u] =,

Pozensidaemovcs 3a0aua npo nowmupenns 6HYMpPIWHIx X6Ulo
05 ideanvnoi Hecmucaueoi piounu. Iiopoodunamiuna cucmema
CKIIA0aemvCs 3 mpvox wapie CKiHueHHoi moGuiuHu, AKI He 3Mi-
wyemvca ma obmediceni 36epxy meepool0 Kpumkoo, a 3Hu3y
meepoum onom. Ha nosepxusax po3oiny pioxux cepedosuu die
cuna nosepxuesozo namszy. llocmanoexa sada4i 6yna 30diiic-
HeHa 8 0e3po3mipHomy euznndi. B axocmi manozo napamempy
suxopucmosyemvca xoeivienm meainitinocmi, axuil 0opie-
HI0€ GIOHOWEHHIO XapaxmepHhoi amnaimyou 00 xapaxmepmoi
0069CUHY XBUIL.

Po36’a3xu ninitunoi 3adaui mykaromvcs 6uznsodi npozpecus-
Hux xeunv. Ha ocnoei yux po3e’s3xie ompumano oucnepciiine
CNi6eIOHOWENHHS AK YMO8Y PO36 °A3YCAHHOCMI cucmeMu JiHii-
Hux ougepenyianrvhux piensanv. Buseneno icnyeanus o0eox
xapaxmepnux mo0 (Oiticnux xopenie oucnepciiunozo pieHsaH-
usa). Ipoananizoeano zpagixu xopenie oucnepciiinozo pie-
HAHHA 6 3AJe)NCHOCHI 610 PisHUX Qi3UMHUX Ma 2e0MeMPUUHUX
napamempis cucmemu. Bcmanosneno, wo moswunu wapis ne
énnuearomv Ha OUCREPCI0 X6Ulb, MO0i AK 3MIHA NoBepxHe-
8020 HaMs2Yy MA GIOHOWEHHS 2YCMUH 3HAMHO 6NIAUBAIOMb HA
YMo6uU NPoxo0icenns xeunv. Pozensnymo xeunvosi naxemu 6
JUHIUHIT NOCMAHO08YL, W0 € CYNEPROIUUIEIO0 2APMOHIUHUX XU
oausvroi dosxcunu. Buseneno, wo amnnimyoa 066ionoi xeu-
106020 naxemy Ha HUICHIY NOBEPXHI KOHMAKMY 3ANUUMAEMD-
€A CUnYycoioanviioro, moodi AK Ha 6ePXMIll IMIHIOEMbCA 34 Ol
CKAAOHUM 3AKOHOM.

3adaua nowupenns BHYMPIWHIX X6UNb 63008X4C NOBEPXHI
MPHLOX PIOKUX WAPI6 MOKCYMb MO0ea06AMU CUTLHO CIMPAmU-
dixosanuii mepmoxaun 6 oxeani. Busuenns enausy noeepxue-
6020 HaMA2Y MAK0IHC Modce Gymu suxopucmane npu po3pooui
HOBUX MEXHON021i, N06 AZAHUX 3 BUKOPUCMAHHAM MPbLOX Pio-
KUX Wapie, wio He 3IMiuy1omocs

Knouoei cnosa: ideanvna necmucauea piouna, eHympiui-
Hi Xeui, mpuwaposa 2iopodunamiuna cucmema, oucnepciine
Pi6HAHHA
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1. Introduction

Fluids with discrete or continuous density stratification
are encountered in numerous applied problems. Perturba-
tion of such an inhomogeneous fluid causes propagation of
internal waves with interesting characteristic properties. As
a rule, mathematical formulas of such problems consist of a
system of nonlinear differential partial derivative equations.
Nonlinearity of such systems brings about significant math-
ematical difficulties in the problem solution. Therefore, some
small parameter that permits rejection of the equation mem-
bers having insignificant effect and the problem statement
linearization itself is singled out in the problem statement.
The so-called dispersion relation which binds the frequency
and the wave number is the condition for solvability of such a
system. In a general case, the dispersion relation has several
real roots which are called modes. In linear problems, solu-
tion is considered as a superposition of various modes. Thus,
the dispersion relation indicates conditions of waves propa-
gation for a concrete hydrodynamic system. The conditions
of internal wave propagation are quite sensitive in relation to
physical and geometric parameters of the system.

