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3a3zeuuail nowmyx po3e’sa3Ky 6 3adanax OUCKpemHoi
onmumizauii no6 ' A3anull 3 NPUHUUNOBUMU OOUUCTIIOEANU-
Mu mpyonowamu. Bidomi memoou mounozo aéo nabausice-
H020 P036°A3KY MAKUX 3a0a4 6UGUAIOMbCS 3 YPAXYEAH-
HAM HanexcHocmi ix 00, max 3eanux, 3adau 3 xaacy P ma
NP (anzopummu noninomianvHoi ma excnoHeHuiaabHol
peanizauii pose’asky). Cyuacui xombinamopni memoou
0151 NPAKMUUH020 PO36°A3KY 3a0au OUCKPEemHOi Oonmumi-
3auii nompebyromv po3pobru anzopummis, ki 003601:1-
1omv ompumyeamu HAGAUNCEHUL PO36'AZ0K 3 2apaHmMo-
6aH010 OUIHKO10 GI0XUNEHHS 610 onmuMyMy. Anzopummu
cnpouienns € epekmuGHUM NPUILOMOM NOWYKY PO36’A3KY
onmumizauitinoi 3adaui. fxwo euxonamu npoexmyeanms
0azamosumipioz0 npouecy Ha 0606UMIPHY NAOUUNHY, MO
maxuii npuiiom 00360aUMb HAOUIHO 61000pasumu y epadiu-
Hill popmi MHoNCUNU PO36°a3Ki6 3adaui. B pamkax dano-
20 00CNOICEHHA 3ANPONOHOBAHO CNOCIH CNPOULEHHA KOM-
Oinamopnozo po3e’asxy 3adaui OuUCKpemmnoi onmumizauii.
Bin 3acnoeanuii Ha momy, w0 UKOHYEMbCS 0EKOMNO3U-
uia cucmemu, axa 6i0oépasrncaec cucmemy oomedxncenv n’s-
mueumipnoi euxionoi 3ada4i na 0606UMIpHY KOOpOuHaAm-
ny naowuny. Taxuil cnocié dozeonse ompumamu npocmy
cucmemy epapinnux po3e’a3yeamns ckaadnoi zadaui Ainii-
HOT Quckpemnoi onmumizayii. 3 npaKxmuuHoi mouxu 30py
s3anpononosanuii memoo 00360J1€ CRpPOCMUMU 06UUC-
J108ANIbHY CKIAAOHICMb ONMUMIZAUIUHUX 3a0a1 MaKo20
xaacy. Ipuxaadnum acnexmom 3anponorHo8amnozo niodxo-
0Y € BUKOPUCMAHHS OMPUMAH020 HAYKOB020 pe3yabmamy
0na 3a0e3neuenHs MONCAUBOCME 600CKOHALIEHHA MUNO-
BUX MEXHON0ZIMHUX NPOUECI8, WO ONUCYIOMbCA Ccucme-
MaMU JUHIUHUX PIBHAHD 3 HASAGHICMIO CUCMEMAMU JIiHIU-
Hux obmedxcens. Ile cknadae nepedymoeu 011 no0anbuL020
Ppo3sumiy ma yoockonaaenns nodionux cucmem. B oano-
MY 00CAL0NHCEHHT 3anPONOHOBAHO MEMOOUKY 0EeKOMNOIUUTL
ouckpemnoi onmumiz3auitinol cucmemu WaAXom npoexuii
6uxionoi 3adaui nHa 08OBUMIPHI KOOPOUHAMHI NIAOWUHU.
3a makxozo npuiiomy euxiona zadaua mparcQopmyemo-
ca 6 Kombinamopie cimeiicmeo niocucmem, uio 00360791€
ompumamu cucmemy zpaiunux po3e’a3yseamv CKAAOHOL
3adaui NiHIUHOT QUCKpemHoi onmumizauii
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1. Introduction improvement of the plan and boundary estimation of objec-

tive function. Since most discrete optimization problems

Discrete optimization, which has already been defined
as a separate section of the optimization theory, in most
cases operates the combinatorial methods of solution [1].
The problems of allocation of raw materials among different
products, formation of the nutrition ration, materials cut-
ting, etc. are solved using the methods of linear program-
ming [2]. The typical tasks of the combinatorial methods are
to obtain the original reference plan, optimality assessment,

belong to the class of NP problems, the use of algorithms for a
problem simplification without losing control of the solution
accuracy is relevant [3]. For a simplification procedure, the
known relationship of the systems of linear algebraic equa-
tions with the system of linear algebraic inequalities and
the classic apparatus of linear algebra are used [4]. Direct
computing simplification technique was implemented with
the use of the Jordan-Gauss method [5].




