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1. Introduction

The phenomenon of adhesion occurs due to the action
of molecular forces when the surfaces of solids come close
within their range. As a result, not only compressive but also
tensile tractions can be transmitted through the contact
interface. The surface potential that favors expansion of the
contact area can drive additional deformations required to
close the gap between the bodies. As a consequence, even
when the loading is removed a remnant contact is estab-
lished and some additional pulling force is required in order
to disengage the bodies.

The classical Johnson-Kendall-Roberts theory [1] for the
adhesive contact of parabolic bodies determines the actual
contact radius by the minimum of full internal energy that
includes the energy of elastic deformations and the energy
of free surface loss. Similar analytical solutions are possible
for cases with different geometries such as the contact of a
paraboloid with an axisymmetric wavy surface [2].

Another well-known approach suggested by Derjaguin,
Muller and Toporov [3] assumes the occurrence of attraction
in a vicinity just beyond the contact area where the separa-
tion between bodies remains within a certain threshold. The
advantage of this model is that it accounts explicitly for the

finite range of molecular forces. On the other hand, it entire-
ly disregards the contribution of these tractions to the elastic
deformations of the bodies, which is a definite drawback.

In general, analytical models are restricted to certain
geometry and are frequently based on approximate represen-
tation of the nature of adhesion. Hence, numerical methods
of analysis are required to predict adhesive behavior in case
of arbitrary geometry or more sophisticated physical models
of surface interaction.

2. Literature review and problem statement

The most fundamental approach consists in representing
the microscopic structure of the bodies and modeling both
the elastic behavior and contact interaction by means of
molecular mechanics [4]. This requires determining atomic
forces between all the particles in the system, which has very
high computational cost.

A method of intermolecular force homogenization allows
upscaling the problem to the continuum level and perform
effectively coarse-grained finite element analysis of adhesive
contact [5, 6]. Molecular potentials can be also incorporated
into the boundary element method, where they constitute




the relation between the contact pressure and the gap be-
tween the body surfaces [7-9]. However, the accurate re-
sults can only be obtained with extremely fine discretization
especially at the boundary of the contact spot because of the
essential nonlinearity of this relation.

A heuristic criterion of surface detachment in adhesive
contact is proposed in [10, 11]. According to it, contact is
broken abruptly at a discrete element of a rectangular mesh
when a certain level of tensile stress is achieved. The criti-
cal value is determined by the specific energy of adhesion,
elastic material properties and the mesh size. However,
this method also has high requirements regarding the mesh
size for which accurate results are obtained. Moreover, the
proposed algorithm does not ensure the uniqueness of the
solution.

When contacting surfaces are rough, the interaction is
localized initially around the asperities. The entire distribu-
tion of the contact tractions can be approximated then by a
discrete system of localized contacts which is the main idea
of the so-called multiasperity methods [12—14]. On the plus
side, it enables analysis of essentially large systems with rel-
atively few unknowns. However, the discrepancy caused by
simplifying assumptions is hard to control. In particular, it
increases once the distance between separate contact spots
shrinks so that they actually merge together.

It can be concluded that an approximate method for anal-
ysis of surface adhesion with lesser computational cost and
acceptable accuracy is still required. It is proposed to devel-
op it based on the existing boundary element methods, using
in particular generalized minimum principle for adhesive
contact and its formulations proposed in [15]. This requires
adaptation of the variational statement for the numerical
application in the general case of axisymmetric contact. As
long as the developed method is meant for modification of
existing boundary element programs, Abel transformation is
avoided unlike [16]. It will be used for analysis of adhesive
properties of various bodies with surface geometry met in
practical applications. In particular, the influence of rough-
ness on the strength of adhesion is a crucial question.

3. The aim and objectives of the study

The aim of this work is an effective and versatile reali-
zation of the boundary element method for adhesive contact
problems. It is meant to preserve thermodynamical consis-
tency of fundamental Johnson-Kendall-Roberts model. It
suggests generalization of the variational formulation by
J. Kalker which adds a separate energy term representing
the contribution of adhesive interaction. This in turn allows
for a standard approach to approximate solution by the Ritz
method.

