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matches the requirements of performance, reliability dura-
bility, and accounting for the design complexity.

When investigating the dynamics of load-lifting machines, 
the model “trolley ‒ load on a flexible suspension” is tradi-
tionally applied. Paper [1] describes the model “trolley –  
load on a flexible suspension” by a system of differential 
equations, in which a rope deviation from the vertical is 
accepted as the load displacement and a speed direction is 
taken into consideration when determining a resistance to 
the trolley displacement. However, the authors assumed the 
linear motion of a load, so the model does not account for 
the vertical displacement at swinging. Paper [2] presented 
a nonlinear model of the crane trolley. The equations are 
constructed in the independent generalized coordinates: a 
trolley motion and a load deviation angle. Control parame-
ter is the driving force, which is applied through the rope of 
a traction winch. A similar model is used in [3], which also 
employs as the second generalized coordinate a rope devi-
ation angle from the vertical. Authors of paper [4] derived, 
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1. Introduction

The distinctive feature of cable cranes are large spans 
and high speed of movement of freight trolleys, which en-
sures their required performance. In addition, to improve 
reliability and durability, it is necessary to take into con-
sideration additional dynamic loads that emerge in separate 
nodes of the structure. Moreover, at present there is a strong 
tendency to a more sophisticated design of cable cranes, 
hence the need to employ the existing, and to develop new, 
approximation methods for both analytical and numerical 
analyses.

2. Literature review and problem statement

Given the above, we shall analyze existing mathematical 
models of the system “trolley – load on a flexible suspension”, 
which will allow us to determine the one that most closely 
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Наведено результати дослiджень, присвячених 
вивченню закономiрностей протiкання динамiчних 
процесiв i виникнення динамiчних навантажень при 
русi вiзка кабельного крана з пiдвiшеним ванта-
жем. Данi закономiрностi в подальшому можуть 
бути врахованi при розрахунку реальних кранiв для 
пiдвищення їх надiйностi та довговiчностi, недо-
пущення несприятливих явищ при русi вантажно-
го вiзка, а також для визначення параметрiв кранiв 
нової конструкцiї. Динамiка кабельного крана роз-
глядається з точки зору взаємодiї елементiв систе-
ми «вiзок-вантаж-несучий канат». Удосконалено 
математичну модель системи «вiзок-вантаж-не-
сучий канат» шляхом введення трьох демпфую-
чих коефiцiєнтiв, кожен з яких характеризує роз-
сiювання енергiї при рiзних фiзичних процесах – рух 
вiзка, вантажу та швидкостi вiтрового наванта-
ження. Для чисельного моделювання використаний 
програмний комплекс KiDyM, який на аналiтично-
му рiвнi дозволяє будувати рiвняння руху систем, що 
описуються сукупнiстю звичайних диференцiальних 
рiвнянь. Отримано закономiрностi змiни нормаль-
ної i дотичної сил iнерцiї, що мають мiсце при русi 
вiзка по криволiнiйнiй траєкторiї. Оцiненi їх харак-
тер i величина. Визначено динамiчнi характеристи-
ки системи з урахуванням впливу мас вантажу що 
розгойдується, вiзка i кривизни каната. Розглянуто 
аварiйний режим, що виникає при обривi тягово-
го каната i вплив вiтрового навантаження на роз-
гойдування вантажу. Визначено причини виникнен-
ня реверсу швидкостi вантажного вiзка i шляхи його 
усунення. Дослiджено вплив вiтрового навантажен-
ня на кут вiдхилення вантажу вiд вертикалi
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based on the Lagrangian equations, a mathematical model of 
the pendulum with a variable length of the load suspension 
aimed to simulate simultaneous lifting and horizontal dis-
placement of the load.

If the mass of the suspended load is very much distribut-
ed for height, the model of a trolley with a double pendulum 
is considered [5]. 

There are known models that take into consideration the 
geometrical features of the suspension point of the load and 
trajectories of its movement. Worth noting is a model for 
the transportation of a long load between two bridge cranes, 
which are at different levels of height and work together 
[6]. Authors of paper [7] obtained, based on the linearized 
Lagrangian equations, a model that describes oscillations of 
a spherical pendulum.

Damping properties of a cable crane elements must be 
taken into account because they have a significant quantita-
tive and qualitative impact on the character of change in the 
generalized coordinates and velocities. In addition, a cable 
crane’s trolley model in all cited sources should be improved 
by integrating the vertical deflection of the rope along which 
it moves. 