2. Literature review and problem statement

In many cases, mathematical models of project manage-
ment are interpreted as problems of discrete optimization
[6]. Solution of problems of discrete optimization is associat-
ed with fundamental difficulties. Modern methods of exact
and approximated solution of such problems are examined
with respect to their belonging to the so-called problems of
P and NP class (algorithms for polynomial and exponential
implementation of solution) [7].

Combinatorial methods for accurate and practical solu-
tion of discrete optimization problems take one of the im-
portant places in obtaining optimal values of such tasks [8].
To realize solution algorithms, it is necessary to obtain the
original reference plan, optimality estimates and improve-
ments in case it is not optimal. Modern combinatorial meth-
ods for practical solution of discrete optimization problems
require development of algorithms that allow obtaining an
approximated solution with the guaranteed estimation of
deviations from an optimum [9].

Simplification algorithms in discrete optimization prob-
lems are an effective technique to search for a solution of
an optimization problem [10]. If we perform projecting of a
multidimensional process on a two-dimensional plane, such
technique will make it possible to clearly observe the per-
missible set (lattice) of the parameters of a problem [11]. An
assessment of values of the objective function of a problem
can be performed from the bottom and from the top and
dynamically assess the possibility of diversifying the basis
optimal variable with guaranteed accuracy [12]. In paper
[13], the method of thermoeconomic optimization of power
consuming systems with the linear structure on the graphs
was developed. Analysis of solutions’ stability in the prob-
lems of detecting duplicates in electronic documents was
presented in research [14]. Complexity of displaying linear
relationships in projects was shown with the use of Markov
chains in paper [15].

It is possible to resolve the contradictions between re-
quirements regarding the completeness of the model repre-
sentations of technical and social systems and the methods
of obtaining solutions by rational simplification of algo-
rithms for solution of complex systems of equations [16]. The
essence of not sufficiently resolved problem regarding the
search for solutions in problems of linear programming is the
need to create a method of simplification of combinatoric
solution of a discrete optimization problem.

In the studies, published by different authors, it is em-
phasized that one of the unresolved components of the gener-
al problem of development of effective models is the stage of
obtaining a solution to systems of equations of mathematical
description of complex systems [8]. In this case, the methods
for solution simplification through introduction of specific
constraints [9], transition to iterative search for a solution
[11], the use of the decomposition of objects with repre-
sentation of systems using graphs [13] have become widely
used. These solution simplification options are based on the
additional transformation of the mathematical description
of systems with construction of unique algorithms for ob-
taining the solution to a problem [15]. The lack of effective
in the chosen aspect methods of simplification of combina-
torial solution to discrete optimization problems is probably
associated with the computational complexity and diversity
of displayed systems [16]. The combinatorial methods for

solving such problems allow separation of an array of subsets
of solutions from a set of admissible values. The algorithm
for separation of such subsets is the basis for combinatorial
methods, but the usual sorting out solutions can be what-
ever large and complicated for calculations [3]. Given this,
all possible simplifications of the original problem should
improve the combinatorial algorithm. Any simplification
algorithms decrease the number of combinatorial sorting
out from a set of admissible values. This is due to a known
fact of the algorithmic complexity of discrete optimization
problems.

3. The aim and objectives of the study

The aim of present research is to develop the algorithm
of simplification of the solution of multidimensional discrete
optimization problems using the standard computational
procedures of linear algebra and some techniques of linear
optimization.

To accomplish the set goal, the following tasks were to
be solved:

— to separate the class of problems, which are subject to
simplification;

— to present calculations of the model example.

4. Development of the simplified solution to discrete
optimization problems

Assume we have a general linear optimization problem
in the form:

n
W, = ZC].xj — max,
j=t

n
Zai].xj <b, i=1, .., k
A
Q"
Zaijxj =b, i=k+1, ..., m,
=

2,20, j=1, .., 1
where Wy is the objective function.

It is known that this problem can always be reduced to
the canonical form of recording:

n
W, = Zijj — max,
Jj=1

n
QY ax; =b,i=1, .., m,

Jj=1

x].ZO, j=1 .., n

We will note that the forms of linear optimization prob-
lems are equivalent — they preserve a set of solutions. It is
possible to achieve this by using techniques for transforma-
tion for a transition from one form of problems to another.

Thus, the equation of the system of constraints to a lin-
ear optimization problem is equivalent to the system of two
inequalities:



n

=
z;aijxj—bi@ .
“

The variables that are arbitrary by sign can be represent-
ed as the difference of two non-negative variables:

=U.—0. > >
xX;=u;—v, u]_O, 01_0.