To achieve the set aim, the following tasks need to be
solved:

— formulate a variational principle of stationarity of total
complementary energy in surface form with respect to the
unknown contact domain and the distribution of contact
pressure within it;

— build a discretization of the variational problem for the
case of axisymmetric contact with simply connected circular
contact spot and implement a numerical method to solve the
system of nonlinear equations;

— perform analysis of model problems, estimate the accu-
racy of the method and verify the obtained results.

4. Variational formulation and numerical solution of
the adhesive contact problem

The following mini-max principle is proposed for the
problem of contact with adhesion
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where C — the sought-for contact domain, p — the unknown
contact pressure, u[p] — the total displacements at the
boundary of the elastic semispace that are evaluated in the
form of integral with the singular kernel derived from the
fundamental solution of the Boussinesq problem
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where E° — the equivalent elastic modulus for both bodies,
h — the initial gap, § — the given relative approach of the
bodies, y — the specific surface energy.

The internal minimization with respect to the con-
tact pressure p with the contact domain being held fixed
involves only the first two terms of the functional (2)
which compose the expression of the total complementary
energy in the original Kalker principle [17]. However,
the values of the contact pressure in (1) contrary to the
above-mentioned principle that is valid for unilateral con-
tact are not limited to strictly positive values. Naturally,
adhesion implies that the bodies may attract to each other
over some part of the contact surface. Thus, the variation
of the function p is arbitrary and extremum conditions
come as

8@ = [8p-u[ p]dS +[8p(h—5)dS =0 Vop. (%)

They are satisfied as long as the following equation for
the elastic displacement, the initial gap and the relative
approach hold in the entire domain of the variable function

u+h-98=0 inC, %)

which totally corresponds to the definition of integration
domain C as the contact area.

It’s easy to deduce that the result of inner minimization
of the complementary energy ®° is the opposite to the ener-
gy of elastic deformations:
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The contribution of the adhesive forces enters the func-
tional (2) similarly with the opposite sign. When contact is
established over some part of the surface C, it eliminates the

free surface and the corresponding energy loss is —Ide.
C
Accordingly, the problem stated in (1) is in total agreement

with the variational principle formulated by Johnson [18]
and Kalker [15], namely: the true contact area and the true



contact pressure distribution that satisfy contact conditions
deliver minimum to the total energy of the system. The
major obstacle to the practical application of this principle
consists in mathematical formalization of the variation of
the contact set C in which the unknown and variable contact
pressure function p is defined. Nonetheless, there are several
possible ways to build approximate methods for adhesive
contact based on the problem statement (1).

This requires first to perform approximation of the in-
volved functions, namely the contact pressure and the initial
gap distribution. Each can make use of an individual basis in
the functional spaces:
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It should be noted that the exact functions together with
the respective approximations are bound to the domain C. In
case when the utilized bases functions are built on a mesh,
the discretization will need to assign appropriate locations
to the corresponding nodes x, and x; in accordance with
the shape of the contact domain. The ultimate discretized
version of the functional (2) will have the following form:
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where p, and #; are the nodal values of the variable contact
pressure and the known initial gap between the bodies,
whilst the bilinear form coefficients are computed for the
given choice of the basis functions as

B, =[0,u[0,]dS, 10)
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The values of the coefficients B, Wy; of the functional (9)
together with the gap /; depend on the contact area. When it
changes, the nodal locations x, and x;are changed as well,
which is not trivial in case of arbitrary shape of contact
domain. One can avoid these difficulties in case of axisym-
metric contact for which a simple and effective numerical
method can be proposed. When the contact domain is re-
stricted to the circular area aligned with the axis of radial
symmetry, its change is determined by a single numerical
parameter s:

C(s)=sC(1)={x:|x|<S}. 12)

Due to the symmetry, all featured functions can be de-
fined on the one-dimensional radial axis r=|x|: p(x)= p(r),
h(x)=h(r). Introducing the affine transformation »=s7 to
the dimensionless coordinates 7 assigned to the interval
[0,1], one can resolve the problem with the locations of nodes
of discretization, the appropriate choice of the basis func-
tions and the evaluation of the approximate functional. The
proposed mesh is defined by a linear scaling

(13)

of equally spaced nodes

and midpoints
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on the segment [0,1]. Piecewise constant basis functions for the
contact pressure and piecewise linear approximation for the gap
are identically defined in actual and dimensionless coordinates

0,(r=9,(), (14)
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Such approach allows obtaining the final expression for
the discretized functional
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The consuming computations of dimensionless B,;, Waj need
only to be accomplished once. To a great convenience and
economy, the actual values of B, W, are updated by simple
multiplication at any subsequent solution step. This advantage
leads to substantial acceleration of the numerical procedure.

