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1. Introduction

The phenomenon of adhesion occurs due to the action 
of molecular forces when the surfaces of solids come close 
within their range. As a result, not only compressive but also 
tensile tractions can be transmitted through the contact 
interface. The surface potential that favors expansion of the 
contact area can drive additional deformations required to 
close the gap between the bodies. As a consequence, even 
when the loading is removed a remnant contact is estab-
lished and some additional pulling force is required in order 
to disengage the bodies.

The classical Johnson-Kendall-Roberts theory [1] for the 
adhesive contact of parabolic bodies determines the actual 
contact radius by the minimum of full internal energy that 
includes the energy of elastic deformations and the energy 
of free surface loss. Similar analytical solutions are possible 
for cases with different geometries such as the contact of a 
paraboloid with an axisymmetric wavy surface [2].

Another well-known approach suggested by Derjaguin, 
Muller and Toporov [3] assumes the occurrence of attraction 
in a vicinity just beyond the contact area where the separa-
tion between bodies remains within a certain threshold. The 
advantage of this model is that it accounts explicitly for the 

finite range of molecular forces. On the other hand, it entire-
ly disregards the contribution of these tractions to the elastic 
deformations of the bodies, which is a definite drawback.

In general, analytical models are restricted to certain 
geometry and are frequently based on approximate represen-
tation of the nature of adhesion. Hence, numerical methods 
of analysis are required to predict adhesive behavior in case 
of arbitrary geometry or more sophisticated physical models 
of surface interaction.

2. Literature review and problem statement

The most fundamental approach consists in representing 
the microscopic structure of the bodies and modeling both 
the elastic behavior and contact interaction by means of 
molecular mechanics [4]. This requires determining atomic 
forces between all the particles in the system, which has very 
high computational cost.

A method of intermolecular force homogenization allows 
upscaling the problem to the continuum level and perform 
effectively coarse-grained finite element analysis of adhesive 
contact [5, 6]. Molecular potentials can be also incorporated 
into the boundary element method, where they constitute 
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побудувати наближений розв’язок. Побудована дискретиза-
цiя та отриманi нелiнiйнi рiвняння для визначення невiдомо-
го радiусу кругової плями контакту та вузлових значень кон-
тактного тиску. На вiдмiну вiд iснуючих чисельних методiв, в 
яких область контакту в ходi уточнення змiнюється за раху-
нок додавання або вилучення окремих граничних елементiв цiл-
ком, запропонований пiдхiд дозволяє обчислювати поступову, 
неперервну змiну площi контакту. Для отримання повної кри-
вої адгезiйної взаємодiї включно з дiлянками, де система втра-
чає стiйкiсть, запропонована реалiзацiя методу подовження. 
При цьому задля досягнення збiжностi контроль за змiнними 
навантаження здiйснювався з урахуванням змiни площi плями 
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та площею плями контакту. Запропонований пiдхiд плануєть-
ся розповсюдити на випадок довiльної форми тiл, що контак-
тують, що дозволить дослiдити вплив випадкової шорсткостi 
поверхонь на їхнi адгезiйнi властивостi
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the relation between the contact pressure and the gap be-
tween the body surfaces [7–9]. However, the accurate re-
sults can only be obtained with extremely fine discretization 
especially at the boundary of the contact spot because of the 
essential nonlinearity of this relation.

A heuristic criterion of surface detachment in adhesive 
contact is proposed in [10, 11]. According to it, contact is 
broken abruptly at a discrete element of a rectangular mesh 
when a certain level of tensile stress is achieved. The criti-
cal value is determined by the specific energy of adhesion, 
elastic material properties and the mesh size. However, 
this method also has high requirements regarding the mesh 
size for which accurate results are obtained. Moreover, the 
proposed algorithm does not ensure the uniqueness of the 
solution. 

When contacting surfaces are rough, the interaction is 
localized initially around the asperities. The entire distribu-
tion of the contact tractions can be approximated then by a 
discrete system of localized contacts which is the main idea 
of the so-called multiasperity methods [12–14]. On the plus 
side, it enables analysis of essentially large systems with rel-
atively few unknowns. However, the discrepancy caused by 
simplifying assumptions is hard to control. In particular, it 
increases once the distance between separate contact spots 
shrinks so that they actually merge together.