Paper [8] examines oscillatory processes in the rope 
along which a freight trolley moves. The focus is on the 
task on determining the deflection and tension of the rope. 
In this case, the rope is described by the equation of a chain 
line; losses for the internal friction in the rope are also 
accounted for. However, a trolley in the estimated model 
is represented in the form of a concentrated mass, which 
means that the impact of the trolley on a rope is not taken 
into consideration in full.

Calculation of the shape of the sagging of a rope that has 
a linear weight and rigidly fixed ends is addressed in study 
[9]. Determining the geometrical characteristics of the rope 
excluded the trolley and the load. 

Paper [10] analyses the dynamics of a cable system under 
the modes of load lifting and trolley movement along the car-
rying rope. In this case, using the Lagrange equations, the 
authors defined the character of oscillations of the carrying 
and traction ropes. Dissipative function, however, does not 
take into consideration the influence of wind and fluctua-
tions of the suspended load.

Work [11] investigated the dynamics of a cable crane 
with a varying height of supports; the trolley with a sus-
pended load moved under the force of gravity. The principle 
of crane operation is similar to the design described in [12]. 
A mathematical model consisted of two ordinary differential 
equations and made it possible to determine the vertical and 
horizontal position of the load’s point of suspension. The au-
thors took into consideration elastic properties of the rope. 
They performed numerical simulation of the trolley motion 
with a suspended load based on the constructed mathemati-
cal model and applied parameters of an actual crane. Howev-
er, a given example also did not take into consideration either 
friction forces or damping.

In [13], authors built a mathematical model that allows 
taking into consideration the curvature of a carrying rope, 
as well as the forces of resistance to motion in the presence 
of friction and wind. In this case, the authors chose a single 
coefficient for the equivalent viscous friction that relates to 
the trolley displacement speed, to the load angular velocity, 
and to the speed of a wind load. Given different physical 
nature of the enumerated phenomena, such a choice appears 
too general.

Thus, the existing mathematical models pay most at-
tention on either the oscillatory processes in carrying and 
traction ropes, or the characteristics of motion of a trolley 
and a load along a simplified trajectory of the sagging rope. 
The interaction between elements of the system “trolley –  
load – carrying rope” remains insufficiently studied. Re-
searchers do not consider the normal and tangential in-
ertial forces occurring at the motion of a trolley along a 
curved trajectory, nor the impact of masses of a swinging 
load, trolley, and a curvature of the rope, on the dynamic 
characteristics of the system. None of the cited papers 
investigates an emergency mode related to the break of a 
traction rope; nor the effect of a wind load on the swinging 
of a load.

3. The aim and objectives of the study

The aim of present research is to study patterns in 
the progress of dynamic processes and in the occurrence 
of dynamic loads when a trolley of the cable crane moves 
with a suspended load. Such patterns could be subse-
quently taken into consideration when calculating actual 
cranes, in order to improve their reliability and durability, 
to avoid unfavorable events during motion of a freight 
trolley, as well as to define parameters of cranes of the 
new design.

To accomplish the aim, the following tasks have been set:
– to improve a mathematical model of the system “trol-

ley ‒ load ‒ carrying rope” through better differentiated 
accounting for the damping properties of the system;

– to determine the patterns in change in the dynamic 
parameters of the system, to identify unfavorable events and 
techniques to address them; 

– to estimate the character and magnitude of additional 
dynamic loads when a trolley moves along a curvilinear rope 
under standard and emergency operating modes;

– to define patterns in the impact of wind load on the 
swinging of the load.

4. Mathematical model of the system  
“trolley – load – carrying rope” in a cable crane

The design scheme, shown in Fig. 1, is described by a 
system of equations (1) [13].

Fig. 1. Design scheme for the motion of a trolley along  
a carrying rope of the cable crane

Differential equations take the form:
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where m1 and m2 are the masses of a trolley and a load, re-
spectively; x is the horizontal coordinate of the trolley; y is 
the vertical coordinate of the trolley; μ1 is the generalized 
coefficient of resistance to the motion of a trolley and a load; 
φ is the angle of rope deviation from the vertical; F(t) is a 
function of the trolley control; l is the length of the load; β 
is the inclination angle of the straight line connecting sup-
ports; W is the force of resistance to the motion of a trolley.