Relevance of this study direction was determined by
the necessity of developing a theoretical apparatus for the
problems of detecting internal waves in various media. The
problems of internal wave propagation along the surfaces of
contact of three liquid layers can model strongly depth-strat-
ified thermocline regions in the ocean. In shallow seas,
vertical density stratification has a three-layered structure
with a prominent seasonal pycnocline at a depth of about
several tens of meters and a major pycnocline at a greater
depth. For example, the Black Sea and the Baltic Sea have a
more or less permanent three-layer structure formed by flow
of fresh water on the surface and penetration of the saltiest
water to the bottom layers. A noticeable three-layer density
stratification is also found in the South China Sea. However,
many important issues remain unexplored. In a three-layer
fluid, specific classes of nonlinear waves, so called envelope
solitons, can spread. They are still poorly studied both ana-
lytically and numerically. All this shows urgency of the prob-
lem of studying the internal waves in a three-layer fluid. The
knowledge of the effect of surface tension can also be applied
in the development of new technologies associated with the
use of three non-mixing liquid layers.




2. Literature review and problem statement

A new type of stability of wave solutions related to the
models of Korteweg-de-Vries type was studied in [1] under
condition of a low dispersion of waves. Existence of expo-
nentially increasing solutions of the linearized problem with
the use of asymptotic perturbation methods was established.
The criteria of spectral instability of single waves in the lin-
ear case were found. Besides, nonlinear stability and spectral
instability of solutions for a specific set of parameters were
analyzed. However, this paper was devoted to the study of
mathematical aspects of wave propagation with no relation
to concrete models.

A study of propagation of a single internal wave down a
sloping bottom in a three-layer hydrodynamic system based
on the Korteweg-de-Vries equation with variable coeffi-
cients was presented in [2]. Precise and numerical solutions
of the problem were considered and compared. Two model
configurations for which the system energy change was
numerically analyzed were considered. Existence of the
phenomenon of fading waves was established. This model
is based on the Korteweg-de-Vries equation which enables
study of classical solitons but does not take into account the
potential appearance of envelope solitons described by the
nonlinear Schrédinger equation.

Spread of internal waves over obstacles was studied in
[3]. It was established for narrow obstacles that the energy of
the wave flow increases in an upstream flow. The situation is
just opposite for wide ridges. It was shown that the pressure
field makes a significant contribution to the total energy
flow. A linear theory was developed that is valid for general
stratification and the surface flow that accurately predicts
the wave field. This paper has described internal waves in
the presence of a flow and obstacles but did not take into
account formation of internal waves under the influence of
gravitation and capillary forces.

Overturning regular waves were studied in [4] using
a numerical model of fluid dynamics based on the Navi-
er-Stokes equations. The constructed model well predicts
vortices and overlapping of waves but does not describe the
phenomena of propagation and interaction of internal waves.

Dynamics of collision of two internal waves in a two-lay-
er fluid in a model based on the Navier-Stokes equation
was investigated in [5]. It was shown that collision of two
waves of small and medium amplitude leads to a phase shift
and generation of a dispersive wave. It was established that
the maximum amplitude of a wave formed after collision
can exceed the cumulative amplitude of the collided waves.
Wave interaction can also be studied by other methods. One
of such methods is the multi-scale method which leads to
evolutionary envelope equations.

Work [6] was devoted to the study of single Rosby
waves in a stratified fluid. A new model was constructed
with the use of the generalized Boussinesq equation. Based
on this equation, a generalized Euler-Lagrange equation
was obtained with the use of the Agraval methods and
reduction of perturbations. Exact solutions were found
for the latter. To analyze the dissipation phenomenon,
approximate solutions were constructed in the model with
the use of a new iterative method. The waves that have a
considerable length as regards thickness of the layers were
considered in this paper but the presence of waves with
lengths commensurate with the geometric parameters of
the system was not considered.

