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1. Introduction

The distinctive feature of cable cranes are large spans
and high speed of movement of freight trolleys, which en-
sures their required performance. In addition, to improve
reliability and durability, it is necessary to take into con-
sideration additional dynamic loads that emerge in separate
nodes of the structure. Moreover, at present there is a strong
tendency to a more sophisticated design of cable cranes,
hence the need to employ the existing, and to develop new,
approximation methods for both analytical and numerical
analyses.

2. Literature review and problem statement

Given the above, we shall analyze existing mathematical
models of the system “trolley — load on a flexible suspension”,
which will allow us to determine the one that most closely

matches the requirements of performance, reliability dura-
bility, and accounting for the design complexity.

When investigating the dynamics of load-lifting machines,
the model “trolley — load on a flexible suspension” is tradi-
tionally applied. Paper [1] describes the model “trolley —
load on a flexible suspension” by a system of differential
equations, in which a rope deviation from the vertical is
accepted as the load displacement and a speed direction is
taken into consideration when determining a resistance to
the trolley displacement. However, the authors assumed the
linear motion of a load, so the model does not account for
the vertical displacement at swinging. Paper [2] presented
a nonlinear model of the crane trolley. The equations are
constructed in the independent generalized coordinates: a
trolley motion and a load deviation angle. Control parame-
ter is the driving force, which is applied through the rope of
a traction winch. A similar model is used in [3], which also
employs as the second generalized coordinate a rope devi-
ation angle from the vertical. Authors of paper [4] derived,




based on the Lagrangian equations, a mathematical model of
the pendulum with a variable length of the load suspension
aimed to simulate simultaneous lifting and horizontal dis-
placement of the load.

If the mass of the suspended load is very much distribut-
ed for height, the model of a trolley with a double pendulum
is considered [5].

There are known models that take into consideration the
geometrical features of the suspension point of the load and
trajectories of its movement. Worth noting is a model for
the transportation of a long load between two bridge cranes,
which are at different levels of height and work together
[6]. Authors of paper [7] obtained, based on the linearized
Lagrangian equations, a model that describes oscillations of
a spherical pendulum.

Damping properties of a cable crane elements must be
taken into account because they have a significant quantita-
tive and qualitative impact on the character of change in the
generalized coordinates and velocities. In addition, a cable
crane’s trolley model in all cited sources should be improved
by integrating the vertical deflection of the rope along which
it moves.

Paper [8] examines oscillatory processes in the rope
along which a freight trolley moves. The focus is on the
task on determining the deflection and tension of the rope.
In this case, the rope is described by the equation of a chain
line; losses for the internal friction in the rope are also
accounted for. However, a trolley in the estimated model
is represented in the form of a concentrated mass, which
means that the impact of the trolley on a rope is not taken
into consideration in full.

Calculation of the shape of the sagging of a rope that has
a linear weight and rigidly fixed ends is addressed in study
[9]. Determining the geometrical characteristics of the rope
excluded the trolley and the load.

Paper [10] analyses the dynamics of a cable system under
the modes of load lifting and trolley movement along the car-
rying rope. In this case, using the Lagrange equations, the
authors defined the character of oscillations of the carrying
and traction ropes. Dissipative function, however, does not
take into consideration the influence of wind and fluctua-
tions of the suspended load.

Work [11] investigated the dynamics of a cable crane
with a varying height of supports; the trolley with a sus-
pended load moved under the force of gravity. The principle
of crane operation is similar to the design described in [12].
A mathematical model consisted of two ordinary differential
equations and made it possible to determine the vertical and
horizontal position of the load’s point of suspension. The au-
thors took into consideration elastic properties of the rope.
They performed numerical simulation of the trolley motion
with a suspended load based on the constructed mathemati-
cal model and applied parameters of an actual crane. Howev-
er, a given example also did not take into consideration either
friction forces or damping.

