain for determining xe[-22],
ye[-22]. Introduce four auxiliary functions:

0 (£) = hy (1= ch/2e) + bt + ysha2t,

0, (£)=my +mt +m,sh/2t + m,ch/2t,

v, (¢)=m, (1=cha/2e)+-m (sha/2 —+2),

0, (£)=ny +nyt +n,sh/2¢ + n,ch /2. 8)

Then the surface of each part of the normalized basis
two-dimensional spline, assigned by expression (4) in a

single x, y coordinate system, can be described using the
following functions



=0,(1-x)9,(y). )

As a result, the two-dimensional spline is reduced to
the form

16

SQD(XW): Zbk -5, (X;y)’

k=1

X, Y € [0;1]. 10)

Expression (10) is a classical expression for a two-di-
mensional spline. It can be used directly within the frame-
work of a collocation method when solving the two-di-
mensional problems in thermomechanics.

In the applied problems, spline (10) is convenient to
use in a slightly different form. We express the unknown
spline factors b, (k=12..16) through the values of a
certain function w(x;y) at nodes (i/3;j/3), i,j=0,123,
where

w(i/3;j/3)=
The system, based on which we find takes the following form

S,(i/3j/3)=w, (i,j=0,1,2, 3).

The solution to this system is obtained analytically and
after substituting expressions b, (k:1,2,...,16) in (10), we
recorded a new interpolation expression

3 3

w(xy)=3 > w; F(xy)

i=0 j=0

(1

where

10(x y) o7 Sm(x'y)"'ﬁ Soz(x'y)'i'ﬁ Sog(x;y)+

+0,80, (39) + 0t Sy (:9) + By (439) +
+B,,807 (2057) + 5805 (25 7) + 01,80 (4 9) +
+B15S10 (454) + B, (454) + 0,8, (37) +
+01, 81, (2659) +BySy (059) +ByS,5 (159) + 0,5, (5y),  (12)

Fy (x59) = 068y, (250) + Bo [ Sop () + S (59) |+ 0,8, (a:) +
+o., [505(x?y)+ 513(x;y):|+[37 [SOG (x;y)+513(x;y):|+

B[ Sor (659)+ S, () [+ 0 [ Sog (w3) + S35 (w39) ]+

+01, S0 (1) 4By, [ S0 (2:9)+ S,y (1) |+ 0,08, (x59).

Here

o, =—1,024; o, =1854 o,=0,594;

o, =-1,356; o, =—0,758;

o, =-8,383; o, =7,288; o, =21,855;

o, = 14,351 o, =8 640;

B, = 4,195, B, =—19,306; B,=33,330;

B, =—11,599; B.=—4,654;

B, =29,870; B.=-54,471 B,=20,759;
B, =—4,708; B, =-7,465;

B, =26,300; B,,=-15,097; B,,=2,864;
B, =-3,017; B =1,891 B, =148%;
®,=-5204; ©,=1666; o,=9,491;
o, =-7,152; o,=36,725;
®,=—66,177; ®, =20,348; ©,=-56,662
®,=123,935, o, =23,181.

The remaining thirteen functions are recorded using
formulae (12)

(x:y)=Fo (v;
Fy(x5y)=F,(1-y:x),
Fy ()= Fyy (x:1-y),
Fy(x:y)=F, (x:1-y),
Fy(xiy)=Fy(61-y),
Fy(x59)=F,(1-x9),
E,(xy)=F,(1-xy),
E,(xy)=F,(1-x1-y),

(x:y)



Formula (11) makes it possible to calculate partial deriv-
atives based on coordinates in the regions, located directly
at the boundary of a body

xelxgx ] velyol
xelryixy] ve[Yuiivu]
and in the adjacent regions
xe[x;x,) yelvsw)
xelay ] Ye[Uynia]
Tn all other cells of the spatial grid, we use for this pur-

pose a linear combination (a half sum) of respective expres-
sions written in the adjacent regions.

6. Numerical simulation of the behavior of a material
possessing shape memory

Consider a two-dimensional problem on the non-sta-
tionary deformation of a strip with cuts made of the alloy
NiTi. The shape of a cut in a node at the edge of the plate
is not discussed. The cut surface is free from stresses.
Here

xe[0;L)ye[-H /2h /2] te[0,c0).

At the edge with cuts x=0, stretching speed is zero. At
the other end x=L, we assign the speed of stretching v=V,.
Side edges of the strip y=-H /2, y=H /2 are free from
stresses.

The desired magnitudes are: displacement velocities v,
v,; stress velocities o, G, O, deformation velocities €,
€, €,,and temperature T. Determine the speed of a slow
wave, at which a plastic zone propagates along strip x €[0;L].
We shall use the finite-difference method of enhanced accu-
racy. System (8) in a given problem can be recorded in the
following form:

W _ A w, A, W B

ot ox dy

To account for the heat released as a result of the phase
transition, the temperature is derived from a solution to the
thermal conductivity equation

+W,

e

oT T 0T
= =5zt 7
ot ox”  dy
The function designated by W, accounts for the release
of heat in a body while moving from point A to point B in the
diagram of a material.
We introduce grids for time and coordinates

‘”r:{tn;t =tp+r;t0=0;p=o;1;2;...},

p+l

L .
XX =X, +h;x,=0; b =;;z =0;1;2;..m;
W,

I .
Y;Yu=Y;+hy;y,=0;hy =i =0;1;2;...m;

The estimation iterative formulae, derived based on the
difference Crank-Nicholson scheme, can be recorded in the
vector form as

5”“=8p+§[x(8”)+x(8”“)],

Tri=T" +§[u(Tf’)+u(T"”)]+rWa.

