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1. Introduction

The growing demand for quantitative predictions in nat-
ural, economic, humanitarian, and other fields, has prompt-
ed interest in the theory of macro systems as the ideological 

basis of these studies. Predicting the state of large systems 
with stochastic behavior of separate elements became pos-
sible owing to the tools developed in statistical physics. 
One such powerful tool is the extreme entropy principle, 
underlying classic distributions by Maxwell-Boltzmann, 
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Запропоновано розширений ентропійний метод, що вияв-
ляє деякі нові зв'язки в організації макросистем, тим самим 
проливаючи світло на ряд існуючих питань теорії. Зокрема, 
показано, що тип розподілу всередині макросистеми визна-
чається співвідношенням кінетичних властивостей її аген- 
тів – «носіїв» і «ресурсів». Якщо час релаксації менше у «носі-
їв» – формується експонентний тип розподілу, якщо менше у 
«ресурсів» – формується тип розподілу з важким хвостом.

Виявлено існування комбінованої симетрії цих двох типів 
розподілів, які можна розглядати як два різні статистичні 
трактування єдиного стану макросистеми. Розподіли реаль-
них макросистем мають фінітні властивості - у них природ-
ним чином формуються праві межі. Запропонований метод 
враховує праві межі фінітних розподілів як продукт самоо-
рганізації макросистем, координати яких визначаються на 
основі екстремального принципу.

Отримано аналітичні вирази для цих двох типів розподілів 
і їх спектрів, для яких знайдено вдалий спосіб параметричного 
запису через модальні характеристики. Отримано аналітич-
ні вирази, що враховують фінітні особливості розподілів, де 
фігурують лише два параметри – середня кількість «ресур-
сів» та формпараметр як відношення модальної і граничної 
координат.

Цінність отриманих результатів полягає в тому, що вони 
проливають світло на ряд проблемних питань статистичної 
теорії макросистем, та містять набір зручних інструментів 
для аналізу двох типів розподілів з фінітними властивостями
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лювання, фінітні розподіли, гіперболічні розподіли, розподіли 
з важким хвостом
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Bose-Einstein, Fermi-Dirac. All of them possess an exponen-
tial attenuation rate.

As practice reveals, the macro systems that are related 
to the aforementioned “non-physical” areas, in addition of 
quickly damped exponential distributions, often exhibit a 
different type of distributions, specifically a power (hyper-
bolic) distribution with a heavy tail. In contrast to the expo-
nential distributions, with a solid theoretical basis, that one 
was discovered only as an empirical phenomenon.

Given this, there are at least two issues that are the focus 
of attention for several researchers. First, why is it that in one 
case there forms an exponential distribution type and in the 
other one ‒ a heavy tail distribution, and what is the connec-
tion between them? Second, how can we account for the finite 
features in real systems where, due to natural constraints, 
there forms the right bound of distributions? Consideration 
of finite properties is important for the proper calculation of 
statistical sum, especially when analyzing distributions with 
a heavy tail whose weight cannot be neglected.

This paper tackles the development of the method, which 
would make it possible, based on known extreme principles, 
to substantiate from a unified position the mechanism for 
the formation of different types of distributions, dominating 
most macro systems, as well as to determine the finite char-
acteristics of these distributions. As it turned out, a given 
method makes it possible to obtain several nontrivial results, 
complementing the modern theory.

2. Literature review and problem statement

Using the entropy approach to analysis of the equilib-
rium state of macro systems often leads to the exponential 
type of distribution. It matches the known laws of Boltz-
mann, Gibbs, it describes urban traffic flows [1], the distri-
bution of preferences in active systems [2]. 

At the same time, the phenomenon of hyperbolic distri-
butions was originally discovered only as an empirical fact. 
This type, in addition to known Pareto distributions of Pa-
reto, Zipf, Lotka, Bradford, Auerbach, governs, for example, 
the size of the fatigue micro defects in solid material, scales 
of turbulent eddies in the atmosphere, or the intensity of 
luminescence of star clusters in cosmos.