The transition from constraints-inequalities to con-
straints—equations is performed by adding a non-negative
(balance) variable:

n n
Zaijxj Sbj=>2ai].x]. =bl., x,,;20, i=1, ..., k
= =

To simplify the transformation of linear optimization
problems, the transition from maximization to minimi-
zation of the objective function and vice versa is also
used:

n n
W, =z{c/x}. —max & W, =—z{cjxj — min.
J= J=

Given this, without loss of generality, let us assume that
we have a linear discrete optimization problem, given in the
canonical form:

W, =CX — max,
Q,:AX=B,
X=0,

where the range of matrix of coefficients of the constraints
system is equal to rang A=m.

Then solving the system using the Jordan-Gauss method
[5] by arbitrary basis combination of variables, we will ob-
tain the projection of the n-dimensional original problem on
(n—m)-dimensional space. In case n—m=2, we have project-
ing on a two-dimensional plane.

Let us consider a model example of the solution of a
five-dimensional linear optimization problem, which is based
on projecting multidimensional space to two-dimensional
space.

To solve the linear optimization problem

W, =13x,+7x, +2x, — x, + 2x; = max,

10x, +10x, + x, + x, + 2, =179,

Q, 194 19x, +14x, +x, + 2x, + 2x, = 298, )
4x,+5x,+x, =69,

2,20, 2,20, x,20,

x,20, x,20.

1

Solution. The constraints system (1) consists of three
independent equations. Let us proceed from the canonical
forms of the problem representation to the standard one.
Such transition is performed by solving the system (1) by the
Jordan-Gauss method (Table 1). We select the three x3, x4,
x5 as basis variables.

Table 1
Calculations by basis x3, x4, xs.

X1 X9 X3 X4 X5 b 2z

10 10 1 1 1 179 202

19 14 1 2 2 298 336

4 5 0 1 0 69 79
Wi 13 7 2 -1 2 151

10 10 1 1 1 179 202

-1 -6 —1 0 0 -60 —-68

4 5 0 1 0 69 79
Wi -7 -13 0 -3 0 -207

9 4 0 1 1 119 134

1 6 1 0 0 60 68

4 5 0 1 0 69 79
Wi -7 -13 0 -3 0 -207

5 -1 0 0 1 50 55

1 6 1 0 0 60 68

4 5 0 1 0 69 79
Wi 5 2 0 0 0 0

From the last chain of Table 1, we have the resolved
system

4x,+5x,+x, =69,
5x,—x, +x, =50, (2
X, +6x, +x, =60.

4. 1. Projection onto Oxyx)

Rejecting the basis variables, we ensure a transition to
two-dimensional inequalities. Projection of the five-dimen-
sional original problem onto coordinate plane Oxx, takes
the form:

W, =4x, +5x, - max,

4x,+5x, <69,
QP I5x —x, <50,

x,+6x, <60,

x,20, x,>0.

Graphical solution will be shown in Fig. 1.

W, =13x, +7x, +2x, — x, + 2x, — max,
Hnd 10x, +10x, + x, + x, +x, =179,
0, ;{ 19x, +14x, + x, + 2, +2x, = 298,
4x, +5x, +x, =69,
95 X, 20,x,20,x,20,x, 20,x,20.

U

W, =4x, +5x, — max,

xxxxx

A A X, 4x, +5x, <69,
0 \ g7[ o, Q% :)sx —x, <50,
\ : {xl +6x, <60,
> x,20,x, 20.

Fig. 1. Projection onto Ox1x,

The coordinates of the extreme vertex are the solution
to the system



max

dx, —x, =50,

X :(u1><w24:>{

4x,+5x,=69, |x =11
X, =5.

Other coordinates will be obtained from the resolved
system (2). Thus, the optimal solution to the original prob-
lem is equal to

X7 =[11,519,0,0]

The largest value of objective function will be W™ =65.

Note. Selection of three variables out of five is possible
with the use of ten methods C?=10. Let us consider all
possible reductions of the problem.

4. 2. Projection onto Oxjx;

We select xs, x3, x4 as basis variables. We solve the origi-
nal system of constraints relative to variables x5, x3, x4 by the
Jordan-Gauss method (Table 2), but we use system (2) that
is equivalent to (1).

Table 2
Calculations by basis x,, x3, x4.