Exact solutions were constructed in [7] in the form of
a progressive wave for the generalized connected nonlin-
ear Korteweg-de-Vries equations based on an extended
algebraic method. The results obtained describe generation
and evolution of such waves as well as their interaction and
stability. Korteweg-de-Vries equations of higher orders were
considered in this paper. Solution of these equations gives
soliton waves. Conditions for propagation of such waves
were not taken into account

Solutions in the form of singular waves of the fifth-or-
der Corteweg-de-Vries equation were studied in [8]. In this
equation, in addition to the quadratic nonlinearity and dis-
persion of the third order, there is a cubic nonlinearity and
a linear dispersion of the fifth order as well as two nonlinear
dispersion members. An exact solution was obtained and the
dependence of its amplitude and velocity on the parameters
of the equation was studied. It was shown that the resulting
solution can be a soliton. It was indicated that the presence of
nonlinear dispersion members may materially affect the single
wave existence, profile and resistance to small perturbations.
The results obtained are applicable to the study of internal
and surface waves in liquids as well as waves in other media.
A single-layer model with a free surface and propagation of
internal waves at the interface of two media were considered
in this paper. However, the presence of two or more contact
surfaces required construction and study of new models.

Interaction of small internal wave packets with a large
internal wave was studied in [9]. The main result was that
the indicated interaction with a single wave leads to a
complete destruction of the packet which consists of waves
having small length in comparison with the length of single
waves. In the future, a study of interaction of wave packets
in hydrodynamic systems of a more complex structure would
be of interest.

Capillary-gravitational and interphase waves in a
two-layer fluid were studied in [10] with the use of the
Stokes wave theory. The study was conducted by the method
of perturbations of the third order. It was established that
solutions of the third order depend essentially on the surface
tension, density and thickness of the layers. In a linear ap-
proximation, the constructed model coincides with classical
results. Similar studies are also important for three-layer
liquids in which a significant dependence of wave amplitudes
on various system parameters were also revealed.

Propagation of waves in a two-layer liquid of finite depth
with a free surface was studied in [11]. Internal and surface
waves were considered with the use of numerical simulation
by the finite element method. The ratio of amplitudes of two
waves for various values of density and thickness of liquids
was analyzed. It should be noted that the analysis of the am-
plitude ratio is facilitated when the solutions are obtained in
an analytical form.

Internal weakly nonlinear waves of finite amplitude in
a three-layer liquid of a finite depth were studied in [12]. A
pair of Korteweg-de-Vries equations with coefficients de-
pending on the liquid parameters was obtained. As a result of
introduction of an additional small parameter, two Gardner
equations for two contacting surfaces were obtained. Soli-
ton solutions were constructed and studied for the obtained
equations depending on various parameters of the system.
Cases are considered when Gardner equations can be writ-
ten without nonlinear terms. This model does not take into
account propagation of wave packets with their inertia de-
scribed by nonlinear Schr dinger equations.



Work [13] is devoted to the study of single waves in a
three-layer fluid with a constant density of each layer. A
completely nonlinear numerical scheme based on integral
equations was presented. Based on the constructed scheme,
various types of waves were studied. The phenomenon of
wave overturning was established when the upper layer
thickness is much larger than that of the lower layers. This
study was devoted to the numerical analysis of wave propa-
gation but analytical solutions describing wave motions in a
three-layer liquid are more suitable for revealing new effects.

Linear waves and nonlinear wave interactions in a
three-layer fluid were studied in [14] with the use of an-
alytical and numerical methods. It was established that
single waves cannot be described mathematically as solitons
because of insignificant energy loss. However, since these
losses are small and the waves in such a system are disper-
sionally connected, the single waves manifest themselves
as solitons. In this case, an issue of studying another type
of wave motion in three-layer systems appear, in particular,
propagation of waves whose lengths are commensurate with
the geometric parameters of the system.

A model of a two-layer incompressible ideal fluid was
studied in [15]. Solution of the original nonlinear problem
was constructed in the form of power series for a small
parameter. For the coefficients of these series, there are
corresponding linear (homogeneous and inhomogeneous)
problems solution of which is represented in the form of se-
ries of previously constructed eigenfunctions of a nonlinear
boundary value problem. Another approach with the use of
power series for a small parameter is a multi-scale method
which enables obtaining of information about wave motions
for various time and spatial scales.