2 cos ,W Q= µ g

where Q is the total weight of the trolley and load; μ2 is the 
reduced resistance coefficient when a trolley moves along 
a traction rope; Hx is the horizontal component of the rope 
tension; gk is the rope weight per unit length; L is the span 
of a crane; γ is the inclination angle of the tangent to curve 

( )y x  at the point of trolley position; V is the wind load. 
In the reduced system, ( )y x is the parabolic trajectory of 

a trolley whose equation takes the form [14]:

Because the physical processes that determine the damp-
ing properties of the system related to the movement of a 
trolley, a load and the speed of a wind load are of different 
nature, it is wrong to describe these processes with a single 
coefficient of equivalent viscous friction μ1. It is therefore 
proposed to improve system (1) by introducing three sepa-
rate coefficients μ11, μ12, μ13 to the second equation (2).
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Numerical analysis of the dynamics of a cable crane re-
quires the integration of a system of equations (3). To this end, 
we use the Runge-Kutta-Merson method, which, along with a 
system of computer algebra, is built into the software package 
KiDyM [15]. The system of computer algebra from the pack-
age KiDyM, based on the application of an apparatus of struc-
tural matrices, at the analytical level enables the construction 
of differential equations of motion of mechanical systems. 

System (3) in the form of Cauchy takes the form:
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5. Results of numerical simulation

To perform numerical calculations, we accepted param-
eters of a full-scale crane designed at the Institute “Soyu-
zprommekhanizaciya”, Kharkiv, Ukraine (Fig. 2). This al-
lowed us to compare simulation results with the design 
calculations of an actual crane and quantify the magnitude 
of a dynamic addition. 

Fig. 2. Dimensional drawing of an actual cable crane used for 
modeling

We made several assumptions while modeling, which 
could be disregarded in further research with a more com-
plex problem statement:

1) elastic properties of the carrying, freight, and traction 
ropes shall not be taken into consideration;

2) inertial properties of the traction and freight ropes 
shall not be taken into consideration;

3) a distance between outer wheels of the trolley is con-
sidered small compared with the magnitude of the span;
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4) a freight trolley moves along a parabolic trajectory;
5) wind load is ignored.
Parameters of an actual crane, applied in mathematical 

model (2), accept the following values:

1 2900m =  kg; 2 20000m =  kg;

224649Q =  Н; 300L =  m; 1 5l = -  m; 

277kg =  N/m; 1500000xH =  N;

11 0,0021µ =  kg/s; 12 0,0005µ =  kg/s; 13 0,0026µ =  kg/s; 

2 0,02;µ =  1,5b = °;  2 cos .W Q= ⋅µ ⋅ g

Initial speed of the trolley is 0 0,001v = m/s.
The trolley moves under the action of control influence 

that changes according to law:

( ) 0,5 abs(sin ),F t Q= - ⋅ ⋅ g  

and the force of its natural weight. The form of control 
function is chosen with respect to the required motion 
speed limit of the trolley in accordance with actual oper-
ational values. 

Integration time is taken to equal 48 seconds over which 
a loaded trolley has passed the lowest trajectory point and 
stops at the point with coordinate 0,8 .x L=  Fig. 3 shows 
diagrams of change in x and φ over time.

Fig. 3. The law of change in the displacement of trolley x 
across the span and in angle of the load deviation from the 

vertical φ over time t

A chart of change in the x coordinate of a trolley takes an 
S-shaped form, indicating the motion of a trolley along the 
descending and ascending branches of the trajectory defined 
by a carrying rope. The mean component of a change in co-
ordinate φ alternates negative and positive signs.

The charts of change in the trolley speed v and in the 
angular velocity of load ω over time are shown in Fig. 4. 
The maximum motion speed is about 8 m/s, which is with-
in the range of operating speeds of cable cranes. Because 
the cable crane’s trolley weight is typically less than the 
weight of a transported load, its oscillations exert a sig-
nificant impact on the law of change in the trolley speed. 
Fig. 4 shows that the frequency of a speed change of the 
trolley coincides with the frequency of load oscillations; 
these oscillations are in counter phase. The minimum 
range of the trolley speed fluctuations occurs along the 
downward section of motion trajectory and is 0.7 m/s. It 
increases subsequently to 1.1 m/s at a moment when the 
lowest point of the trajectory is being passed and reaches 

a maximum value of 1.6 m/s along the ascending section 
of the trajectory.

Fig. 4. The law of change in the trolley displacement speed vx 
across the span and in the load angular velocity ω over time t

Fig. 5 shows charts of the trolley displacement and the 
angle of load deviation at the initial time. We clearly observe 
the counter-phase motion of the trolley and load. The charts 
demonstrate that at this stage, as a consequence of the load 
swinging, there is a possibility that the trolley can change its 
motion direction.