It can be concluded that an approximate method for anal-
ysis of surface adhesion with lesser computational cost and 
acceptable accuracy is still required. It is proposed to devel-
op it based on the existing boundary element methods, using 
in particular generalized minimum principle for adhesive 
contact and its formulations proposed in [15]. This requires 
adaptation of the variational statement for the numerical 
application in the general case of axisymmetric contact. As 
long as the developed method is meant for modification of 
existing boundary element programs, Abel transformation is 
avoided unlike [16]. It will be used for analysis of adhesive 
properties of various bodies with surface geometry met in 
practical applications. In particular, the influence of rough-
ness on the strength of adhesion is a crucial question.

3. The aim and objectives of the study

The aim of this work is an effective and versatile reali-
zation of the boundary element method for adhesive contact 
problems. It is meant to preserve thermodynamical consis-
tency of fundamental Johnson-Kendall-Roberts model. It 
suggests generalization of the variational formulation by  
J. Kalker which adds a separate energy term representing 
the contribution of adhesive interaction. This in turn allows 
for a standard approach to approximate solution by the Ritz 
method.

To achieve the set aim, the following tasks need to be 
solved:

– formulate a variational principle of stationarity of total 
complementary energy in surface form with respect to the 
unknown contact domain and the distribution of contact 
pressure within it;

– build a discretization of the variational problem for the 
case of axisymmetric contact with simply connected circular 
contact spot and implement a numerical method to solve the 
system of nonlinear equations;

– perform analysis of model problems, estimate the accu-
racy of the method and verify the obtained results.

4. Variational formulation and numerical solution of 
the adhesive contact problem

The following mini-max principle is proposed for the 
problem of contact with adhesion

max min [ , ],
pC

p CΦ 				    (1)

1
[ , ] [ ]d ( )d d ,

2 C C C

p C p u p S p h S SΦ = ⋅ + ⋅ - d + g∫ ∫ ∫ 	 (2)

where C – the sought-for contact domain, p – the unknown 
contact pressure, u[p] – the total displacements at the 
boundary of the elastic semispace that are evaluated in the 
form of integral with the singular kernel derived from the 
fundamental solution of the Boussinesq problem

1 ( )
[ ]( ) d d ,

* ( , ) x y
C

p y
u p x S S

E d x y
=

p ∫ 			   (3)

where E* – the equivalent elastic modulus for both bodies, 
h – the initial gap, δ – the given relative approach of the 
bodies, γ – the specific surface energy. 

The internal minimization with respect to the con-
tact pressure p with the contact domain being held fixed 
involves only the first two terms of the functional (2) 
which compose the expression of the total complementary 
energy in the original Kalker principle [17]. However, 
the values of the contact pressure in (1) contrary to the 
above-mentioned principle that is valid for unilateral con-
tact are not limited to strictly positive values. Naturally, 
adhesion implies that the bodies may attract to each other 
over some part of the contact surface. Thus, the variation 
of the function p is arbitrary and extremum conditions 
come as

[ ]d ( )d 0 .
C C

p u p S p h S pdΦ = d ⋅ + d - d = ∀d∫ ∫ 		  (4)

They are satisfied as long as the following equation for 
the elastic displacement, the initial gap and the relative 
approach hold in the entire domain of the variable function

0 ,u h in C+ - d = 				    (5)

which totally corresponds to the definition of integration 
domain C as the contact area.

It’s easy to deduce that the result of inner minimization 
of the complementary energy eΦ  is the opposite to the ener-
gy of elastic deformations:

1
[ , ] [ ]d ( )d

2

1
[ ]d .