Stationarity conditions of the approximate functional (16)
form a system of nonlinear equations

B,p, +Waj(hj -8)=0,
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which define the nodal values of the contact pressures p, and
radius s of the circular contact spot. This system is solved
numerically by the Newton-Raphson method.

5. Representative numerical results

3. 1. Contact of an elastic sphere with a plane

Contact of a sphere with a plane or equivalently of two
spheres is well described by the Hertz theory [18]. The
axisymmetric initial gap in this case is approximated by a
quadratic function

h(r):ZLR, (20)

where R is the combined radius of curvature. The analytical
expression of the ellipsoidal distribution of the contact pres-
sure is obtained from the exact solution of the appropriate



singular integral equation. The actual size of the contact
spot is determined from impenetration condition that needs
to be fulfilled outside. According to this theory, the pressing
force, the relative approach and contact radius are related as:
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Unlike the Hertz theory, the proposed variational for-
mulation does not account explicitly for the displacements
beyond the defined contact area. However, the stationarity
conditions for the functional (2) as proved in the work [15]
provide the expected behavior of the approximate solution.
In particular, the contact pressure values remain positive
and converge down to zero on the edge of the contact zone as
can be seen in Fig. 1. Comparison of the obtained numerical
results with the theoretical estimate of the compressive force
and the contact area size (21) is presented in Fig. 2. Even a
discretization with a few nodes is sufficient for gaining accept-
able tolerance. Nevertheless, certain discrepancy in the com-
puted contact area can be noticed. It is explained by the low
sensitivity of the approximate functional (16) and its deriva-
tive with respect to the variable s when there’s no adhesion.

0.5

—DPEM
- --Hertz

0.4

0.3

p/E

0.2

0.1

0
0 0.2 0.4 0.6 0.8

r'R

Fig. 1. Computed contact pressure distribution compared to
the Hertzian solution
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Fig. 2. Numerical method compared to the Hertz theory:
a — relation between the contact force and the relative
approach; b — relation between the contact radius and the force

The Johnson-Kendall-Roberts (JKR) model for axisym-
metric contact of a sphere in the Hertzian parabolic ap-
proximation has the variational basis [1] that is essentially
similar to the principle used in this work. It differs though
from the proposed approximate solution method as long as
in case of the quadratic initial gap (20) the contact pressure
distribution is known and expressed analytically for the
fixed approach and the size of the circular contact domain.
The following exact relations are therefore established by
the JKR model
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It can be easily noted that this solution reproduces the
Hertz theory formulas (18) once y=0, which means that
there’s no surface adhesion. Otherwise, the contact behaves
completely different. First of all, the contact pressure dis-
tribution is not exclusively positive in the entire interaction
domain anymore. Moreover, the negative values grow indef-
initely with approach to the edge of the contact spot as can
be seen in Fig. 3. Secondly, the relations (19) between the
main quantities unlike in the Hertzian case lack strict mo-
notony. Stable contact spot between the two bodies pressed
together with a sufficiently large force narrows down when
they get pulled apart. The force of contact interaction turns
from positive to negative and attains its minimal value of —P,
(P, =3myR) corresponding to the nonzero contact radius
s, = (97R2/4E*) ". In a force controlled experiment, this is a
moment when the bodies will undergo abrupt and complete
detachment. In case of kinematic control, the distance be-
tween the bodies can be further increased and stable contact
will be maintained up to the moment when the contact ra-
dius drops to s, /3”? [18]. The attractive force will become
-5P /9. at this point. Computation of the entire loading
curve including the unstable portion requires numerical con-
tinuation. A spherical arc-length control is proposed to solve
numerically the nonlinear stationarity conditions (19). It
includes increments of the approach, the total contact force
and the size of the contact. The latter parameter is essential
for the robust convergence of the iterative procedure.
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Fig. 3. Computed contact pressure distribution compared to
the Johnson-Kendall-Roberts model