Fig. 5. The law of change in the trolley displacement across 
the span x and in the angle of load deviation from the 

vertical φ at the initial stage of motion

Fig. 6 shows that there is a non-zero period of time over 
which a projection of the trolley speed onto the “x” axis ac-
cepts a negative value (that is, a reverse). This is undesirable, 
both from the point of control tasks, as it is associated with 
an increase in the time required to travel the required path, 
and in terms of the emergence of additional dynamic loads. A 
study was conducted, which revealed that it is impossible to 
avoid the reverse of the trolley at the initial stage of its mo-
tion by changing the length of the rope and damping coeffi-
cients μ11, μ12, μ13 over the entire permissible range of values.

Fig. 6. The law of change in the trolley displacement speed 
across the span vx and in the angular velocity of load 

deviation from the vertical ω at the initial stage of motion

However, at a value of the initial trolley speed equal to 
0.2 m/s or at a short release of rope tension to 7.5∙105 N, the 
projection of trolley speed onto the x axis remains positive. 
Results are shown in Fig. 7, 8.

The trajectory of trolley motion shown in Fig. 9 was 
derived from the integration of equations (1); its shape coin-
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cides with the shape of a theoretical parabola. Fig. 7 shows 
the part of the parabola along which we simulate the motion 
of a trolley with a resulting coordinate of 0,8 240x L= =  m. 
The largest sagging is equal to max 12,2f =  m, which is com-
parable with the value of actual

max 11,4f =  m for an actual crane 
during static estimation. In this case, throughout the entire 
length of the span 300x L= =  m, a vertical displacement of 
the lower support is displ 7,86y =  m.

Fig. 7. The law of change in the trolley motion speed 
projection across the span vx and in the angular velocity ω at 

the initial stage of motion with an initial speed of  
vx=0.2 m/s

Fig. 8. The law of change in the speed of  
trolley displacement across the span vx and in the angular 

velocity ω at the initial stage of motion at a short release of 
the carrying rope tension Hx=7.5∙105 N

Fig. 9. Calculated trajectory of the trolley motion y(x)

When modeling, we also determined additional dy-
namic loads exerted on the carrying. freight, and traction 
ropes, caused by the presence of a tangential: 1

иF m aτ τ= ⋅   
( / cosa vτ = g� ) and centrifugal forces of inertia for the trolley 
and load:
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In this case, the formula that defines the radius of a cur-
vature of function y(x) is precise. We constructed charts of 
change in the tangent and centrifugal forces of inertia over 
time when a trolley moves along a carrying rope; they are 
shown in Fig. 10, 11.

Fig. 10. The law of change in the normal dynamic load

Fig. 11. The law of change in the tangent dynamic load

It should be noted that the additional normal load is 
mostly accepted by a carrying rope and partially by a freight 
rope. At the same time, a tangential load mainly falls on the 
traction rope and partially on the carrying rope. 

In addition, we estimated the case when a traction winch 
rope breaks, which under actual operating conditions is re-
garded to constitute the emergency mode. The charts of loads 
corresponding to a given regime are shown in Fig. 12, 13.

Fig. 12. Change in the normal dynamic loading (break of a 
traction winch rope)

Comparison of charts shown in Fig. 10–13 reveals that 
both the tangent and normal loads increased by not more 
than three times. However, the order of numbers indicates 
that at an increase in the operating speeds a given dynamic 
load may exert a significant impact on the behavior of the 
system “trolley-load”. 
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Fig. 13. Change in the tangent dynamic loading  
(break of a traction winch rope)

The charts for the normal inertia forces shown in  
Fig. 10, 12, which correspond to the standard and emergency 
modes, the maximum values of swings are reached at the 
lowest point of the trolley trajectory and make up 0.3 kN and 
1.2 kN, respectively. The percentage ratio of a swing to the 
mean component is equal to 25‒30 % for a standard mode 
and to 50 % for an emergency mode.

The mean component of the tangential inertial force at 
the onset of motion is, under a standard mode, −2 kN, and 
under emergency mode, ‒4 kN. At the end of the motion: 
for a standard mode, +2 kN; for emergency mode, +4 kN. 
Changing a sign of the mean component attests, similar to 
the above, to the trolley motion along a descending and as-
cending branch of the trajectory. 

We have derived dependences of the angle of load devi-
ation on the speed of a wind load, shown in Fig. 14, 15. The 
charts demonstrate that at a disturbing frequency of the 
wind load equal to 0.16 Hz, the swing of load oscillations 
does not exceed 7 degrees. However, if the frequency of a 
disturbing wind load turns out to be close to the frequency 
of free oscillations of the load, a phenomenon of resonance 
may occur.