Ideological justification of the reasons of occurrence of 
heavy-tailed distributions has been given much attention. 
Without claiming completeness, one can draw some exam-
ples of the works where a hyperbolic distribution forms: as 
a reaction of a dynamic object to the impact of a random 
signal in the form of delta-correlated noise [3]; as a result 
of the limit transition of the function of hypergeometrical 
distribution [4], or a beta distribution function [5]; as a re-
sult of competitive behavior of agents of the system [6] (this 
very paper awakened the author’s interest in conducting 
these studies). Article [7] shows that the hyperbolic type of 
distribution emerges as eigenvalues when solving a station-
ary Schrodinger equation. Authors of paper [8] succeeded, 
within a unified fractional differential approach, in describ-
ing both the “dispersion” (power) character of transfer in 
disordered semiconductors and the Gaussian (normal) char-
acter of transfer (transition to the normal distribution law 
occurs when an external electric field decreases). Additional 
variants are considered in studies [9–11], which explain the 
sources of forming the distributions with a heavy tail; [12] 
provides an overview of these variants.

A great variety of approaches testifies to the following. 
Even though the macro systems with a hyperbolic type of 
distribution are widespread, there is as yet no reliable the-
oretical grounds for explaining this statistical form of their 
organization. 

Another feature of real systems is the finite character 
of their distributions. Consideration of finite properties is 
important for the proper calculation of a statistical sum, par-
ticularly when modeling statistics with a heavy tail whose 
weight, in contrast to the exponential type of distribution, 
cannot be neglected. In current practice, upper bounds are 
not computed, they are simply assigned instead; circum-
cision of tails is mainly artificial and is based on either 
common sense or on a requirement for better convergence 
towards the selected statistical model [13].

Based on the analysis of studies by other authors, one can 
conclude that solving such problems as the substantiation of 
the mechanism for forming different types of distributions, 
dominating most macro systems, as well as determining the 
finite properties of these distributions, is not always sup-
ported by a fundamental theoretical basis. A natural basis 
is possibly a variational method that is based on known 
extreme principles.

3. The aim and objectives of the study

The aim of this work is to create a tool to examine the 
conditions under which one or another type of distribution 
form in macro systems ‒ exponential or hyperbolic with a 
heavy tail, as well as to find a theoretically substantiated 
technique for determining the finite properties of these 
distributions. In the applied aspect, this would make it 
possible to obtain, as a result, more effective tools for quan-
titative predictions of behavior of macro systems, belonging 
to the natural, economic, humanitarian, and other fields of 
knowledge.

To accomplish the aim, the following tasks have been set:
– to construct an advanced entropy method that would 

better account for the combinatorial configurations in the 
system, which would take into consideration the stage-wise 
character of relaxation processes, as well as the finite prop-
erties of distributions;

– to obtain, based on it, two types of finite distribu-
tions ‒ fast fading exponential and extremely hyperbolic 
with a heavy tail, as well as to find a convenient form of their 
parametric notation;

– to find the relationship between exponential and hy-
perbolic distributions, to find a technique to determine the 
numerical values of their finite parameters.

4. Extended entropy approach

Four provisions underlie the extended entropy approach:
1) One selects a common property of most real macro 

systems. They are treated as objects in which at least two 
agents interact, specifically: ‒ a limited set of abstract “re-
sources” are allocated among the finite set of abstract “carri-
ers” [10]. For example, energy is distributed among the mol-
ecules of gas, people ‒ among cities, wealth ‒ among people.

The status of carriers or resources ‒ carriers or resourc-
es ‒ is conditional and can be reversed. It is convenient to 
consider carriers to be a set whose single element can “pos-
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sess” an arbitrary number of elements (resource portions) 
from another one. For example, a set of localities is the car-
riers, population are the resources. At the same time, urban 
dwellers act as the carriers of such resources as living space, 
or the amount of electricity consumed. 

Note that the term “carriers” introduced here has noth-
ing to do with the same one employed in the mathematical 
literature, meaning the closure of a set of function arguments 
(if such a closure is limited, the function is called finite).

2) One takes into consideration the peculiarities of finite 
distributions. 

Real macro systems typically have a right bound of dis-
tributions. Despite this, in many sources the statistical sum 
is computed by integrating to infinity (for example, when 
deriving a distribution formula by Maxwell, Boltzmann, 
Planck [11]). However, this convenient technique is valid 
only for the rapidly decaying exponential dependences and 
is not at all suitable for heavy-tailed distributions.