In [13], authors built a mathematical model that allows
taking into consideration the curvature of a carrying rope,
as well as the forces of resistance to motion in the presence
of friction and wind. In this case, the authors chose a single
coefficient for the equivalent viscous friction that relates to
the trolley displacement speed, to the load angular velocity,
and to the speed of a wind load. Given different physical
nature of the enumerated phenomena, such a choice appears
too general.

Thus, the existing mathematical models pay most at-
tention on either the oscillatory processes in carrying and
traction ropes, or the characteristics of motion of a trolley
and a load along a simplified trajectory of the sagging rope.
The interaction between elements of the system “trolley —
load — carrying rope” remains insufficiently studied. Re-
searchers do not consider the normal and tangential in-
ertial forces occurring at the motion of a trolley along a
curved trajectory, nor the impact of masses of a swinging
load, trolley, and a curvature of the rope, on the dynamic
characteristics of the system. None of the cited papers
investigates an emergency mode related to the break of a
traction rope; nor the effect of a wind load on the swinging
of a load.

3. The aim and objectives of the study

The aim of present research is to study patterns in
the progress of dynamic processes and in the occurrence
of dynamic loads when a trolley of the cable crane moves
with a suspended load. Such patterns could be subse-
quently taken into consideration when calculating actual
cranes, in order to improve their reliability and durability,
to avoid unfavorable events during motion of a freight
trolley, as well as to define parameters of cranes of the
new design.

To accomplish the aim, the following tasks have been set:

— to improve a mathematical model of the system “trol-
ley — load — carrying rope” through better differentiated
accounting for the damping properties of the system;

—to determine the patterns in change in the dynamic
parameters of the system, to identify unfavorable events and
techniques to address them;

— to estimate the character and magnitude of additional
dynamic loads when a trolley moves along a curvilinear rope
under standard and emergency operating modes;

— to define patterns in the impact of wind load on the
swinging of the load.

4. Mathematical model of the system
“trolley — load — carrying rope” in a cable crane

The design scheme, shown in Fig. 1, is described by a
system of equations (1) [13].
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Fig. 1. Design scheme for the motion of a trolley along
a carrying rope of the cable crane

Differential equations take the form:
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where my and my are the masses of a trolley and a load, re-
spectively; x is the horizontal coordinate of the trolley; y is
the vertical coordinate of the trolley; p is the generalized
coefficient of resistance to the motion of a trolley and a load;
¢ is the angle of rope deviation from the vertical; F(¢) is a
function of the trolley control; / is the length of the load; B
is the inclination angle of the straight line connecting sup-
ports; W is the force of resistance to the motion of a trolley.

W=Qu,cosy,

where Q is the total weight of the trolley and load; p, is the
reduced resistance coefficient when a trolley moves along
a traction rope; H, is the horizontal component of the rope
tension; g is the rope weight per unit length; L is the span
of a crane; v is the inclination angle of the tangent to curve
y(x) at the point of trolley position; Vis the wind load.

In the reduced system, y(x) is the parabolic trajectory of
a trolley whose equation takes the form [14]:
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Because the physical processes that determine the damp-
ing properties of the system related to the movement of a
trolley, a load and the speed of a wind load are of different
nature, it is wrong to describe these processes with a single
coefficient of equivalent viscous friction py. It is therefore
proposed to improve system (1) by introducing three sepa-
rate coefficients s, pi2, py3 to the second equation (2).
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A system of equations (1) takes the form:
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Numerical analysis of the dynamics of a cable crane re-
quires the integration of a system of equations (3). To this end,
we use the Runge-Kutta-Merson method, which, along with a
system of computer algebra, is built into the software package
KiDyM [15]. The system of computer algebra from the pack-
age KiDyM, based on the application of an apparatus of struc-
tural matrices, at the analytical level enables the construction
of differential equations of motion of mechanical systems.