Xy X9 X3 X4 X5 b >

5 -1 0 0 1 50 55

1 6 1 0 0 60 68

4 5 0 1 0 69 79
Wi 5 2 0 0 0 0

-5 1 0 0 -1 -50 -55

31 0 1 0 6 360 398

29 0 0 1 5 319 354
Wi 15 0 0 0 2 100

Table 2 gives the resolved system with basis variables
X2, X3, X4,
=5, — x5+ x, = =50,
31, +6x5 + x, = 360, 3)
29x, +5x5 +x, =319.

Neglecting non-negative basis variables xo, x3, x4, we
carry out a transition to the constraints-inequalities. The
projection of the five-dimensional polyhedral of the original
problem (1) is onto coordinate plane Oxyxs, otherwise the
equivalent transition from the canonical form of the LO
problem to the standard one takes the form of:

W, =15x, + 2x, —100 — max,

=5, — x5 < =50,
31, +6x5 <360,
29x, +5x, < 319,

Oxyrs .
Qs

0<x, 0<ux..

The graphical solution to the problem is shown in Fig. 2
where

®, :5x, +x; =50, ®,:31x,+6x; =360,

®,:29x,+5x,=319, ,:x,=0, 0,:x,=0.

W, =13x, + 7x, + 2x, — x, + 2x, — max,
10x, +10x, +x, + x, + x, =179,
19 19x, +14x, + x, +2x, +2x, =298,
4x,+5x, +x, =69,

X, 20,x,20,x,20,x,>0,x, >0.

W, =15x, + 2x, =100 — max
—5x, —x, £-50,

Q7 :431x, +6x, <360,
29x, +5x; <319,

0<x,0<x,.

ax) X,
% 0)4 1
0‘)2

Fig. 2. Projection onto Ox1x5

The optimal vertex has coordinates x, =11, x;=0. Co-
ordinates of x9, x3, x4 will be calculated from system (3). Fi-
nally, X =[ 11,5,19,0,0 ] The obtained optimal solution

coincides with the previous ones, which proves correctness
of the performed calculations.

4. 3. Projection onto Oxax;5

We select xy, x3, x4 as basis variables.

We solve the original system of constraints with respect
to variables xy, x3, x4, using the table of the solution of the
previous calculation (Table 2).

Table 3
Calculations by basis x1, x3, X4

x1 X x3 Xy x5 b )

-5 1 0 0 -1 -50 | -55

31 0 1 0 6 360 398

29 0 0 1 5 319 354
Wi 15 0 0 0 2 100

1 -1/5 0 0 1/5 10 11

0 |315 ] 1 0 | -1/5] 50 57

0 | 29/5] o t | -4/5 | 29 35
Wi 0 3 0 0 -1 -50

We have the resolved system with basis variables x1, x3, x4

—lx2 +1x5 +x, =10,
5

5
%XZ —éx5+x3 =50, (4)
29

4
?xQ —gxs +x,=29.

Neglecting the non-negative basis variables, we ensure
a transition to constraints-inequalities. Projection of a
five-dimensional polyhedral of the original LO problem onto
coordinate plane Oxyxs takes the form:

W, =3x, —x,+50 — max,




——x, +éx5 <10,
Qs %xz _éxa <50,

%% 4 v, <29
0<x,,0<x;.

Graphical solution to the problem is shown in Fig. 3
where

1 31 1

O —éxQ +gx5 =10, o, Xy =50,
29 4

o, :?xz—gx5=29, o, :x;=0, 0;:x,=0.

W, =13x, +7x, +2x, — x, + 2x, = max,
10x, +10x, +x, +x, +x, =179,
Q, 4 19x, +14x, + x, + 2x, + 2x, =298,
> 4x, +5x, +x, =69,

x,20,x,20,x,20,x, 20,x, >0.
U

W, =3x, = x, + 50 & max

Bl

Fig. 3. Projection onto Ox,x5

The optimal vertex has coordinates x, =35, x;=0. Coor-
dinates x1, x3, x4 will be calculated from system (4). Finally,
X =[11,5,19,0,0 ].

4. 4. Projection onto Oxx5

We select xq, x9, x3 as basis variables. We solve the
original constraints system with respect to variables x4,
X9, x3 (Table 4), using the previous table of the solution
(Table 3).

Table 4
Calculations by basis xy, X2, X3

X1 X9 X3 X4 X5 b >

-5 1 0 0 -1 =50 -55

31 0 1 0 6 360 398

29 0 0 1 5 319 354
Wi 15 0 0 0 2 100

0 1 0 5/29 | —4/29 | 5 [175/29

0 0 1 -31/29 | 19/29 19 |568/29

1 0 0 1/29 | 5/29 | 11 |354/29
Wi 0 0 0 -15/29 | -17/29 | —-65

We have the resolved system with basis variables x1, x9, x3

ix— X.+Xx,=5

2974 2970 TP

31 9

—Ex4+gx5+x3=19, )

Projection of the five-dimensional polyhedral of the
original LO problem onto coordinate plane Ox4x; takes
the form:

15 17

W, =——x, ——x,+65— max,
29 29
Sx, —4x; <145,

Q(I?\US : —313(4 +19x5 35517

X, +5x, <319,
0<x,, 0<x,.