Fig. 14. Dependence of the load deviation angle on the 
speed of a bilateral wind, which varies from 0 to 10 m/s at 

frequency 0.16 Hz

Fig. 15. Dependence of the load deviation angle on speed of 
an oncoming wind, which changes in the range  

from 0 to 10 m/s at frequency 0.16 Hz

6. Discussion of results of studying the dynamics of the 
system “trolley – load – carrying rope” in a cable crane

An S-shaped curve of the trolley displacement along 
a carrying rope is predetermined by different inclination 
angles of the tangents to it at the initial, middle, and final 
points of the trajectory. Inclination angles of the tangents at 
the initial and final points of the trajectory are equal to zero, 
and at the middle point the tangent’s inclination angle is 
maximum, which corresponds to the maximum speed of the 
trolley. The model that describes the system “trolley – load – 
carrying rope” is a dual-mass system. Such a system has one 
zero frequency, which corresponds to the movement of the 
system “trolley ‒ load” as an entire whole, and one non-zero 
frequency at which the oscillations of the trolley and load 
are in antiphase; in this case, the amplitudes of oscillations 
are inversely proportional to the masses. Given this, at low 
speeds of the trolley, with a weight less than that of the load, 
the reverse phenomenon may occur. It can be avoided by 
both increasing the initial speed of the trolley and increasing 
the speed of the trolley through a release in the tension of 
the carrying rope at moment in time immediately preceding 
the reverse.

The maximum span of the normal dynamic load at the 
lowest point of the trajectory is due on the one hand to the 
minimum radius of a curvature at that point and, on the 
other hand, to the maximum change in the amplitude of 
trolley speed oscillations. The maximum amplitude of the 
tangential dynamic load at the onset of trolley motion is 
predetermined by the presence of the reverse. 

The angle of load deviation from the vertical in both 
cases for the examined wind load does not exceed 7 degrees 
due to a low speed of the wind load and the remoteness of its 
disturbing frequency from the frequency of free oscillations 
of the system “trolley-load”.

The benefit of a given numerical analysis is the applica-
tion of the programming package KiDyM, which, by using 
the built-in system of computer algebra and by employing 
an apparatus of structural matrices, allows at the analytical 
level the construction of motion equations for the systems 
that are described by a combination of ordinary differential 
equations.

In contrast to papers cited in our review of the scientific 
literature in which the dynamics of a cable crane is consid-
ered either in terms of the oscillatory processes in ropes or 
the motion characteristics of a trolley and a load, this study 
examines the interaction between elements in the system 
“trolley – load – carrying rope”. We established patterns 
in a change of normal and tangential inertial forces occur-
ring when a trolley moves along a curvilinear trajectory. 
We defined dynamic characteristics of the system taking 
into consideration the influence of the masses of a swinging 
load, trolley, and the curvature of a rope. We investigated an 
emergency mode that occur at a break of the traction rope, 
as well as the influence of a wind loading on the swinging of 
the load.

The shortcoming of present research includes the as-
sumptions described above, reducing the number of which 
could be considered a direction for the further research. The 
difficulties associated with further research imply that the 
examined system “trolley-load-carrying rope” is essentially 
non-linear; that almost eliminates the possibility of applying 
purely analytical analysis methods.
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7. Conclusions

We have improved a mathematical model of the sys-
tem “trolley – load – carrying rope” by introducing three 
damping coefficients, each of which characterizes energy 
dissipation under different physical processes – the motion 
of a trolley, a load, and the speed of a wind load.

We have defined time-dependent patterns of change in 
the position of the trolley in the span and in the angle of 
load deviation, as well as their derivatives. During model-
ing, we determined dynamic loads on the carrying, freight, 
and traction ropes, caused by the presence of the tangen-
tial and centrifugal inertia forces of the trolley and load. 
Their character and magnitude were quantified. Under a 

standard mode, a span of the normal load oscillations at 
the lowest point of the trolley trajectory is 25–30 % of the 
mean component, and under emergency mode, it is 50 %. As 
far as the tangential load is concerned, the ratio of span in 
its dynamic component to the mean value under a normal 
mode of operation of a cable crane is equal to 10; it increases 
to 25–30 at a break of the winch rope. That should be taken 
into consideration when predicting the service life of the 
carrying rope.

A wind load impact is negligible if its frequency is far 
from the frequency of free oscillations of the system “trol-
ley-load-carrying rope” and wind speed does not exceed  
10 m/s. In this case, the angle of load deviation will not ex-
ceed 6.5 degrees.
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