The adhesion affects the convergence of the approximate
solution with the increase in the number of discretization
nodes. The exact solution has a square root singularity at
the boundary of the contact pressure domain. Compared to
it, the Hertzian distribution is finite-valued, although its de-
rivative has an analogous singularity of the same order. Both
cases have different tolerance of approximation by piecewise
constant functions. The resulting convergence of the pro-
posed method is presented in Fig. 5. It can be concluded that



the contact force is computed more accurate compared to

the contact area.
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Fig. 4. Numerical method compared to the Johnson-Kendall-
Roberts model: a — relation between the contact force and
the relative approach; b — relation between the contact
radius and the force
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Fig. 5. Numerical error for the contact force and the contact
radius depending on the number of discretization nodes

5. 2. Contact of an elastic sphere with an axisymmet-
ric wavy surface

Qualitatively different adhesive properties can be ob-
served for more complex contact geometry. Roughness is
known to have a drastic effect on the strength of adhesion
[19-22]. A model problem that allows studying this phenom-
enon is proposed in [23].

It considers contact of an elastic sphere with a wavy sur-
face of convolution as shown in Fig. 6. As long as the radial
symmetry is preserved, the problem may be solved by the
proposed numerical method as well. The input function of
the initial gap for this case takes the form

h(r)=%+ A(1—cos(2;:r)],

where A is the amplitude of the cosinusoidal profile of the
wavy surface, A is the corresponding wavelength. Under
certain conditions, the derivative A’(r) will stay positive
within the entire body interface. For such geometry, unilat-

(23)

eral contact without any adhesion takes place over a simply
connected circular domain. A sufficient condition can be
established as the inequality A*/(AR)>8.5761 [2]. Contact
pressure distribution at different pressing loads for geometry
parameters A/A=0.01 and A/R=0.1, which satisfy this in-
equality is shown in Fig. 7. As can be seen, the contact trac-
tions remain positive everywhere, thus no interruption of
contact will occur within the circular contact zone. It should
be noted that both the width of the contact area and the
distribution of the contact pressure differ from the Hertzian
solution. The waviness causes stress concentrations around
the asperities or rather the circular ridges of the cosinusoidal
profile and accordingly traction depressions in between. Ob-
viously, with the increase of the amplitude A, this deviation
from the Hertzian case might get such magnitude that the
contact pressure will cross the boundary of positive values
over a certain fraction of the contact which will be automat-
ically broken there. The reduction of the wavelength & will
have a similar effect. Nevertheless, increasing sufficiently the
pressing force will always eliminate these gaps and establish
full contact. For any present roughness, the contribution
of the sphere curvature to the slope of the gap will become
dominant once the contact is expanded at sufficient distance
and will ensure the inequality A’(r)>0 over the major part
of the contact surface. This statement is supported by the
results presented in Fig. 7, b that were obtained numerically
for A/A=0.1 and A/R=0.1 in the assumption of contact
domain connectivity.

Fig. 6. Contact of an elastic sphere with an axisymmetric
wavy surface
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Fig. 7. Contact pressure distribution in contact between an

elastic sphere with an axisymmetric wavy surface assumed
to take place over a simply connected circular domain for:
a—A/»=0.01and ./R=0.1; b— A/2=0.1 and A/ R=0.1

The above-presented analysis may cast an impression that
surface roughness exclusively impedes contact. However, its
effect on the adhesive properties as outlined in the work [2] is
overwhelmingly favorable. Consider similar to this study the
case of A/A=0.01, A/R=0.1 for the adhesion parameter val-
ue y'= 27ty/(E*R)=0.05‘ The computed equilibrium curves
for the contact force and the size of contact are shown in



Fig. 8. Since the introduced roughness is relatively small,
the deviation from the JKR model which covers the contact
of perfectly smooth bodies is also not too significant. From
a state of pressing characterized by conditions 8>0, P >0,
chosen as a starting point, the separation takes place grad-
ually with decreasing approach & and contact force P. This
process may be driven by a controlled change of one of these
two parameters in which the other case is the reaction. If the
force is the controlled variable than the abrupt separation will
occur at a point A where the value of P attains its absolute
minimum. In the case of displacement driven detachment, the
contact will be broken at a different point B on the equilibri-
um curve with the maximal distance —8. It can be seen that
in both regimes a larger tensile force or accordingly a larger
separation distance are required to detach bodies from each
other compared to the case without roughness.
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Fig. 8. Computed equilibrium curves for A/A=0.01, ./ R=0.1