The graphical solution to the problem is shown in Fig. 4
where

5 5
~x - =
1 4 5=
29 29
31 9
W, ——x, +—x;+19,
29 29
1 5
o, —x, +—x, =11
29 29
o,:x=0, o;:x,=0
W, =13x, +7x, +2x, —x, + 2x, — max,
X, N 10x, +10x, + x, + x, +x, =179,
s N Q, 14 19x, +14x, + x, +2x, +2x, =298,
.
] \\\\ 4x,+5x, +x, =69,
. N x,20,x,20,x,20,x, 20,x, >0.
h U
N
__ 15, 17
\\\ W, = 5% 29x5+65amax
AN N5, —4x, <145,
@ 1 - 31x, +19x, <551,
N X, +5x, <319,
A TOSxA,OSxS.
o max \\ o, X,
> ©, N
grad(W,)

Fig. 4. Projection onto Oxsx5

The optimal vertex has coordinates x, =0, x, =0. Coor-
dinates x1, x9, x3 will be calculated from system (5). Finally,
X =[ 11,5,19,0,0 ] The obtained optimal solution coin-

cides with the previous calculations.

4. 5. Projection onto Ox; x3

We select x1, x4, x5 as basis variables.

We solve the original constraints system with respect to
variables x1, x4, x5 from Table 5, using the previous table of
the solution (Table 1).



Table 5
Calculations by basis x1, x4, xs.

X1 X9 X3 X4 X5 b )

5 -1 0 0 1 50 55

1 6 0 0 60 68

4 5 0 1 0 69 79
Wi 5 2 0 0 0 0

0 =31 -5 0 1 -250 | —-285

1 6 1 0 0 60 68

0 -19 —4 1 0 —171 | —193
Wi 0 -28 -5 0 0 -300

We have the resolved system with basis variables xy, x4, x5.
From the last chain, we obtain the solved system

-31x, —5x, + x5 =-250,
6x, +x,+x, =60, (6)
—19x, —4x, +x,=-171.
Rejecting the basis variables, we provide a transition to
two-dimensional inequalities. Projection of the five-dimen-

sional original problem onto coordinate plane Ox, x3 takes
the form:

W, =-28x, —5x, + 300 - max,

-31x, —5x, <-250,
6x, +x, <60,
—19x, —4x, <171,

Oxyx3
Qo

x,20, 2, 20.
The graphical solution is shown in Fig. 5 where
o, :31x, +5x, =250, o,:6x,+x,=60,

0, :19x, +4x, =171, ®,:x2,=0, o0,:x,=0.

W, =13x, +7x, + 2x, —x, + 2x; - max,
Ly 10x, +10x, +x, + x, +x, =179,
Q, 3 19x, +14x, + x, +2x, +2x, =298,
4x, +5x, +x, =69,
x,20,x,>0,x,>0,x, >0,x, >0.
U
W, =-28x, —5x, + 300 — max,
—31x, —5x, £-250,

\ 6x, +x, <60,
AN
AN —19x, —4x, <-171,
x, 20,x, >0.
A X,
4
grad(W,) [~

Fig. 5. Projection onto Ox,x3

The coordinates of the extreme vertex are the solution
to the system

max

31w, +5x, =250 [x,=5,
X7 o, X0, <

19, +4x, =171 |, =19.

Other coordinates will be obtained from the solved sys-
tems (6). Thus, the optimal solution to the original problem
is equal to

max

X7 =[11,5,19,0,0].

The largest value of the objective function will be
W™ =65.

4. 6. Projection onto Oxs x,

We select the combination of x4, x3, x5 as basis variables.
We solve the original constraints system with respect to
variables x1, x3, x5 from Table 6, using the previous table of
solution (Table 5).

Table 6
Calculations by basis x4, x3, xs.