When dealing with finite distributions, there emerges 
the uncertainty of the right bound (population size of the 
most inhabited city, or wealth of the society’s richest mem-
ber). Extended entropy method assumes that the magnitude 
of maximum coordinate of the finite distribution (right 
bound) is generated within the system not arbitrarily. Similar 
to the distribution type, it is also a product of self-organiza-
tion of the macro system and can also be determined on the 
basis of a predefined extreme principle.

3) One assumes a broader view on the concept of the 
equilibrium state of the system. 

In the current practice of entropy analysis, statistical 
weight is typically calculated based only on the number of 
splitting the set of carriers [1, 12, 13]. The extended entropy 
method implies counting the combinatorial configurations 
both within the set of carriers and within the set of resources 
‒ two equal agents of the system.

In this case, the mutual process when elements of one set 
acquire the elements of another one typically occurs against 
the background of the dominant activity of one of them. For 
example, in social geography, resources (population) are 
more active in their movements than their carriers (cities). 
At the same time, in a closed thermodynamic system, it is 
the carriers that are more dynamic (relaxation time for the 
parameter of density is usually shorter than the relaxation 
time for the parameter of temperature (that is, energy, the 
resources) [14, 15]).

I shall further demonstrate that the comparative kinetic 
activity of carriers and resources is the key factor that deter-
mines the type of statistical distribution in a macro system. 
The higher kinetic activity of carriers generates an exponen-
tial distribution, while the larger activity of resources prede-
termines the distribution with a “heavy tail”.

Thus, the empirical Auerbach law (distribution of the 
number of cities based on the number of their inhabitants) 
takes a hyperbolic form, due to the greater activity of people. 
In the law by Pareto, distribution of public wealth is due to 
the larger activity of money (resources) in comparison with 
the activity of the population (carriers). It is obvious that 
capital is more active than most people, and here, as well, a 
heavy tail distribution forms. 

At the same time, the systems with more dynamic carri-
ers form an exponential type of distribution (examples were 
given at the beginning of this paper).

4) The stage-wise character of the relaxation process is 
taken into consideration. 

The non-physical macro systems, similar to objects 
studied in the physical kinetics, undergo a consistent shift 
of quasi-equilibrium states towards a complete equilibrium 
state. Such stages are predetermined by a difference in the 
relaxation time for each individual agent in the system.

5. Distribution entropies in systems with two agents

Let some closed system be composed of N  carriers, 
among which the E  quantity of resources. are allocated. 
Each carrier has its own individual portion of resource ε. 
Magnitude ε defines the value of coordinate in the space of 
the individual states of the carrier. For the case when there 
are several different resources, the space of individual states 
becomes multi-dimensional, and the individual state of the 
carrier is characterized by a point with multiple coordinates 
( , , ...).ε ς η

Consider the one-dimensional and discrete space of 
individual states. To this end, divide the range of possible 
change in coordinate ε into M equal intervals ∆ε  with the 
coordinate values 1 2, ,..., Mε ε ε  averaged within the interval. 
Based on this attribute, one selects M cells of the space of in-
dividual states. Thus, the cell with coordinate εi contains the 
number ni of carriers, which possesses the amount of resourc-
es .i i iE n= ⋅ε  With respect to the accepted designations, the 
following conditions are satisfied:

=

=∑
1

M

i
i

n N  – balance of carriers,  (1)

= =

ε = =∑ ∑
1 1

M M

i i i
i i

n E E  – balance of resources.  (2)

The system implements with the greatest frequency the 
macro state that can be recreated by the maximum number 
of distinguishable microstates. The power (cardinal number) 
of the set of all microstates that are capable to recreate a 
given macro state is statistical weight W and its logarithm 

= lnS W  is the statistical Boltzmann entropy. 
The extended entropy method implies a joint analysis, 

not only of the entropy of carriers distribution, but also the 
entropy of distribution of the set of resources (sometimes 
called a resource spectrum). By assigning the appropriate 
index, it is possible to calculate statistical weight of each of 
the distributions as the number of ordered partitions of the 
finite set ⋅( )R [17]:
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The factorial operation here at the amount of resources 
E  is justified by the fact that, in line with the accepted 
designations, each term = ε = ⋅ ⋅ ε∆i i i iE n i n  consists of an 
integer number of portions ∆ε,  with the size of the latter 
depending on the will of the researcher. 