and y’ = 21ty/(E*R)=0.05 compared to the smooth case JKR
solution: a — the contact force; b — the contact radius
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Fig. 9. Computed equilibrium curves for A/A=0.05,
A/R=0.05 and Y"=0.025 compared to the smooth case
JKR solution: a — the contact force; b — the contact radius
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Fig. 10. Energy dissipation due to the load curve instabilities
and abrupt irreversible changes of state for A/A=0.05,
A/R=0.05 and y’=0.025 in case of: a — displacement
control; b— force control

This effect is even more notable when the roughness
amplitude is amplified. The corresponding example for

A/A=0.05, A/R=0.05 and y"=0.025 is presented in Fig. 9.
In this case, the increase in the force of separation is more
than 50 %. Besides the load-separation curve becomes dis-
tinctively non-monotone. As a result, the detachment will
take place in an unstable manner accompanied by a series
of abrupt jumps of state of contact. This introduces a qual-
itatively new dissipative mechanism that is not present for
smooth contact in the original JKR model. The described
behavior is illustrated in Fig. 10 for both types of loading. In
particular, for the displacement control the unstable jumps
will occur at every point of the equilibrium curve where it is
tangent to the vertical lines d=const (Fig. 10, a). During
each such event, the contact spot will shrink instantly by
a finite amount. The contact force will accordingly drop to
the next stable value on the curve. The state of contact will
alter in a similar manner along the horizontal lines F = const
(Fig. 10, b) in case of the force controlled process. These crit-
ical events can be clearly pinpointed to the moments when
the edge of the circular contact passes through the asperities
of wavy profile. The next stable location of the boundary
after the instant jump will be found on the following cosinu-
soid wave at a distance of order the wavelength A. There is an
irreversible loss of elastic energy which is freed upon every
instability and abrupt change of state. Thus, the roughness is
capable to increase the toughness of adhesive contact by this
dissipative mechanism.

6. Discussion of results obtained with the proposed
numerical method

The proposed variational formulation is based on the
Kalker’s variational principle of stationarity of total comple-
mentary energy. Compared to the general case, the variable
contact domain can be determined without difficulties when
the geometry is axisymmetric. This allowed constructing a
simple and effective approximate solution method. The pro-
posed numerical implementation benefits from the one-time
computation of all quadrature coefficients that are updated
with the variation of contact radius at each new iteration by
simple scaling transformation. The arc-length method with
control that includes increments of both contact approach
as well as the contact radius is employed to compute the
unstable sections of the loading curve. The advantage of the
method is that it predicts continuous evolution of the con-
tact domain together with its area. This allows employing it
to study the effect of surface roughness on the contact inter-
action. In particular, the continuous solution provides deriv-
atives of such quantities as the contact area and the relative
approach of bodies which is essential for the estimate of elec-
trical and thermal conductivity as well as contact stiffness.

In should be noted that for certain values of roughness
and adhesion parameters, the contact may initially be estab-
lished over a series of separate circular rings, which violates
the basic assumptions. Nevertheless, further compression of
the bodies to each other will inevitably force these rings to
merge into a connected area of full contact. Hence, leaving
the process of approach beyond the scope of analysis, it is
still possible to use the proposed method to study their de-
tachment.

The further development of the proposed approach is
sought in extension to the case of disconnected contact and
contact geometry different from axisymmetric. This requires
variational apparatus that is capable of handling arbitrary



two-dimensional contact domains. A possible solution can be
obtained by level-set formalism previously applied to contact
of a membrane with a rigid obstacle [24]. The method can
also be applied to other types of surface interaction different
from the molecular adhesion, such as gas pressure and liquid
bridges on the interface [25, 26].

7. Conclusions

1. The work proposes a variational formulation of the
axisymmetric contact problem for bodies with dimensions
essentially larger than the contact zone with an account for
adhesion. In this statement, the contact pressure and the
radius of the circular contact domain are the unknown vari-
ables. They are determined by the principle of the minimum
of total complementary energy derived from the well-known
Kalker’s principle for unilateral contact. The problems
related to variation of contact spot are resolved due to the
restriction to the axisymmetric case. The circular shape is
determined by a single scalar parameter, while the domain
of the sought-for contact pressure distribution function is
defined by a simple affine transformation.