Propagation of internal separated waves in a two-layer
liquid medium bounded above and below with solid surfaces
without taking into account surface tension was studied in
[16]. Solution was found in the form of generalized power
series for a parameter depending on the magnitude inverse
to the Froude number. It is interesting to study influence
of surface tension on conditions of wave propagation in a
three-layer system.

The attention deserving theoretical studies in [17] where
the model equations derived from the Euler equations
describing evolution of internal gravitational waves in a
two-layer liquid that are non-viscous and non-mixed have
been solved without imposing any limitation on the ampli-
tude. Also, areas of suitability of asymptotic approximations
for strongly-nonlinear wave packets of internal waves in the
layer - layer system were indicated in this paper A similar
study of application of the multi-scale method is relevant for
three-layer systems as well.

The problems of propagation and stability of waves in a
two-layer hydrodynamic system were considered in [18, 19].
The issue of modulation stability were considered and the
system parameters at which wave packets will be modula-
tion-unstable were established. Evolution of wave packets is
described in these papers by means of a nonlinear Schréding-
er equation using the multi-scale method. Similar studies are
also important for a three-layer liquid.

A model of propagation and interaction of waves in a
two-layered hydrodynamic system with a free surface was
constructed in [20-22]. In particular, conditions for the
propagation of waves at various density ratios in the hydro-
dynamic system were revealed in the first approximation.
Dependencies of potential frequencies on the lower layer

thickness and the wave number were also analyzed. Inter-
action of internal and surface waves was studied. Influence
of presence of surface tension on the contact surfaces was
revealed. Study of the dispersion modes makes it possible
to determine structure of the wave motions on the contact
surfaces which is also relevant for a three-layer system of a
finite depth.

A problem statement for an ideal incompressible
three-layer liquid with a solid bottom and a solid cover was
considered in this study. At the same time, the characteristic
scales of physical quantities were introduced which enabled
the mathematical equations to be presented in a dimension-
less form and the small parameter (coefficient of nonlinear-
ity) be highlighted. Solution of a linear system leads to a
fairness of the relation which is a dispersion relation. The
dependence of the modes of the dispersion relation on phys-
ical and geometric parameters of the system was analyzed
and the wave motion on the contact surfaces was studied.

3. The aim and objectives of the study

This study objective was to analyze propagation and in-
teraction of waves along the contact surfaces in a three-layer
hydrodynamic “a layer with solid bottom — a layer — a layer
with a cover” system. This will enable a more detailed as-
sessment of the wave processes and interaction in three-layer
systems.

To achieve the objective, the following tasks were for-
mulated:

— to perform mathematical statement of the problem and
linearize it;

— to find solutions of the linearized problem and derive
the dispersion relation;

— to construct dispersion diagrams and analyze the roots
of the dispersion relation depending on the physical and geo-
metric parameters of the system being studied;

—to construct wave packets on the contact surfaces
and study their shape for various modes of the dispersion
relation.

4. The statement and solution of the problem of
propagation of waves in a three-layer hydrodynamic
system

4.1. The mathematical problem statement and the
method of study

The problem of propagation of three-dimensional wave
packets of finite amplitude on the surface of the liquid layer
was studied.

Q, ={(x,2): |x|<ee, —h <z<0}

with density py, of the medium liquid layer
Q,={(x.2): [a|<e, 0<z<h,}

with density ps, and the upper liquid layer
Q,={(x,2): [a]<eo, hy<z<h,+h}

with density ps. Velocities of the liquids, vj, in Q; are ex-
pressed in terms of gradient of the potential ¢, j=1, 2, 3.



The layers Q, and Q, are separated by the contact surface

z=n1(x, ?) and the layers Q, and Q, are separated by the
contact surface z=hy+ns(x, £). When solving, the forces of
surface tension on the contact surfaces are taken into consid-
eration. Gravitational force is directed perpendicular to the
interface in the negative z-direction. Liquids are considered
to be ideal and incompressible and the wave motions under
study are vortex-free and potential (Fig. 1):
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Fig. 1. The problem statement

The mathematical problem statement in a plane case has
the following form:
Laplace equation
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Introduce dimensionless quantities in (1) using the fol-
lowing formulas:

x=Lx', z=HZ,

Ny, =ang,, t

:Et,

gal

Dyy3= \/g_H Dio3

=r P81 Pros=PiPlas

where stroked variables are dimensional, and H, L, a are char-
acteristic thickness of the layer, length, and wave amplitude,
respectively, p; is the density of the lower layer and g is the
acceleration of gravity. In a dimensionless form, the statement
(1) will take the following form (the strokes are omitted below):
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In the statement (2), there are two parameters: o=
2