Using the Stirling’s approximation ≈ ⋅ −ln ! (ln 1),m m m  
one obtains a carrier distribution entropy, adjusted to the 
total number of elements from set N:
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and the entropy of resources allocation, reduced to the vol-
ume of set E :

=

 = ≈ −   ∑
1

1 2

ln
( , ... ) ln .

M

i

i

iР
Р M

EW E
S E E E

E E E
  (6)

The process of forming the equilibrium distribution 
in the system often proceeds in several stages, and there-
fore the resulting equilibrium state can be regarded as the 
implementation of a complex experience. If the carriers 
are more dynamic, the entropy of a complex experience 
equals [16]:

= + | ,НР Н Р НS S S  

where НS  is the entropy of distribution of carriers, |Р НS  is 
the conditional entropy of resources distribution (assuming 
the distribution of carriers is formed). If the resources are 
more dynamic, the indexes are swapped = + | .РН Р Н РS S S  

6. Exponential distribution as a consequence of the 
greater kinetic activity of carriers

Find the distribution of carriers = ε( ),i in n  at which en-
tropy (5) under conditions (1) and (2) reaches a maximum. 
To this end, in accordance with the method of the Lagrange 
multipliers, one will search for an unconditional extremum 
of a certain new function Χ 1 2(n ,n ...n ),M  which additively 
includes (5), as well as relations (1), (2), weighted by mul-
tipliers α, β:

=

= =

Χ = − ⋅ +

   ⋅ ε
+α ⋅ − + β⋅ −      

∑

∑ ∑

1 2
1

1 1

(n ,n ...n ) ln

1 1 .

M
i i

M
i

M M
i i i

i i

n n
N N

n n
N N

Known exponential solution matches its maximum:

   (7)

The value for = ⋅ α −exp( 1)НС N  is derived based in the 
normalization conditions. As regards the β multiplier, it is 
usually defined, in line with established practice, applying 
any external additional provisions. 

It is of interest to find a convenient technique to inde-
pendently define both distribution parameters CH and β. It 
turns out that they are closely related to the modal charac-
teristics **E ,  ε**  in the appropriate allocation of resources 

= ε( ),i iE E  or the so-called resource spectrum:

  (8)

Modal parameters of discrete distribution (8) will be 
found by determining the extremum of its continuous analog 

 

The derived maximum (modal) value = ⋅ε** ** **E ,n  at-
tainable at ε = ε**,  makes it possible to express parameters 
CH and β in the form:

β = −
ε**

1
;

= ⋅ = ⋅
ε

**
**

**

e e ,Н

E
С n  

where =e 2.718....
As a result, the allocation of resources (8), recorded via 

modal parameters, takes the form:

 ε ε
= ⋅ − ε ε ** ** **

exp 1 .i i iE
E

  (9)

Dividing it by ε ε** ,i  one finds the desired exponential 
distribution of the number of carriers (Fig. 1, a):

 ε
= − ε ** **

exp 1 .i in
n

  (10)

Resource allocation (9) can be interpreted as a “resource 
spectrum”, corresponding to the exponential distribution of 
the number of carriers (10). Thus, for example, for a perfect 
gas, expression (10) is the distribution of the number of 
molecules among energy levels, expression (9) is the energy 
spectrum (distribution of the amount of energy among the 
same energy levels).

7. Extreme hyperbolic distribution as a consequence of 
the greater kinetic activity of resources

Equilibrium distribution for the case of the greater ac-
tivity of resources will be found based on the condition of an 
entropy maximum (6) under constraints (1), (2). The search 
for a conditional maximum of entropy (6) comes down to 
determining the unconditional maximum of function:

=

= =

⋅ ε ⋅ ε
= − ⋅ +

   ⋅ ε
+λ ⋅ − + m⋅ −      

∑

∑ ∑

1 2
1

1 1

Y( , ... ) ln

1 ,

M
i i i i

M
i

M M
i i i

i i

n n
E E E

E E

n nN
E E E

where λ and μ are the Lagrange multipliers. 
The following solution applies:

 λ
= ⋅  ε ε 

exp .Р
i

i i

С
n   (12)

One can show that parameters = ⋅ m −exp( 1)РС E  and λ 
are closely associated with mode ε*  and modal value *n  for 
distribution (12). Indeed, from condition 

ε
=

ε
( )

0
dn

d
 

for continuous function

λ ε = ⋅   ε ε
( ) expРС

n  

it follows:

λ = −ε*,

= ⋅ β⋅εexp( ).i H in C

= ⋅ε = ε ⋅ ⋅ β⋅εexp( ).i i i i H iE n C

ε = ε ⋅ ⋅ β⋅ε( ) exp( ).НE C
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= ε* *e,РС n  

where ≈e 2.718...  
As a result, one obtains an expression for the equilibrium 

distribution of carriers provided that the relatively more ac-
tive in a macro system is the second agent ‒ resources. This is 
the so-called extreme hyperbolic distribution law, presented 
for the first time in [10]:

 ε ε
= ⋅ − ε ε 

* *

*

exp 1 .i

i i

n
n

  (13)

It has a “heavy tail”; the name is justified by the fact that 
its curve (Fig. 1, b) at a decrease in the coordinate of extre-
mum ε*  approaches a purely hyperbolic dependence. It will 
be shown below that it is observed in real systems in the case 
of scarce resources. 

Respective allocation of the resource volume (resource 
spectrum) will be derived from (13) by multiplying it by 
ε ε*i :

 ε
= − ε 

*

*

exp 1 .i

i

E
E

  (14)

 
 
 
 
 
 
 
a  
 
 
 
 
 
 

b
 

 

Fig. 1. Two types of distributions: a – exponential 
distribution = ε( )i in n  – expression (10) and its resource 

spectrum = ε( )i iE E  – expression (9); b – extreme 
hyperbolic distribution = ε( )i in n  – expression (13) and its 

resource spectrum = ε( )i iE E  ‒ expression (14)

These figures (Fig. 1, a, b) show both types of the derived 
distributions and their corresponding resource spectra.

8. Form-parameter is an important characteristic of finite 
distributions

Real macro systems have a natural constraint ε ≤M E  
(the part does not exceed the whole). As a result, distribu-
tions in these systems have a finite character. The finite dis-
tributions, in addition to the two modal parameters ε**,  **n  
(or ε*,  *n ), have a third magnitude ‒ maximum coordinate 
ε .

M
 It is the upper bound of integration when computing a 

statistical sum.
It is assumed that the magnitude of maximum coordinate 

ε
M

 of the finite distribution is formed within the system not 
arbitrarily. It, as well as the distribution itself, is the product 

of the self-organization of a macro system and its value can 
also be found based on the appropriate extreme variational 
principles. This problem is solved in the framework of the 
extended entropy method. 

An analysis of finite distributions reveals that one can 
elegantly enough consider the impact the maximum coordi-
nate ε

M
 by introducing such a notion as a form-parameter.

The form-parameter of the finite distribution shall be 
understood as the ratio of its modal and maximal coordinates. 
For the exponential and extreme hyperbolic distributions, 
the form-parameter is, respectively, equal to:

ε
ψ =

ε
**

M

 and 
ε

ϕ =
ε

* .
M

  (15)

It can acquire values within [ ]0;1 .  
In this case, the fractions included in the laws of distribu-

tion (10) and (13), can be represented in the form:

ε
=

ε ψ ⋅**

i i
M

 and 
ε ϕ⋅

=
ε

* ,
i

M
i

  (16)

which follows from totality

ε
ε = ⋅ ∆ε = ⋅ ,M

i i i
M

 

where i is the number of the cell, ∆ε  is its predefined size, 
= ε ε∆

M
M  is the total number of cells. 

The importance of form-parameter is obvious from fur-
ther constructs. It is the form-parameter that along with the 
magnitude of the mean portion of resource E N is the sec-
ond characteristic of the system that defines the shape of the 
distribution curve, as well as its corresponding spectrum.

9. Finite exponential distribution

9. 1. Modal parameters ε** and n**

Modal parameters for the exponential distribution law 
can be obtained by substituting expression (10) in formu-
lae (1) and (2), and, with respect to representation (16), 
one obtains:

=

=

 
− ψ ⋅ 

ε = ⋅
 

⋅ − ψ ⋅ ψ ⋅ 

∑

∑
1
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1

exp
,

exp

M
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N j j
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  (17)

=

=
 

− ψ ⋅ ∑
**

1

.
exp 1

M

j

N
n

j
M

  (18)

Here ψ is the exponential finite distribution form-pa-
rameter. 