2

e

C C

e

C

p C p u p S p h S

p u p S

Φ = ⋅ + ⋅ - d =

= - ⋅ = -Π

∫ ∫

∫ 		  (6)

The contribution of the adhesive forces enters the func-
tional (2) similarly with the opposite sign. When contact is 
established over some part of the surface C, it eliminates the 

free surface and the corresponding energy loss is d .
C

S- g∫   

 Accordingly, the problem stated in (1) is in total agreement 
with the variational principle formulated by Johnson [18] 
and Kalker [15], namely: the true contact area and the true 
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contact pressure distribution that satisfy contact conditions 
deliver minimum to the total energy of the system. The 
major obstacle to the practical application of this principle 
consists in mathematical formalization of the variation of 
the contact set C in which the unknown and variable contact 
pressure function p is defined. Nonetheless, there are several 
possible ways to build approximate methods for adhesive 
contact based on the problem statement (1).

This requires first to perform approximation of the in-
volved functions, namely the contact pressure and the initial 
gap distribution. Each can make use of an individual basis in 
the functional spaces:

( ) ( ),a a
a

p x p x≅ f∑ 				    (7)

( ) ( ).j j
j

h x h x≅ ψ∑ 				    (8)

It should be noted that the exact functions together with 
the respective approximations are bound to the domain C. In 
case when the utilized bases functions are built on a mesh, 
the discretization will need to assign appropriate locations 
to the corresponding nodes xa and xj in accordance with 
the shape of the contact domain. The ultimate discretized 
version of the functional (2) will have the following form:

1
[ , ] ( ) ,

2a a ab b a aj jp C p B p p W h CΦ = + - d + g 		  (9)

where pa and hj are the nodal values of the variable contact 
pressure and the known initial gap between the bodies, 
whilst the bilinear form coefficients are computed for the 
given choice of the basis functions as

[ ]d ,ab a b
C

B u S= f f∫ 				    (10)

d .aj a j
C

W S= f ψ∫ 				    (11)

The values of the coefficients Bab, Waj of the functional (9) 
together with the gap hj depend on the contact area. When it 
changes, the nodal locations xa and xj are changed as well, 
which is not trivial in case of arbitrary shape of contact 
domain. One can avoid these difficulties in case of axisym-
metric contact for which a simple and effective numerical 
method can be proposed. When the contact domain is re-
stricted to the circular area aligned with the axis of radial 
symmetry, its change is determined by a single numerical 
parameter s:

{ }( ) (1) : .C s sC x x S= = < 			   (12)

Due to the symmetry, all featured functions can be de-
fined on the one-dimensional radial axis r x= : ( ) ( ),p x p r=  

( ) ( ).h x h r=  Introducing the affine transformation r sr= � to 
the dimensionless coordinates r�  assigned to the interval 
[0,1], one can resolve the problem with the locations of nodes 
of discretization, the appropriate choice of the basis func-
tions and the evaluation of the approximate functional. The 
proposed mesh is defined by a linear scaling

,a a j jr sr r sr= =� � 				    (13)

of equally spaced nodes 

1
0, , ,1jr

N
=� …  

and midpoints 

0.5 1.5 0.5
, , ,a

N
r

N N N
-

=� …  

on the segment [0,1]. Piecewise constant basis functions for the 
contact pressure and piecewise linear approximation for the gap 
are identically defined in actual and dimensionless coordinates

( ) ( ),a ar rf = f� � 					    (14)

( ) ( ).j jr rψ = ψ� � 				    (15)

Such approach allows obtaining the final expression for 
the discretized functional

2

[ , ( )] [ , ]

1
( )

2
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p C s p s

p B p p W h s
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and computing its coefficients as

3 ,ab abB s B= �  [ ]d ,ab a b

C

B u S= f ⋅ f∫
�

� �� � 			   (17)
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C
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�

� �� � 			   (18)

The consuming computations of dimensionless ,abB�  ajW�

 

need 
only to be accomplished once. To a great convenience and 
economy, the actual values of Bab, Waj are updated by simple 
multiplication at any subsequent solution step. This advantage 
leads to substantial acceleration of the numerical procedure.

Stationarity conditions of the approximate functional (16) 
form a system of nonlinear equations

( ) 0,

1
( ) 2 0.