These formulae, in order to simplify the notation, contain
in the left side the estimated magnitude for £+1 iteration; in
the right side, we employ the value of magnitudes from the
k-th iteration.

For the difference operators A(...), u(...), which approx-
imate the first and second derivatives based on coordinates,
we apply expressions, derived from formulae (11) by direct
differentiation.

Consider a series of numerical results. Here we selected
L=2H, h=h,=H /10, t=0,001. Divergence between the
neighboring iterations at k=7 did not exceed 0.001.

A change in the temperature field, associated with the
stressed-deformed state, caused by the release of heat during
the sequence of phase transitions, is shown in Fig. 2.

T T
T =800t T 1 =1600r L1700t
P =900t ) A/ 1. 1800t

0.6 0.6
b t=1000t
0 I B A
x=L x=0 x=L x=0
a b

Fig. 2. Change in temperature field along the axis due
to the release of heat during the sequence of phase
transitions: a — diagram of temperature field for time
interval 800-1,000; 6 — diagram of temperature field for time
interval 1,600-1,800

Fig. 3 shows, for the specified time points against the
intensity field of plate stresses, the distribution, along the x
axis, of deformations (lines 1) and stresses (lines 2) at active
loading.

When solving numerically, there is a transition to the
dimensionless normalized magnitudes, which retained their
designations

4 € c T
V>—, e5—, 05—, T=>—,
0, €1 Osr T
X Yy t
Xr=— yYy=>-— t=—.



Here in the denominators we assigned the scale mag-
nitudes for the displacement velocity, temperature, spatial
coordinates, time, limits of the yield stress of a material for
stress and deformation.

1-¢, (FIW

5
: <

25, (12000)
14
0 L3 x0

1-¢, (=16007)
5
2 2o, (=16007)
x=L/2

Fig. 3. Distribution of dimensionless stresses and plastic

deformations for different points in time: a — diagram of

dimensionless stresses and plastic deformations for time

1,200; b — diagram of dimensionless stresses and plastic
deformations for time 1,600

The results obtained show that the front of a jump-like
change in deformation propagates at constant velocity,
which depends only on the mechanical properties of a ma-
terial. This confirms the conclusions drawn in paper [11]. In
the process of heat release caused by phase transitions the
temperature distribution along the axis of the plate becomes
uniform.

7. Discussion of results on the development and
application of the method with enhanced accuracy for
solving the problems from the theory of thermo-elastic-
plasticity

The advantage of the developed method with enhanced
accuracy for solving the multidimensional non-stationary
problems from the theory of thermo-elastic-plasticity is that
it expands the class of problems to be solved. It disseminates
the potential possibilities of known methods on bodies
fabricated from the promising pseudoelastic and pseudoelas-
tic-plastic materials. The disadvantage of a given method is
that the proposed variant applies only for composite bodies
of the canonical shape.

The results reported here could prove useful in the study
of the behavior of structural elements of a complex shape,
which would make it possible to reduce the time for their
creation, to improve reliability and efficiency, to reduce
material consumption and bring down the cost. They could

be applied when determining the strength characteristics
of structural elements made from materials sensitive to the
type of the thermo-stressed state. Based on this, it is planned
to develop technological processes for fabricating the spatial
and thin-walled elements of structures with enhanced me-
chanical characteristics. It is planned, based on the research
results, to introduce grinding wheels with mineral fillers at
industrial enterprises. The new technology could be exploit-
ed in industrial production and for manufacturing the grind-
ing tools that are used in the machining of tool materials.

Note that problems on such structural elements as "hol-
low chamfer”, "bevel”, "groove" and other bodies that have
the non-canonical surfaces at the boundaries of joining the
transition regions, require solving additional problems.
Those are the interpolation problems and the extrapolation
of a solution to the problem of thermomechanics among the
nodes in one or another finite-difference grid. This task
was not stated in this work, but the proposed apparatus
of a two-dimensional spline could be very efficient when
solving it.

In the future, we plan to improve the undertaken re-
search into development and experimental validation of
new physical correlations. These correlations should take
into consideration the dependence of mechanical reaction
in the behavior of a body on temperature, possible phase
transitions, as well as the thermomechanical history.

8. Conclusions

1. We derived an expression for the two-dimensional
interpolation strained spline, which has the fourth order
of approximation. That made it possible to improve by two
orders of magnitude the accuracy of computing a solution in
comparison with well-known methods. Recurrent formulae
allow us to obtain, respectively, the third (for temperature)
and fourth (for the velocities of displacements, stresses, and
deformations) order of the method approximation based on
coordinates.

2. Using the expression obtained for a two-dimensional
interpolation strained spline, we developed an effective
variant of the finite-difference method with enhanced ac-
curacy. Subject to the same accuracy of calculations when
using the classic finite-difference method, a given method
makes it possible to obtain results faster, due to the choice
of larger steps of integration based on coordinates. Thus, for
the solved problem, we assigned 230 nodes in a spatial grid.
To obtain a solution (with the same accuracy) employing the
classic difference method would require 2,003,000 nodes.
This leads to a substantial reduction in the calculation time,
given only one step in time, which is 0.001 % for the consid-
ered problem.

3. We have experimentally substantiated a variant of the
phenomenological model for the behavior of a shape mem-
ory material. This model implies a possibility to quantify
complex interactions between stresses, temperature, defor-
mation, and the speed of loading a material, suitable for mod-
eling at the continuum level. Based on it, we have resolved
a qualitatively new class of two-dimensional non-stationary
problems for materials possessing shape memory when the
unknown magnitudes are sought in the form of two-dimen-
sional strained splines.
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