~

t

=1

(the coefficient of nonlinearity), and B= % (the coefficie

of dispersion). Nonlinear problem (2) will be studied using
the method of multi-scale developments. Let us assume for
the future that the coefficient of nonlinearity o<<1, and
B=1. Then the unknown potentials of velocity and devia-
tions of the contact surfaces can be represented as:

3
ni(xvt)z 2(x’nqniy[(x()rxpxgyt()ytth)+O((Xj)v 1= 1’2’

n=1

3
(pj(xvzvt): 2(Xn_1(|)jn(x0,X1,X2,t0,t1,t2)+O((XB),

n=1

7=12,3, 3)
where x,=ax and t,=a*t (k=0, 1, 2) are scale variables.

Substitute (3) into (2) and equate expressions with the
same degrees o to obtain linear approximations of the prob-
lem under study.

The problem of the first approximation (at a’)
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The problem of the second approximation (at a')
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The problem of the third approximation (at a?)
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The problems (4) to (6) are linear with re-
spect to the functions that are summands in
the decompositions (3). Since all terms in the
decompositions (3), except for the first, enter
with coefficients a in the first degree and above,
therefore the solutions of the first linear approxi-
mation (4) give the main contribution to solution
of the problem (2).

4. 2. Solutions to the problem of the first
approximation and the dispersion relation

In a solution of the first approximation (4), a
dispersion relation is obtained which simultane-
ously is a condition of solvability of the problem
(4) in the form:
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The dispersion relation (7) can be written as a
biquadratic equation relative to @ which has two
pairs of roots:
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where a, b, ¢ are the coefficients at o, ®* and a
free term in the corresponding biquadratic equa-
tion
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According to (8), there are two pairs of independent
solutions to the problem (3):
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0P = io,’ pz
" ksinh’(kh)((1-p,)k+T}k* - @, coth(kh) —p,,” coth(kh, ))
xBcosh(k(h, + z))exp(i(kx — 0,t)); (10)
@___ 10,
P = T inh(khy)

®,°p,
x| sinh(kh, )((1 P, )k+Tk* —w,” coth(kh ) —p,w,” coth(kh, )) X
x cosh(k(h, — 2)) + cosh(kz)
xBexp(i(kx —w,t))

02 =—%2cosh(h(h, +h,

ksinh(kh,) —2))Aexp(i(kr —®,t)).

Solutions (9) and (10) are independent while n{) in (9)
is a response wave on the upper contact surface to a wave
n¢, which has amplitude A and propagates with a frequen-
cy o on the lower contact surface. In (10), 1(? is a response
wave on the bottom contact surface to a wave n$, which
has amplitude B and propagates with a frequency o, on the

upper surface of the contact.



Analysis of the roots of the dispersion relation will be
made hereinafter depending on various geometric and phys-
ical parameters of the system under study. The issue of wave
motion on the contact surfaces is also considered.

5. Analysis of the dispersion relation

5. 1. Dispersion diagrams for various physical and
geometric parameters of the system

Let us study dependence of the dispersion relation (8)
modes, o1 and wy, on the change of the ratio of layer densities.
Fix p,=0.7 and change p, in the range from 0.7 to 1 in steps
of 0.05 at the following values of the system parameters:

h=h=h=1 T =T,=0.

Cases p,=0.7 and p, =1 will not be considered because
they are marginal and will be considered below.