2

ab b aj j

aj jab
a b a j a aj

B p W h

W hB
p p p h p W s

s s s

+ - d =

 ∂ ∂∂

+ - d + + pg = ∂ ∂ ∂
, 

(19)

which define the nodal values of the contact pressures pa and 
radius s of the circular contact spot. This system is solved 
numerically by the Newton-Raphson method.

5. Representative numerical results

5. 1. Contact of an elastic sphere with a plane
Contact of a sphere with a plane or equivalently of two 

spheres is well described by the Hertz theory [18]. The 
axisymmetric initial gap in this case is approximated by a 
quadratic function

2

( ) ,
2
r

h r
R

= 					     (20)

where R is the combined radius of curvature. The analytical 
expression of the ellipsoidal distribution of the contact pres-
sure is obtained from the exact solution of the appropriate 
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singular integral equation. The actual size of the contact 
spot is determined from impenetration condition that needs 
to be fulfilled outside. According to this theory, the pressing 
force, the relative approach and contact radius are related as:

1/2 3/24
,

3
P R E ∗= d  

1/32

2

9
,

16
P

RE ∗

 
d =   

 

1/3
3

.
4
PR

s R
E ∗

 = d =   
		  (21)

Unlike the Hertz theory, the proposed variational for-
mulation does not account explicitly for the displacements 
beyond the defined contact area. However, the stationarity 
conditions for the functional (2) as proved in the work [15] 
provide the expected behavior of the approximate solution. 
In particular, the contact pressure values remain positive 
and converge down to zero on the edge of the contact zone as 
can be seen in Fig. 1. Comparison of the obtained numerical 
results with the theoretical estimate of the compressive force 
and the contact area size (21) is presented in Fig. 2. Even a 
discretization with a few nodes is sufficient for gaining accept-
able tolerance. Nevertheless, certain discrepancy in the com-
puted contact area can be noticed. It is explained by the low 
sensitivity of the approximate functional (16) and its deriva-
tive with respect to the variable s when there’s no adhesion.

Fig. 1. Computed contact pressure distribution compared to 
the Hertzian solution

a  

b 

Fig. 2. Numerical method compared to the Hertz theory:  
a – relation between the contact force and the relative 

approach; b – relation between the contact radius and the force

The Johnson-Kendall-Roberts (JKR) model for axisym-
metric contact of a sphere in the Hertzian parabolic ap-
proximation has the variational basis [1] that is essentially 
similar to the principle used in this work. It differs though 
from the proposed approximate solution method as long as 
in case of the quadratic initial gap (20) the contact pressure 
distribution is known and expressed analytically for the 
fixed approach and the size of the circular contact domain. 
The following exact relations are therefore established by 
the JKR model

2 2
,

s s
R E ∗

pg
d = -  

3
34

16 .
3
E s

P E s
R

∗
∗= + pg 		  (22)

It can be easily noted that this solution reproduces the 
Hertz theory formulas (18) once 0,g =  which means that 
there’s no surface adhesion. Otherwise, the contact behaves 
completely different. First of all, the contact pressure dis-
tribution is not exclusively positive in the entire interaction 
domain anymore. Moreover, the negative values grow indef-
initely with approach to the edge of the contact spot as can 
be seen in Fig. 3. Secondly, the relations (19) between the 
main quantities unlike in the Hertzian case lack strict mo-
notony. Stable contact spot between the two bodies pressed 
together with a sufficiently large force narrows down when 
they get pulled apart. The force of contact interaction turns 
from positive to negative and attains its minimal value of cP-   
( 3cP R= pg ) corresponding to the nonzero contact radius 

( )1/329 4 .cs R E ∗= g  In a force controlled experiment, this is a 
moment when the bodies will undergo abrupt and complete 
detachment. In case of kinematic control, the distance be-
tween the bodies can be further increased and stable contact 
will be maintained up to the moment when the contact ra-
dius drops to 2/3/ 3cs  [18]. The attractive force will become 

5 9.cP-  at this point. Computation of the entire loading 
curve including the unstable portion requires numerical con-
tinuation. A spherical arc-length control is proposed to solve 
numerically the nonlinear stationarity conditions (19). It 
includes increments of the approach, the total contact force 
and the size of the contact. The latter parameter is essential 
for the robust convergence of the iterative procedure.