X1 X9 X3 Xy X5 b >

0 -31 -5 0 1 -250 -285

1 6 1 0 0 60 68

0 -19 —4 1 0 -171 -193
Wi 0 -28 -5 0 0 -300

0 |-29/4| 0 | -5/4| 1 |-145/4|-175/4

1 5/4 0 1/4 0 69/4 | 79/4

0 | 19/4 | 1 | -1/4| 0 | 171/4 | 193/4
Wi | 0 |-17/4| 0 | -5/4| 0 |-345/4

We have the resolved system with basis variables x1, x3, x5
5
sz +—X4+X1=IZ—, (7)

We proceed to constraints-inequalities. This transition
ensures projecting of the original five-dimensional problem
(1) onto coordinate plane Ox; x4 and takes the form:

17 ] 345
—X, ——X; +—— —>Mmax,
4 4

W, =—
=y

—29x, —5x, <145,
QY% :35x, +x, <69,
19x, —x, <171,

x,20, x,20.

The graphical solution is shown in Fig. 6 where
,:29x, +5x, =145,

®,:5x,+x, =69,

o, :19x, —x, =171,

0,:x,=0, o;:x,=0.



W, =13x, +7x, + 2x, — x, + 2x, = max,

X 10x, +10x, +x, + x, + x, =179,
o
s Q, 14 19x, +14x, + x, + 2x, + 2x, =298,
>\ 4x, +5x, +x, =69,

X, 20,x,20,x,20,x,20,x, 20.

U
17 345
W, =% —%x3 +=4- > max,
< —29x, —5x, <145,
o 5x, +x, <69,
N 19x, —x, <171,
S x,>0,x,>0.
t -
grad(W,)

Fig. 6. Projection onto Ox,x4

Coordinates of extreme vertex are the solution to the
system

max

29x,+5x, =145 |x,=5,
X o, X0, & =

x,=0 x,=0.
Other coordinates will be obtained from the solved system
(7). The optimal solution to the original problem is equal to:
X7 o=[11, 5,19, 0, 0].

The largest value of the objective function will be
W™ = 65.

4. 7. Projection onto Oxy x3

Let x9, x4, x5 be the basis variables. We solve the original
constraints system regarding variables x9, x4, x5 (Table 7),
but, to reduce the amount of calculations, we use the previ-
ous table of solution (Table 5).

Table 7
Calculations by basis x,, x4, X5
X1 X9 X3 X4 X5 b >
0 -31 -5 0 1 -250 | —285
1 6 1 0 0 60 68
0 -19 -4 1 0 -171 | —193
Wi 0 -28 -5 0 0 -300
316 | 0 1/6 0 1 60 |199/3
1/6 1 1/6 0 0 10 | 34/3
19/6 0 -5/6 1 0 19 67/3
Wi 14/3 0 -1/3 0 0 -20

We have the resolved system with basis variables x, x4, x5.
It takes the algebraic form of:

%Jﬁ +éx3 +x; =60,

1 1

gx1+gx3+x2=10, (©)
19

Exz —gx4 +x,=19.

We proceed to constraints—inequalities. The projection
of the original five-dimensional problem (1) onto coordinate
plane Oxq x3 takes the form:

W, = 1—4951 —ix3 +20 — max,
3 3
31x, +x, <360,
QY 13 x, +x, <60,

19x, —5x, <114,
x,20, x,20.
The graphical solution is shown in Fig. 7 where
o, :31x, +x, =360,
, :x, +x, =60,
®,:19x, —5x, =114,
0,:x,=0, o;:x, =0

Coordinates of the extreme vertex are the solution to the
system

max

3lx, +x, =360 x =11,
X7 0 X0, &

=
19x,-5x, =114 | x,=19.

W, =13x, + 7x, + 2x, — x, + 2x, = max,

} 10x, +10x, +x, +x, +x, =179,
Os > Q,:1 19x, +14x, + x, + 2x, + 2x, = 298,
o 4x, +5x, +x, =69,
7\2< - X, 20,x,>0,x,>0,x, >0,x, 0.

141
T3N3

31x, +x, <360,
QX8 x, +x, <60,
, 19x, = 5x, <114,

X, 20,x, 20.

X, +20 — max,

Fig. 7. Projection onto Oxyx3

Other coordinates will be obtained from the solved sys-
tems (8). Thus, the optimal solution to the original problem
is equal to

X =[11, 5,19, 0, 0].

max

The largest value of the objective function will be
W™ =65.

4. 8. Projection onto Ox3 x,

Let xy, x9, x5 be the basis variables. We solve the orig-
inal constraints system with respect to variables x1, xs, x5
(Table 8). To reduce the amount of calculations, we use the
previous table of solution (Table 7).