System (3) in the form of Cauchy takes the form:
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5. Results of numerical simulation

To perform numerical calculations, we accepted param-
eters of a full-scale crane designed at the Institute “Soyu-
zprommekhanizaciya”, Kharkiv, Ukraine (Fig. 2). This al-
lowed us to compare simulation results with the design
calculations of an actual crane and quantify the magnitude
of a dynamic addition.
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Fig. 2. Dimensional drawing of an actual cable crane used for
modeling

We made several assumptions while modeling, which
could be disregarded in further research with a more com-
plex problem statement:

1) elastic properties of the carrying, freight, and traction
ropes shall not be taken into consideration;

2) inertial properties of the traction and freight ropes
shall not be taken into consideration;

3) a distance between outer wheels of the trolley is con-
sidered small compared with the magnitude of the span;



4) a freight trolley moves along a parabolic trajectory;

5) wind load is ignored.

Parameters of an actual crane, applied in mathematical
model (2), accept the following values:

m, =2900 kg; m,=20000 kg;

Q=224649 H; L=300 m; [=1-5 m;

g,=277 N/m; H_=1500000 N;

i, =0,0021 kg/s; p,,=0,0005 kg/s; ., =0,0026 kg/s;
u,=0,02, B=1,5% W=Q-u,-cosy.

Initial speed of the trolley is v, =0,001 m/s.
The trolley moves under the action of control influence
that changes according to law:

F(t) =-0,5-Q-abs(siny),

and the force of its natural weight. The form of control
function is chosen with respect to the required motion
speed limit of the trolley in accordance with actual oper-
ational values.

Integration time is taken to equal 48 seconds over which
a loaded trolley has passed the lowest trajectory point and
stops at the point with coordinate x=0,8L. Fig. 3 shows
diagrams of change in x and ¢ over time.
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Fig. 3. The law of change in the displacement of trolley x
across the span and in angle of the load deviation from the
vertical ¢ over time ¢

A chart of change in the x coordinate of a trolley takes an
S-shaped form, indicating the motion of a trolley along the
descending and ascending branches of the trajectory defined
by a carrying rope. The mean component of a change in co-
ordinate ¢ alternates negative and positive signs.

The charts of change in the trolley speed v and in the
angular velocity of load o over time are shown in Fig. 4.
The maximum motion speed is about 8 m/s, which is with-
in the range of operating speeds of cable cranes. Because
the cable crane’s trolley weight is typically less than the
weight of a transported load, its oscillations exert a sig-
nificant impact on the law of change in the trolley speed.
Fig. 4 shows that the frequency of a speed change of the
trolley coincides with the frequency of load oscillations;
these oscillations are in counter phase. The minimum
range of the trolley speed fluctuations occurs along the
downward section of motion trajectory and is 0.7 m/s. It
increases subsequently to 1.1 m/s at a moment when the
lowest point of the trajectory is being passed and reaches

a maximum value of 1.6 m/s along the ascending section
of the trajectory.
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Fig. 4. The law of change in the trolley displacement speed vx
across the span and in the load angular velocity @ over time ¢

Fig. 5 shows charts of the trolley displacement and the
angle of load deviation at the initial time. We clearly observe
the counter-phase motion of the trolley and load. The charts
demonstrate that at this stage, as a consequence of the load
swinging, there is a possibility that the trolley can change its
motion direction.
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Fig. 5. The law of change in the trolley displacement across
the span x and in the angle of load deviation from the
vertical ¢ at the initial stage of motion

Fig. 6 shows that there is a non-zero period of time over
which a projection of the trolley speed onto the “x” axis ac-
cepts a negative value (that is, a reverse). This is undesirable,
both from the point of control tasks, as it is associated with
an increase in the time required to travel the required path,
and in terms of the emergence of additional dynamic loads. A
study was conducted, which revealed that it is impossible to
avoid the reverse of the trolley at the initial stage of its mo-
tion by changing the length of the rope and damping coeffi-
cients pq1, Uio, Mi3 over the entire permissible range of values.
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Fig. 6. The law of change in the trolley displacement speed
across the span v, and in the angular velocity of load
deviation from the vertical ® at the initial stage of motion

However, at a value of the initial trolley speed equal to
0.2 m/s or at a short release of rope tension to 7.5-10° N, the
projection of trolley speed onto the x axis remains positive.
Results are shown in Fig. 7, 8.