® 0.5

1 2 3 4 5 6 7 1 2 3 4 5 6 7

—0.75 — 08 — 085 — 0.9 095] [—075—08—085 —09 0.95]

a b
Fig. 2. Dependence of the dispersion relation modes on the
wave number for various values p, ={0.75,0.8,0.85,0.9,0.95}:
o1 (a); @2 (b)

If density of the middle layer, po, is the mean value of the
densities of the lower and upper layers, then the w; graph is
higher than the graphs for other p, values (Fig. 2, a) and
the wy graph is lower than other graphs (Fig. 2, b) (for wave
numbers k> 2). If the value of p, becomes closer to p; or ps,
then the o graph descends and the o, graph ascends.
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a b

Fig. 3. Dependence of the dispersion relation modes on the
wave number for various values: ®1 (a); @ ()

Fix the value of p,=0.9 and change p3 in a range from
0.7 to 0.9 in 0.05 steps (Fig. 3). At the fixed value of ps,
the change of p3 from 0.7 to 0.8 has little effect on the o
value (Fig. 3, a). Further approximation of the p3 value to
the py value leads to the wy zeroing. This will be described
when considering the marginal cases. Change of the p3

value from 0.7 to 0.9 leads to a gradual decrease in the m,
value (Fig. 3, b).

Next, let us analyze the effect of the surface tension
on the change of the w; and wy modes. Fix the value of
T, =0 and change the value of T} in a range from 0 to 0.2 in
0.05 steps (Fig. 4). The change of the surface tension, Tj,
on the bottom contact surface nearly does not affect the
change of the o; mode (Fig. 4, a). At the same time, taking
into account surface tension on the lower contact surface
significantly affects variation of the w, mode for the wave
numbers %>0.5, corresponding to the gravitational-capil-
lary and capillary waves (Fig. 4, b). A similar pattern was
also observed with consideration of the surface tension on
the upper surface of the contact, Ty (Fig. 5).
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Fig. 4. Dependence of the dispersion relation modes on the
wave number for various values: w1 (a); m, (b)
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Fig. 5. Dependence of the dispersion relation modes on the
wave number for various values: o1 (a); ®; ()

ST
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Fig. 6. Dependence of the dispersion relation modes, ®; and
>y, on the wave number and: thickness of the lower layer, A4
(a); thickness of the upper layer, A3 (b)

Analyzing the effect of geometric parameters of the
system, i.e. thickness of the lower layer, #; and thick-
ness of the upper layer, &3, the study has shown that the
change of these parameters has no significant effect on



the change of the w; and wy modes for fixed wave num-
bers (Fig. 6).

5. 2. Marginal cases of the system under study

Let us consider the marginal cases in which the studied
three-layer “a layer with a solid bottom — a layer — a layer
with a solid cover” system degenerates into a two-layer “a
layer with a solid bottom — a layer with a solid cover” system.
The first marginal case arises under conditions p,=p, and
T,=0. The second marginal case arises under the conditions
p,=p, and T, =0. In both cases, the first pair of roots, ®?, of
the dispersion relation becomes equal to zero and the second
pair of roots, @3, degenerates into a pair of roots of the dis-
persion relation of the “a layer with a solid bottom — a layer
with a solid cover” system.

ol (1-p)k+Tk
coth(kh,)+pcoth(kh,)

[18].

5. 3. Analysis of wave motion on the contact surfaces

According to (9) and (10), the wave motion on the lower
and upper contact surfaces can be represented in the first
approximation as:

My =M M, My =m) + sy, 1
that is, as a linear combination of waves for various modes.
Let us consider propagation of wave packets on the lower
and upper contact surfaces which are a linear combination of
waves of the same amplitude and a close length:

N, =Ny, (k) +ny, (Ry) + My, (Ry),
M, :n21(k1)+n21(k2)+n21(k3)~ (12)

Fig. 7 shows appearance of wave packets (12) on the con-
tact surfaces for the following system parameters:

h=h=h=1, T,=T,=0, p, =095,

p,=0.92, A=0.05, B=0.025.

-1

Fig. 7. Wave packets on the contact surfaces at
k =0.009, k,=0.01, £, =0.011

Fig. 8 shows the case of propagation of the wave packet
on the lower and upper contact surfaces which is a linear
combination of waves with frequency .

Fig. 9 shows the case of propagation of a wave packet
which is a linear combination of waves with a o, frequency
on the lower and upper contact surfaces.