Table 8
Calculations by basis x1, X, X5
X1 X9 X3 X4 X5 b Z
31/6 0 1/6 0 1 60 199/3
1/6 1 1/6 0 0 10 | 34/3
19/6 0 -5/6 1 0 19 67/3
Wi 14/3 0 -1/3 0 0 -20
0 0 |[29/19 [-31/19| 1 29 | 568/19
0 1 | 4/19 | -1/19 | 0 9 |193/19
1 0 |-5/19| 6/19 0 6 | 134/19
Wi 0 0 17/19 | -28/19 0 —48

We have the resolved system with basis variables x1, x5, 5.
It takes the algebraic form of:

29 31

Exs —E]Q +X5= 29,

4 1

Ex3—5x4 +.7C2 29, (9)

—ix +£x +x,=6
1972 g9t T

We proceed to constraints—inequalities. Projection of
the five-dimensional problem (1) onto coordinate plane Oxs
x4 takes the form:

17 28

f —Exg —EJQ +48 — max,

29x, —31x, <551,

Qo L b, —x, <171,
-5x,+6x, <114,
x,20, x,20.

The graphical solution is shown in Fig. 8 where
®,:29x, -31x, =551, ®,:4x,—-x,=171,

®,:-5x,+6x, =114, 0,:x,=0, o0;:x,=0.

W, =13x, + 7x, + 2x, — x, + 2x, = max,
10x, +10x, +x, + x, +x, =179,
Q, :| 19x, +14x, + x, + 2x, + 2x, = 298,
4x, +5x, +x, =69,
x,20,x,20,x,20,x,20,x; >0.

U

17
W, =1o%

29x, —31x, <551,
Ql

—%)@ +48 — max,

4x,—x, <171,
- 5x,+6x,<114,

X, 20,x,20.

o 4 ox
ox,(max {7/ o,
l"02
™ Ngrad(W,)

Fig. 8. Projection onto Ox3x4

Coordinates of the optimal vertex are the solution to the
system

max

29x,-31x, =551 [x,=19,
X7 X0, =

x,=0 x,=0.

Other coordinates will be obtained from the solved
system (9). The optimal solution to the original problem is
equal to

X =[11,519,0,0 ].

The largest value of the objective function will be
W™ =65.

4. 9. Projection onto Ox; xy

Let x4, x9, x5 be the basis variables. We solve the original
system of constraints regarding variables x1, x9, x5 (Table 9),
but, to reduce the amount of calculation, we will use the
previous table of solution (Table 8).

Table 9
Calculations by basis x1, X7, X5
X X X3 X4 X5 b >
0 0 [29/19 |-31/19 1 29 | 568/19
0 1| 4/19 | -1/19| 0 9 [193/19
1 0 [-5/19| 6/19 0 6 134/19
Wi 0 0 17/19 | -28/19 0 —48
29/5 0 0 1/5 1 319/5 | 354/5
4/5 1 0 1/5 0 69/5 | 79/5
-19/5| 0 1 -6/5 0 |-114/5|-134/5
Wi | 17/5 0 0 -2/5 0 -138/5

We have the resolved system with basis variables x1, x9, 5.
It takes the algebraic form:

29 1 319

— X=X, X =—,

5 5 5
69

4 1
—x Xt a,=—

5 5 5’

19 6 114
y -

U TEN RS T

(10)

We proceed to constraints—inequalities. The projection
of the five-dimensional problem (1) onto coordinate plane
Ouxyx4 takes the form:

17 2 138
W, =?x1—§x4+?—>max,
29x, +x, <319,
QY dx, + 2, <69,

—19x, —6x, <114,
x,20, x,20.
The graphical solution is shown in Fig. 9 where
o, 29x,+x, =319,
o, :4x, +x, =69,

®,:19x, +6x, =114, 0,:x,=0, 0,:x,=0.



W, =13x, +7x, + 2x, — x, + 2x, — max,
m5‘>\» 10x, +10x, +x, +x, + x, =179,
Q :‘ 19x, +14x, + x, + 2x, +2x, =298,
4x, +5x, +x, =69,

x,20,x,20,x, 20,x, 20,x, >0.

U
17 2 1
W, =5 NN + 28 — max,
29x, +x, <319,
U’s\x Qr 4x, +x, <69
- 19x, —6x, <114,
x,20,x,2>0.
t t

; ) z max o,
N
// grad(W,)

Fig. 9. Projection onto Oxy x4

Coordinates of the optimal vertex are the solution to the
system

max

x,=0

29x,+x,=319 [x, =11
X7 o X0, & =
x,=0.

Other coordinates will be obtained from the solved
system (10). The optimal solution to the original problem is
equal to

X7 =[11, 5,19, 0, 0].

The largest value of the objective function will be
W™ =65.