The trajectory of trolley motion shown in Fig. 9 was
derived from the integration of equations (1); its shape coin-



cides with the shape of a theoretical parabola. Fig. 7 shows
the part of the parabola along which we simulate the motion
of a trolley with a resulting coordinate of x=0,8L =240 m.

The largest sagging is equal to f,, =12,2 m, which is com-
parable with the value of £*"* =11,4 m for an actual crane
during static estimation. In this case, throughout the entire
length of the span x=L=300 m, a vertical displacement of

the lower support is y, =7,86 m.
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Fig. 7. The law of change in the trolley motion speed
projection across the span v, and in the angular velocity o at
the initial stage of motion with an initial speed of
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Fig. 8. The law of change in the speed of
trolley displacement across the span v, and in the angular
velocity o at the initial stage of motion at a short release of
the carrying rope tension H,=7.5-10° N
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In this case, the formula that defines the radius of a cur-
vature of function y(x) is precise. We constructed charts of
change in the tangent and centrifugal forces of inertia over
time when a trolley moves along a carrying rope; they are
shown in Fig. 10, 11.
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Fig. 10. The law of change in the normal dynamic load
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Fig. 11. The law of change in the tangent dynamic load

It should be noted that the additional normal load is
mostly accepted by a carrying rope and partially by a freight
rope. At the same time, a tangential load mainly falls on the
traction rope and partially on the carrying rope.

In addition, we estimated the case when a traction winch
rope breaks, which under actual operating conditions is re-
garded to constitute the emergency mode. The charts of loads
corresponding to a given regime are shown in Fig. 12, 13.
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Fig. 9. Calculated trajectory of the trolley motion y(x)

When modeling, we also determined additional dy-
namic loads exerted on the carrying. freight, and traction
ropes, caused by the presence of a tangential: F'=m,-a,
(a, =9 /cosy) and centrifugal forces of inertia for the trolley

and load:

F'=(m,+m,)-a

n
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Fig. 12. Change in the normal dynamic loading (break of a
traction winch rope)

Comparison of charts shown in Fig. 10—13 reveals that
both the tangent and normal loads increased by not more
than three times. However, the order of numbers indicates
that at an increase in the operating speeds a given dynamic
load may exert a significant impact on the behavior of the
system “trolley-load”.
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Fig. 13. Change in the tangent dynamic loading
(break of a traction winch rope)

The charts for the normal inertia forces shown in
Fig. 10, 12, which correspond to the standard and emergency
modes, the maximum values of swings are reached at the
lowest point of the trolley trajectory and make up 0.3 kN and
1.2 kN, respectively. The percentage ratio of a swing to the
mean component is equal to 25-30 % for a standard mode
and to 50 % for an emergency mode.

The mean component of the tangential inertial force at
the onset of motion is, under a standard mode, =2 kN, and
under emergency mode, —4 kN. At the end of the motion:
for a standard mode, +2 kN; for emergency mode, +4 kN.
Changing a sign of the mean component attests, similar to
the above, to the trolley motion along a descending and as-
cending branch of the trajectory.

We have derived dependences of the angle of load devi-
ation on the speed of a wind load, shown in Fig. 14, 15. The
charts demonstrate that at a disturbing frequency of the
wind load equal to 0.16 Hz, the swing of load oscillations
does not exceed 7 degrees. However, if the frequency of a
disturbing wind load turns out to be close to the frequency
of free oscillations of the load, a phenomenon of resonance
may occur.
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Fig. 14. Dependence of the load deviation angle on the
speed of a bilateral wind, which varies from 0 to 10 m/s at
frequency 0.16 Hz
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Fig. 15. Dependence of the load deviation angle on speed of
an oncoming wind, which changes in the range
from 0 to 10 m /s at frequency 0.16 Hz