-1
Fig. 8. Propagation of wave packets that correspond to the
®1 mode in a three-layer system

2

n 1—&3#«%%%%09%&&%@4

-1
Fig. 9. Propagation of wave packets in a three-layer system
corresponding to the ®, mode

In the case of waves of a similar length corresponding to
the mode w; passing on the lower and upper contact surfaces
(Fig. 8), the wave packets formed on both contact surfaces
have a clear shape, i.e. amplitude of the envelope of such
wave packets is sinusoidal. A similar situation was observed
in passing of a group of waves of similar length correspond-
ing to the wy mode (Fig. 9). In the presence of groups of
waves of a similar length, for both w; and wy modes on the
upper and lower contact surfaces, the wave packets formed
on the lower contact surface have a clearer shape than on
the upper contact surface (Fig. 7). That is, amplitude of the
envelope on the lower contact surface remains sinusoidal
whereas it changes according to a more complicated law on
the upper contact surface.

6. Discussion of the results obtained in the study of a
three-layer hydrodynamic system

The study of a three-layer system with solid cover and
bottom was carried out for a model in which the wave ampli-
tude is much smaller than the wave length (the coefficient of

nonlinearity o =% is much smaller than one) and the wave

lengths are close to the thickness of the middle layer (the dis-
H2

persion coefficient = = is close to one). It is interesting to

study other cases, for example, when B is also close to zero.
As a result of application of the multi-scale method to the
third order, it was possible to obtain the first three approx-
imations of the problem under consideration. Let us derive
dispersion relation and solutions of the first approximation
constructed on the basis of its roots.



During the study of the dispersion relation roots, it was
found that the o and wy modes differed in their sensitivity
to changes of the system physical parameters. In particular,
the ®; mode was more sensitive to the change of the ratio
of the py densities than the @, mode while the w; mode was
more sensitive to the change of p3, T; and T parameters. The
study has also shown that both modes were insensitive to
the change of geometric parameters of the system, namely
thicknesses of the lower, &, and upper, &3, layers.

It was also found that ®, >, for the same wave num-
bers. A question arises about the contribution of waves with
o1 and o, frequencies in their motion on the upper and lower
contact surfaces, i. e. at which system parameters the waves
with above frequencies make a significant contribution to
the wave motion on each contact surface. To answer this
question, it is necessary to study the amplitude ratio of the
waves on the lower and upper contact surfaces. It is the sub-
ject of further studies.

In the course of study of the dispersion relation, two mar-
ginal cases have been established in which the three-layer
system under study degenerated into a two-layer system. In
this case, the m; mode became equal to zero and the disper-
sion relation degenerated to the corresponding dispersion
relation for the “a layer with a solid bottom — a layer with a
solid cover” system [18].

The structure of wave motion on the contact surfaces
during passage of groups of waves of similar length was
analyzed. It was found that the amplitude of the envelope of
the wave packets on the lower contact surface was sinusoi-
dal in the first approximation and it changed on the upper
surface according to a more complicated law. A detailed
study of evolution of the wave-packet envelopes requires an
analysis of higher approximations (5) and (6) which should
result in the study of nonlinear Schrédinger equations of
the second order.

It was planned to continue the study of a three-layer
hydrodynamic system for obtaining approximations of the
second and third order using the multi-scale method.

7. Conclusions

1. The mathematical statement of the problem of prop-
agation of internal wave packets in a three-layer hydrody-
namic “a layer with a solid bottom — a layer — a layer with a
free surface” system was fulfilled. A transition to dimension-
less quantities was made during which two parameters were
found: nonlinearity coefficient and dispersion coefficient.
On the basis of this statement, a linear approximation of the
problem under study was obtained.

2. Solutions of the linear problem in the form of progres-
sive waves were obtained. A dispersion relation was derived
based on these solutions. Existence of two characteristic
modes (the dispersion relation roots) was established.

3. The dispersion relation roots of the on the diagrams
(w,k) were analyzed depending on various physical and
geometric parameters of the system. It was found that the
change of geometric parameters of the system (thickness of
the lower and the upper layers) did not affect the dispersion
relation modes. The change of the ratio of densities affected
both modes but ®, to a greater extent. The second mode, ®,,
was more sensitive to the change of parameters p,, 7, and T,.

4. The shape of wave packets on the contact surfaces for
both modes which are roots of the dispersion relation was
investigated. Wave packets in a linear formulation which
are a superposition of harmonic waves of a similar length
were considered. It was found that the amplitude of the wave
packet envelope on the lower contact surface remained sinu-
soidal whereas it changed according to a more complicated
law on the upper contact surface.
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