Fig. 3. Computed contact pressure distribution compared to 
the Johnson-Kendall-Roberts model

The adhesion affects the convergence of the approximate 
solution with the increase in the number of discretization 
nodes. The exact solution has a square root singularity at 
the boundary of the contact pressure domain. Compared to 
it, the Hertzian distribution is finite-valued, although its de-
rivative has an analogous singularity of the same order. Both 
cases have different tolerance of approximation by piecewise 
constant functions. The resulting convergence of the pro-
posed method is presented in Fig. 5. It can be concluded that 
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the contact force is computed more accurate compared to 
the contact area.

a 

b 

Fig. 4. Numerical method compared to the Johnson-Kendall-
Roberts model: a – relation between the contact force and 

the relative approach; b – relation between the contact 
radius and the force

Fig. 5. Numerical error for the contact force and the contact 
radius depending on the number of discretization nodes

5. 2. Contact of an elastic sphere with an axisymmet-
ric wavy surface

Qualitatively different adhesive properties can be ob-
served for more complex contact geometry. Roughness is 
known to have a drastic effect on the strength of adhesion 
[19–22]. A model problem that allows studying this phenom-
enon is proposed in [23].

It considers contact of an elastic sphere with a wavy sur-
face of convolution as shown in Fig. 6. As long as the radial 
symmetry is preserved, the problem may be solved by the 
proposed numerical method as well. The input function of 
the initial gap for this case takes the form

2 2
( ) 1 cos ,

2
r r

h r A
R

 p = + -     l
			   (23)

where A is the amplitude of the cosinusoidal profile of the 
wavy surface, λ is the corresponding wavelength. Under 
certain conditions, the derivative ( )h r′  will stay positive 
within the entire body interface. For such geometry, unilat-

eral contact without any adhesion takes place over a simply 
connected circular domain. A sufficient condition can be 
established as the inequality ( )2 8.5761ARl >  [2]. Contact 
pressure distribution at different pressing loads for geometry 
parameters 0.01A l =  and 0.1,Rl =  which satisfy this in-
equality is shown in Fig. 7. As can be seen, the contact trac-
tions remain positive everywhere, thus no interruption of 
contact will occur within the circular contact zone. It should 
be noted that both the width of the contact area and the 
distribution of the contact pressure differ from the Hertzian 
solution. The waviness causes stress concentrations around 
the asperities or rather the circular ridges of the cosinusoidal 
profile and accordingly traction depressions in between. Ob-
viously, with the increase of the amplitude A, this deviation 
from the Hertzian case might get such magnitude that the 
contact pressure will cross the boundary of positive values 
over a certain fraction of the contact which will be automat-
ically broken there. The reduction of the wavelength λ will 
have a similar effect. Nevertheless, increasing sufficiently the 
pressing force will always eliminate these gaps and establish 
full contact. For any present roughness, the contribution 
of the sphere curvature to the slope of the gap will become 
dominant once the contact is expanded at sufficient distance 
and will ensure the inequality ( ) 0h r >′  over the major part 
of the contact surface. This statement is supported by the 
results presented in Fig. 7, b that were obtained numerically 
for 0.1A l =  and 0.1l =R  in the assumption of contact 
domain connectivity.

Fig. 6. Contact of an elastic sphere with an axisymmetric 
wavy surface

а                                                b 

Fig. 7. Contact pressure distribution in contact between an 
elastic sphere with an axisymmetric wavy surface assumed 
to take place over a simply connected circular domain for: 
а – A/λ=0.01 and λ/R=0.1; b – A/λ=0.1 and λ/R=0.1