4. 10. Projection onto Ox3 x5

We accept x1, x9, x4 as basis variables. We solve the orig-
inal system of constraints with respect to variables x1, x5, x4
(Table 10), but, to reduce the amount of calculation, we use
the table of solution (Table 8).

Table 10
Calculations by basis x1, X, X4

x| X X3 Xy X5 b >

0 0 29/19 | -31/19 1 29 568/19

01| 419 | -1/19 0 9 193,19

1 0 -5/19 6/19 0 6 134/19
Wi | 0 0 17/19 | -28/19 0 —48

0 0 | -29/31 1 -19/31 | =551/31 |-568/31

0| 1] 53t 0 ~1/31 | 250/31 | 285/31

1 0 1/31 0 6/31 360/31 | 398/31
Wi | 0 0 | -15/31 0 -28/31 [-2300/31

We have the resolved system with basis variables x1, 1, 4.
It takes the algebraic form:

29 19 551

e T R

317731 31

5 1 250

S L2250 1
317 T3 TR T an
VR VR 1)

317 "3 31

We proceed to constraints—inequalities. The projection
of the original five-dimensional problem (1) onto coordinate
plane Oxs x5 takes the form:

15 28 2300
W) =—x; — ¥, +——— > max,
3177 3177 31
29x,+19x, <3551,
Q?xm . 5x3 —X;5 < 250,
Xy +6x5 <360,

x;20, x,20.
The graphical solution is shown in Fig. 10 where
®,: 292, +19x, =551, ®,:dx, —x; =250,

W, :x,+6x, =360, 0,:x,=0, w;:x,=0.

W, =13x, +7x, + 2x, — x, + 2x, = max,
10x, +10x, + x, +x, + x, =179,
Q, :+ 19x, +14x, + x, + 2x, +2x, =298,
4x,+5x, +x, =69,
x,20,x,20,x,20,x, 20,x, > 0.

U

——
[0) _ 1528 2300
\ W, = 35 ﬁ)c5+731 — max,

29x, +19x, <551,
Qe 5x,—x, <250,
X, +6x, <360,

A x,20,x,20.

Fig. 10. Projection onto Ox3 x5

Coordinates of the optimal vertex are the solution to the
system

Xopl

max

{29963 +19x, =551 [x3 =19,
O, X0, o

x,=0 x,=0.

Other coordinates will be obtained from the solved system
(10). The optimal solution of the original problem is equal to

X7 =[11, 5,19, 0, 0].

max

The largest value of the objective function will be
W™ =65.

8. Discussion of results of studying the optimization
calculations

The proposed approach to simplification of the combina-
torial solution to a discrete optimization problem has signif-
icant benefits unlike the known methods of determining the
optimal solution, such as the simplex method or the method
of artificial basis [3]. In fact, the performed decomposition
of the system reduces the dimensionality of the system of
equations to be solved. The projection of the multi-dimen-
sional system of an original problem onto a two-dimensional
coordinate plane makes it possible to obtain a simple system



of graphic solution to a complex problem of linear discrete
optimization. From the practical point of view, the proposed
method makes it possible to simplify the calculation com-
plexity of optimization problems of such a class.

It was shown that the optimal solution to the original
problem by all 10 projections is equal to:

X7 =[11, 5,19, 0, 0].

The largest value of the objective function: W;"* =65.

The obtained scientific result allows us to conclude that
in the general case there is no need to search for a solution by
all projections. It will suffice to determine the solution only
for one projection.

The applied value of the proposed approach is the use of
obtained results to provide a possibility to improve complex
systems that are described by systems of linear equations
with existence of the systems of linear constraints. Mul-
tivaluedness of combinatorial projections determines the
possibility to change the set of parameters of the problem.
Projecting a multi-dimensional optimization process on a
two-dimensional plane was proposed.

This simplification method can be applied only to the
prepared classes of problems. The rank of m matrix of coeffi-
cients of the system of constraints for a linear discrete opti-
mization must problem must satisfy the condition of n—-m=2,
where 7 is the dimensionality of the problem. Generalization
of such projecting on a three-dimensional space is expedient.

9. Conclusions

1. It is shown that the solution to a linear optimization
problem is possible by simplification with the use of de-
composition of a system due to construction of projections
of a multi-dimensional system of the original problem onto
two-dimensional coordinate planes.

2.1t was proved by the example of solving a typical
model problem that the proposed approach allows obtaining
a simple system of graphic solutions of a complex problem
of linear discrete optimization. The obtained result makes
it possible to conclude that in the general case, there is no
need to search for solutions by all projections. It is enough to
determine the solution only by one projection.
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