When one discovers that the sums contained herein have 
geometric and arithmetic-geometric progressions, one can 
record their analytical solutions (which can also be derived 
by passing from the discrete summation to integral calcula-
tions):

=

    
− ≈ ψ ⋅ − −    ψ ψ    ∑

1

1 1
exp 1 exp ,

M

j

j M
M

  (19)
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=

 
⋅ − ≈ ψ ψ 

    
≈ ψ ⋅ − − − −    ψ ψ    

∑
1

1
exp

1 1
1 exp exp .

M

j

j M j M
M

  

(20)

For the case of continuous distribution (at → ∞M ), these 
approximated formulae become precise. 

I shall introduce designations:

( )
( )

ψ

ψ

−
=

− −

ψ⋅
ψ

ψ⋅

1

1

1
;

1 1
B( )

e

e
  (21)

ψ

ψψ =
−

1

1C( ) .
1

e
e

  (22)

Then, applying transforms (19), (20) and given that

∆ε ∆ε⋅ψ
= =

ε ε**

1
,

MM

modal parameters (17), (18) can be reduced to the form:

ε = ⋅ ψ** B( ),
E
N

  (23)

∆ε ψ
= ⋅ ⋅

ε**
**

( )
.

C
n N

e
  (24)

By deriving the mode ε**,  applying (23), one can, in line 
with designation (15), obtain the right bound of the finite 
distribution 

ε = ε ⋅
ψ**

1
.M
 

Their charts are shown in Fig. 2.
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Fig. 2. Influence of form-parameter ψ on the magnitude: a – 

modal 
ε

ε =

**
** E N

 and b – maximal 
ε

ε =

M
M E N

  

 coordinates of the exponential finite distribution 

9. 2. Parameters for the finite exponential distribution
Let me show that the finite exponential distribution of 

carriers (10) and the corresponding finite resource spec-

trum (9) depend on two parameters only ‒ form-parameter 
ψ  and the mean portion of resource E/N. To this end, 
substitute (23), (24) in original expressions (10) and (9); 
the result is a discrete form of the finite exponential distri-
bution of carriers:

 εψ
= ⋅ ⋅ − ∆ε ψ ε **

1 ( )
exp ,

B( )
i in N C

E N
  (25)

and its resource spectrum (resource distribution):

( )
 ε εψ

= ⋅ ⋅ − ∆ε ψ ε 2
**

( )
exp ,

B( )
i i iE E C

E N
  (26)

where 

ε = ⋅ ψ** B( ).
E
N

 

Values ψB( ),  ψ( ),C  are determined from formulae 
(21), (22).

By applying limiting transition ∆ε → 0,  to (25) and 
(26), one obtains expressions for the distributions of corre-
sponding densities:

∆ε→
ε =

∆ε0
( ) lim i

n

n N
f  and

∆ε→
ε =

∆ε0
( ) lim .i

E

E E
f

Their form almost coincides with (25), (26), but instead 
variable ε i  it contains variable ε. 

The distributions of density ε( ),nf ε( )Ef  and the limit 
of their integration ε = ε ψ**M  depends on two parameters 
E/N ‒ the mean value of an individual portion of resources 
(considered to be assigned) and form-parameter ψ, charac-
terizing the finite properties of distribution of the macro 
system. 

The value of a form-parameter is determined by the stage 
of the quasi-equilibrium state of the macro system, which is 
shown below.

9. 3. Estimation of the equilibrium value of form-pa-
rameter ψ

Represent the exponential finite distribution (10) and 
its resource spectrum (9) in relative variables. For this pur-
pose, taking into consideration representation (16) and for-
mulae (17), (18), transform these expressions to the form:

=

 
− ψ 

=
 

− ψ ∑
1

exp
,

exp

i
M

j

i M
n
N j M

  (27)

1

exp
.

exp

i
M

j

i M i M
E
E j M j M

=

 
⋅ − ψ ψ 

=
 

⋅ − ψ ψ ∑
  (28)

A growth of the upper limit of summation M leads to that 
the sums quickly converge. The curves that correspond to 
expressions (27), (28) are shown in Fig. 3.