2. The boundary element method is used to obtain the
approximate solution of the posed problem. The system of

nonlinear equations determining the nodal values of the
contact pressure and the contact radius is derived from the
stationarity conditions of the discretized functional of total
complementary energy. A numerical procedure to solve these
equations by the Newton-Raphson method is developed and
implemented. Exact derivatives of the left-hand side of equa-
tions and the spherical control are obtained and used for this
purpose. The numerical procedure demonstrates stable and
rapid convergence. Even when the initial approximation of
the dimension of the contact spot has a threefold excess over
the true value, the method converges just in 5—6 iterations.

3. The effectiveness and accuracy of the proposed meth-
od are verified by solving a series of classical problems. The
method exhibits linear convergence to exact solutions of the
Hertzian and Johnson-Kendall-Roberts problems with just
a couple of dozen of nodes required to reach high accuracy.
The complete response curves for the contact of an elastic
body with a wavy surface are computed including the unsta-
ble sections are computed with the help of the implemented
numerical routine of arc-length control. The obtained results
complied for this case qualitatively and quantitatively with
the analytical Guduru theory. Thus, the proposed numerical
method was proved capable to compute contact behavior
of axisymmetric bodies of complex shape in the presence of
adhesion.
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Onucano aodex8ammuicmo pexicuMie HABAHMANCEHD
npu cmenodosuUx 6uUnpoOY8anHax 00 HAGAHMAICEHD,
wo Oiromv Ha OyodieesvHi MAWUHU NPU PeATbHUX
pexcumax excnayamauii. Bcmanoeaeno neodxio-
HICMb 0OMPUMAHHA HACMYNHUX YMOE BUNPOOYEan-
HSL: 6Y30J1, W0 00CIIOHCYEMbCA, He HADAUNCAEMbCS
00 pe3oHamncy; 6naue wacmom noEMOPHO-3MIHHO20
HABAHMANCEHHS HA NPOUEC PYUHYEAHHS 610 8MOMU
Hesnaunuil. /lompumanis 6Kazanux ymoe 00360J1€
BUKOPUCHOBYBAMU MeOPito UMOBIpHOCMeN ma Mame-
Mamuunoi cmamucmuxu 0Js: PO3PAxXYHKY HA 6UMPU-
8alicmv npu Pi3HOMAHIMHUX NApamempax Hasanma-
HCEHHSL; MOOEII0BAHHS PIZHOMAHIMHUX Y MO8 PoOOmU
Mawunu. Onucana ¢ cmammi mMemoouxa 00360J€
npu cmeoperi 0y0igeabHUX MAWUH eKOHOMUMU 1AC
ma epowi. Ilpu eunpobyeanni mawun ma ix 6y3-
116 eusHauamu Hadiunicms ma pecypc 0e36i0M06HOL
pobomu. Ile 00360a5€ 3HU3UMU MemATIOEMHICTb MA
nidsuwumu axicmo mawunu. Busnavenns wxoeiui-
€HMIB KOPENAUIHO020 36°A3KY NPU BUNPOOYBAHHAX 3
Qopcyeannam 3a wacmomoro ma amnimyooro 003-
80J151€ BU3HAMAMU 38°A3KU MIJNC XAPAKMEPUCMUKAMU
eKCnIYamauiinozo i Cmeno06020 Pecumic Hasanma-
scenns. Buxopucmani noxasnuxu naoiiinocmi 3 6uxo-
pucmanHam Qizuxo-cmamucmuunozo ananizy pooo-
uux npouecie 0y0iseavHoi mexHiKu

Kniouosi caoea: npuckopeni cmendosi eunpooy-
8aHHsA, 6UNAOK06] HABAHMANCEHHS, 2iNOme3a Cnex-
MpanbHo20 Ni0CYMO8YEAHHS, X00068a HACMUHA
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1. Introduction

The present-day production of construction machines is
impossible without conducting a large test cycle before their

Povitroflotsky ave., 31, Kyiv, Ukraine, 03037

delivery to the customer. Tests start from prototype models and
end with serial machines. Prototype tests play an important
role in improving the construction machine design as they can
reveal drawbacks and improve reliability of the machine design.