The above-presented analysis may cast an impression that 
surface roughness exclusively impedes contact. However, its 
effect on the adhesive properties as outlined in the work [2] is 
overwhelmingly favorable. Consider similar to this study the 
case of 0.01,A l =  0.1Rl =  for the adhesion parameter val-
ue ( )2 0.05.E R∗g = pg =′  The computed equilibrium curves 
for the contact force and the size of contact are shown in  
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Fig. 8. Since the introduced roughness is relatively small, 
the deviation from the JKR model which covers the contact 
of perfectly smooth bodies is also not too significant. From 
a state of pressing characterized by conditions 0,d >  0,P >  
chosen as a starting point, the separation takes place grad-
ually with decreasing approach δ and contact force P. This 
process may be driven by a controlled change of one of these 
two parameters in which the other case is the reaction. If the 
force is the controlled variable than the abrupt separation will 
occur at a point A where the value of P attains its absolute 
minimum. In the case of displacement driven detachment, the 
contact will be broken at a different point B on the equilibri-
um curve with the maximal distance -d. It can be seen that 
in both regimes a larger tensile force or accordingly a larger 
separation distance are required to detach bodies from each 
other compared to the case without roughness.

a                                            b 
 

Fig. 8. Computed equilibrium curves for A/λ=0.01, λ/R=0.1 

and ( )2 0.05E R∗g = pg =′  compared to the smooth case JKR 
solution: a – the contact force; b – the contact radius

a                                            b 

Fig. 9. Computed equilibrium curves for 0.05,A l =  
0.05Rl =  and 0.025g =′  compared to the smooth case 

JKR solution: a – the contact force; b – the contact radius

a                                            b 
 

Fig. 10. Energy dissipation due to the load curve instabilities 
and abrupt irreversible changes of state for 0.05,A l =  

0.05Rl =  and 0.025g =′  in case of: a – displacement 
control; b – force control

This effect is even more notable when the roughness 
amplitude is amplified. The corresponding example for  

0.05,A l =  0.05Rl =  and 0.025g =′  is presented in Fig. 9. 
In this case, the increase in the force of separation is more 
than 50 %. Besides the load-separation curve becomes dis-
tinctively non-monotone. As a result, the detachment will 
take place in an unstable manner accompanied by a series 
of abrupt jumps of state of contact. This introduces a qual-
itatively new dissipative mechanism that is not present for 
smooth contact in the original JKR model. The described 
behavior is illustrated in Fig. 10 for both types of loading. In 
particular, for the displacement control the unstable jumps 
will occur at every point of the equilibrium curve where it is 
tangent to the vertical lines constd =  (Fig. 10, a). During 
each such event, the contact spot will shrink instantly by 
a finite amount. The contact force will accordingly drop to 
the next stable value on the curve. The state of contact will 
alter in a similar manner along the horizontal lines constF =  
(Fig. 10, b) in case of the force controlled process. These crit-
ical events can be clearly pinpointed to the moments when 
the edge of the circular contact passes through the asperities 
of wavy profile. The next stable location of the boundary 
after the instant jump will be found on the following cosinu-
soid wave at a distance of order the wavelength λ. There is an 
irreversible loss of elastic energy which is freed upon every 
instability and abrupt change of state. Thus, the roughness is 
capable to increase the toughness of adhesive contact by this 
dissipative mechanism.

6. Discussion of results obtained with the proposed 
numerical method 

The proposed variational formulation is based on the 
Kalker’s variational principle of stationarity of total comple-
mentary energy. Compared to the general case, the variable 
contact domain can be determined without difficulties when 
the geometry is axisymmetric. This allowed constructing a 
simple and effective approximate solution method. The pro-
posed numerical implementation benefits from the one-time 
computation of all quadrature coefficients that are updated 
with the variation of contact radius at each new iteration by 
simple scaling transformation. The arc-length method with 
control that includes increments of both contact approach 
as well as the contact radius is employed to compute the 
unstable sections of the loading curve. The advantage of the 
method is that it predicts continuous evolution of the con-
tact domain together with its area. This allows employing it 
to study the effect of surface roughness on the contact inter-
action. In particular, the continuous solution provides deriv-
atives of such quantities as the contact area and the relative 
approach of bodies which is essential for the estimate of elec-
trical and thermal conductivity as well as contact stiffness.

In should be noted that for certain values of roughness 
and adhesion parameters, the contact may initially be estab-
lished over a series of separate circular rings, which violates 
the basic assumptions. Nevertheless, further compression of 
the bodies to each other will inevitably force these rings to 
merge into a connected area of full contact. Hence, leaving 
the process of approach beyond the scope of analysis, it is 
still possible to use the proposed method to study their de-
tachment.