6. Discussion of results of studying the dynamics of the
system “trolley — load — carrying rope” in a cable crane

An S-shaped curve of the trolley displacement along
a carrying rope is predetermined by different inclination
angles of the tangents to it at the initial, middle, and final
points of the trajectory. Inclination angles of the tangents at
the initial and final points of the trajectory are equal to zero,
and at the middle point the tangent’s inclination angle is
maximum, which corresponds to the maximum speed of the
trolley. The model that describes the system “trolley — load —
carrying rope” is a dual-mass system. Such a system has one
zero frequency, which corresponds to the movement of the
system “trolley — load” as an entire whole, and one non-zero
frequency at which the oscillations of the trolley and load
are in antiphase; in this case, the amplitudes of oscillations
are inversely proportional to the masses. Given this, at low
speeds of the trolley, with a weight less than that of the load,
the reverse phenomenon may occur. It can be avoided by
both increasing the initial speed of the trolley and increasing
the speed of the trolley through a release in the tension of
the carrying rope at moment in time immediately preceding
the reverse.

The maximum span of the normal dynamic load at the
lowest point of the trajectory is due on the one hand to the
minimum radius of a curvature at that point and, on the
other hand, to the maximum change in the amplitude of
trolley speed oscillations. The maximum amplitude of the
tangential dynamic load at the onset of trolley motion is
predetermined by the presence of the reverse.

The angle of load deviation from the vertical in both
cases for the examined wind load does not exceed 7 degrees
due to a low speed of the wind load and the remoteness of its
disturbing frequency from the frequency of free oscillations
of the system “trolley-load”.

The benefit of a given numerical analysis is the applica-
tion of the programming package KiDyM, which, by using
the built-in system of computer algebra and by employing
an apparatus of structural matrices, allows at the analytical
level the construction of motion equations for the systems
that are described by a combination of ordinary differential
equations.

In contrast to papers cited in our review of the scientific
literature in which the dynamics of a cable crane is consid-
ered either in terms of the oscillatory processes in ropes or
the motion characteristics of a trolley and a load, this study
examines the interaction between elements in the system
“trolley — load — carrying rope”. We established patterns
in a change of normal and tangential inertial forces occur-
ring when a trolley moves along a curvilinear trajectory.
We defined dynamic characteristics of the system taking
into consideration the influence of the masses of a swinging
load, trolley, and the curvature of a rope. We investigated an
emergency mode that occur at a break of the traction rope,
as well as the influence of a wind loading on the swinging of
the load.

The shortcoming of present research includes the as-
sumptions described above, reducing the number of which
could be considered a direction for the further research. The
difficulties associated with further research imply that the
examined system “trolley-load-carrying rope” is essentially
non-linear; that almost eliminates the possibility of applying
purely analytical analysis methods.



7. Conclusions

We have improved a mathematical model of the sys-
tem “trolley — load — carrying rope” by introducing three
damping coefficients, each of which characterizes energy
dissipation under different physical processes — the motion
of a trolley, a load, and the speed of a wind load.

We have defined time-dependent patterns of change in
the position of the trolley in the span and in the angle of
load deviation, as well as their derivatives. During model-
ing, we determined dynamic loads on the carrying, freight,
and traction ropes, caused by the presence of the tangen-
tial and centrifugal inertia forces of the trolley and load.
Their character and magnitude were quantified. Under a

standard mode, a span of the normal load oscillations at
the lowest point of the trolley trajectory is 25-30 % of the
mean component, and under emergency mode, it is 50 %. As
far as the tangential load is concerned, the ratio of span in
its dynamic component to the mean value under a normal
mode of operation of a cable crane is equal to 10; it increases
to 25-30 at a break of the winch rope. That should be taken
into consideration when predicting the service life of the
carrying rope.

A wind load impact is negligible if its frequency is far
from the frequency of free oscillations of the system “trol-
ley-load-carrying rope” and wind speed does not exceed
10 m/s. In this case, the angle of load deviation will not ex-
ceed 6.5 degrees.
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