These curves are represented as functions of the relative 
cell number i/M. Their only parameter is the form-parameter 
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ψ, which can be interpreted as a relative number of modal cell 

** .i M  Indeed, it follows from (15)

ε ∆ε ⋅
ψ = =

ε ∆ε ⋅
** ** .
M

i
M

 

 
 
 
 
 
 
 
 
a  
 
 
 
 
 
 
 
 

b  
Fig. 3. Influence of form-parameter ψ on: a – exponential 

finite distribution (27); b – its corresponding spectrum (28)

Next, substituting (27) and (28) into formulae (5) and 
(6), one obtains dependences, expressed through form-pa-
rameter ψ, for the entropy of primary experience (distribu-
tion of carriers):

and for the conditional entropy of subsequent experience 
(the allocation of resources taking into consideration the 
previously distributed carriers):

Fig. 4 shows their charts.

Fig. 4. Entropy of the distribution of carriers SH(ψ) 
and conditional entropy of resource allocation SP|H(ψ), 

normalized by the magnitude lnM

Fig. 4 shows that the maximum of entropy of initial 
experience SH(ψ) is achieved at the value of form-parameter 

of ψ=1, which corresponds to the initial stage ‒ a stage of 
the quasi-equilibrium state (the equilibrium is reached only 
for the set of carriers as a more active agent). The system 
subsequently tends along a growth trajectory of the con-
ditional entropy SP|H(ψ) to enter the state of the ultimate 
balance, which is attained as a result of the movement of the 
less active set of resources. The shows that the extremum 

ψ| ( )MAXР НS  is reached at the value of bal 0.407.ψ ≈
One can expect that the evolution trajectory of an expo-

nential finite distribution corresponding to a macro system 
with the more dynamic carriers passes in the direction of 
form-parameter’s values from ψ=1 to ψ≈0.407. 

10. Finite extreme hyperbolic distribution

10. 1. Modal parameters ε*  and *n
Modal parameters of the extreme hyperbolic distribution 

(13) will be obtained by substituting this expression alter-
nately into formulae (1) and (2); hence, taking into consid-
eration representation (16), one obtains:

=

=

ϕ⋅ ϕ⋅ ⋅ −  
ε = ⋅

ϕ⋅ −  

∑

∑
1

*

1

exp
,
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M M
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MN
i

  (31)

=

=
ϕ⋅ ϕ⋅ ⋅ −  ∑

*

1

,
exp 1

M

i

N
n

M M
i i

  (32)

where φ is the form-parameter of a finite extreme hyperbolic 
distribution (15). 

In contrast to the exponential distribution, it is impos-
sible to reduce discrete sums in given expressions to simple 
algebraic equations. However, there is a possibility to pass 
from discrete summation to the analytical integral calcula-
tions by making the cell size approach ∆ε → 0  (for the finite 
objects, it corresponds to an infinite number of cells → ∞M ):

ϕ

→∞
=

ϕ⋅ ϕ⋅   ⋅ ⋅ − = ϕ⋅ ⋅ −      ∑ ∫
1

1 0

1 1 1
lim exp exp d ,
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  (33)
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  (34)

In these expressions, one identifies a link to the integral 
exponential function 

∞  
= ⋅ −  ∫1(x) exp d

1 1
x

E t
t t

 

from a class of specialized functions [19], then

( )
ϕ   ⋅ − = −     ϕ ∫
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1 1
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1 1 1
exp d 0 .t E E

t t

Introduce designations (Fig. 5, a): 
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ϕ
ϕ = −

ϕ⋅ ϕ
( )

( ) 1.
exp

С
B   (36)

Next, applying transforms (33), (34), with respect to

∆ε ∆ε⋅ϕ
= =

ε ε*

1
,

MM

modal parameters (31), (32) are reduced to the form:

ε =
ϕ* ,

( )
E N
B

  (37)

ϕ
= ⋅ ∆ε ⋅ ⋅

ε*
*

( ) 1
.

С
n N

e
  (38)

By deriving mode ε*,  from formula (37), it is possible, 
according to designation (15), to also obtain the right bound 
of finite distribution 

ε = ε ⋅
ϕ*

1
.M
 

Their charts are shown in Fig. 5.