The further development of the proposed approach is 
sought in extension to the case of disconnected contact and 
contact geometry different from axisymmetric. This requires 
variational apparatus that is capable of handling arbitrary 
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two-dimensional contact domains. A possible solution can be 
obtained by level-set formalism previously applied to contact 
of a membrane with a rigid obstacle [24]. The method can 
also be applied to other types of surface interaction different 
from the molecular adhesion, such as gas pressure and liquid 
bridges on the interface [25, 26].

7. Conclusions

1. The work proposes a variational formulation of the 
axisymmetric contact problem for bodies with dimensions 
essentially larger than the contact zone with an account for 
adhesion. In this statement, the contact pressure and the 
radius of the circular contact domain are the unknown vari-
ables. They are determined by the principle of the minimum 
of total complementary energy derived from the well-known 
Kalker’s principle for unilateral contact. The problems 
related to variation of contact spot are resolved due to the 
restriction to the axisymmetric case. The circular shape is 
determined by a single scalar parameter, while the domain 
of the sought-for contact pressure distribution function is 
defined by a simple affine transformation.

2. The boundary element method is used to obtain the 
approximate solution of the posed problem. The system of 

nonlinear equations determining the nodal values of the 
contact pressure and the contact radius is derived from the 
stationarity conditions of the discretized functional of total 
complementary energy. A numerical procedure to solve these 
equations by the Newton-Raphson method is developed and 
implemented. Exact derivatives of the left-hand side of equa-
tions and the spherical control are obtained and used for this 
purpose. The numerical procedure demonstrates stable and 
rapid convergence. Even when the initial approximation of 
the dimension of the contact spot has a threefold excess over 
the true value, the method converges just in 5–6 iterations.

3. The effectiveness and accuracy of the proposed meth-
od are verified by solving a series of classical problems. The 
method exhibits linear convergence to exact solutions of the 
Hertzian and Johnson-Kendall-Roberts problems with just 
a couple of dozen of nodes required to reach high accuracy. 
The complete response curves for the contact of an elastic 
body with a wavy surface are computed including the unsta-
ble sections are computed with the help of the implemented 
numerical routine of arc-length control. The obtained results 
complied for this case qualitatively and quantitatively with 
the analytical Guduru theory. Thus, the proposed numerical 
method was proved capable to compute contact behavior 
of axisymmetric bodies of complex shape in the presence of 
adhesion.
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Описано адекватнiсть режимiв навантажень 
при стендових випробуваннях до навантажень, 
що дiють на будiвельнi машини при реальних 
режимах експлуатацiї. Встановлено необхiд-
нiсть дотримання наступних умов випробуван-
ня: вузол, що дослiджується, не наближається 
до резонансу; вплив частот повторно-змiнного 
навантаження на процес руйнування вiд втоми 
незначний. Дотримання вказаних умов дозволяє 
використовувати теорiю ймовiрностей та мате-
матичної статистики для: розрахунку на витри-
валiсть при рiзноманiтних параметрах наванта-
ження; моделювання рiзноманiтних умов роботи 
машини. Описана в статтi методика дозволяє 
при створенi будiвельних машин економити час 
та грошi. При випробуваннi машин та їх вуз-
лiв визначати надiйнiсть та ресурс безвiдмовної 
роботи. Це дозволяє знизити металоємнiсть та 
пiдвищити якiсть машини. Визначення коефiцi-
єнтiв кореляцiйного зв’язку при випробуваннях з 
форсуванням за частотою та амплiтудою доз-
воляє визначати зв’язки мiж характеристиками 
експлуатацiйного i стендового режимiв наванта-
ження. Використанi показники надiйностi з вико-
ристанням фiзико-статистичного аналiзу робо-
чих процесiв будiвельної технiки

Ключовi слова: прискоренi стендовi випробу-
вання, випадковi навантаження, гiпотеза спек-
трального пiдсумовування, ходова частина
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