Fig. 5. Influence of form-parameter φ on the magnitude of:  

–– –modal 
ε

ε = *
* E N

 and –– – maximum 
ε

ε =

M
M E N

  
 

coordinates of the extreme hyperbolic finite distribution

10. 2. Parameters for the finite extreme hyperbolic 
distribution

I shall demonstrate that the finite distribution of carriers 
(13) and its corresponding finite resource spectrum (14) 
can be represented in the form that depends only on two 
parameters ‒ form-parameter ϕ  and the mean portion of 
resource E/N. To this end, substitute (37), (38) in original 
expressions (13) and (14), and obtain

 εϕ
= ⋅ − ∆ε ε ε 

*( )
expi

i i

n N С
  (39)

– an extreme hyperbolic finite distribution of carriers and

 εϕ
= ⋅ − ∆ε ε 

*( )
expi

i

E E С
E N

  (40)

‒ its resource spectrum (allocation of the resource vol-
ume). 

Here 

ε =
ϕ* ,

( )
E N
B

 

combinations ϕB( ), ϕ( )C  are derived from formulae  
(21), (22). 

By applying the limiting transition ∆ε → 0,  to these 
expressions, one obtains the corresponding distribution of 
densities:

∆ε→
ε =

∆ε0
( ) lim i

n

n N
g  and 

∆ε→
ε =

∆ε0
( ) lim ,i

E

E E
g

whose form is almost the same as (39), (40), where, instead 
of variable ε i , there is the variable ε. The limit of integration 
on the right is the maximum coordinate ε = ε ϕ* .M  Its value 
(Fig. 5) can be determined with respect to (15), deriving ε*  
from formula (37). 

The distributions of density ε( ),ng ε( )Eg  and the limit 
of their integration ε = ε ϕ*M  depend only on parameters 
E N ‒ the mean value of individual portion of resources 
(which is assigned), and form-parameter φ, characterizing 
the finite properties of distribution of the macrosystem. 

The value for form-parameter φ depends on the stage of 
evolution of the quasi-equilibrium state of the macrosystem, 
which is described in detail below.

10. 3. Estimation of the equilibrium value of form-pa-
rameter φ 

First, represent the extreme hyperbolic finite distribu-
tion (13) and its resource spectrum (14) in relative variables. 
For this purpose, transform these expressions with respect 
to representation (16), as well as formulae (31) and (32), and 
one obtains as a result:

=

 ϕ ϕ⋅ −  
=

 ϕ ϕ⋅ −  ∑
1

exp
/ /
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exp

/ /

i
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j

i M i Mn
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  (41)

=

 ϕ−  
=

 ϕ−  ∑
1

exp
/

.
exp

/

i
M

j

i ME
E

j M

  (42)

An increase in the number of cells M leads to that these 
sums quickly converge. The curves that correspond to ex-
pressions (41) and (42) are shown in Fig. 6.

a                                              b 
Fig. 6. Influence of form-parameter on: a – extreme 

hyperbolic finite distribution (41); b – its spectrum (42)

These dependences are represented as functions of the 
relative number of cell i/M. A single parameter here is the 
form-parameter φ, which can also be interpreted as the relative 
number of modal cell * .i M  Indeed, it follows from (15) that

ε ∆ε ⋅
ϕ = =

ε ∆ε ⋅
* * .
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Next, substitute expressions (41) and (42) in formulae 
(6) and (5), respectively. One obtains dependences for two 
entropies expressed via form-parameter ψ:

‒ the entropy of primary experience implying the re-
source allocation

‒ conditional entropy of the subsequent experience im-
plying the distribution of carriers, taking into consideration 
the event of the earlier allocated resources

Fig. 7 shows their charts, normalized by the magni- 
tude ln M .

Fig. 7. Entropy of the distribution of “resources” SP(φ) and 
conditional entropy of the distribution of “carriers” SH|P(φ) 

normalized by the magnitude lnM

Fig. 7 shows that the maximum entropy of the initial 
experience SP(φ) is achieved at ϕ = 1.  One can assume 
that this very value of form-parameter φ forms at the ini-
tial stage ‒ the stage of the quasi-equilibrium state (when 
equilibrium is reached only for the set of resources as a more 
active agent). The system subsequently tends to enter the 
state of the ultimate equilibrium, taking into consideration 
the redistribution of less-active carriers, that is, along the 
growth trajectory of conditional entropy SH|P(φ). The chart 
demonstrates that extremum ϕ max( )Н РS  is attained at value 

bal 0.214.ϕ ≈
One can expect that the evolution trajectory of the finite 

extreme hyperbolic distribution, which corresponds to the 
macro system with more dynamic resources, passes in the 
direction of form-parameter’s values from φ=0 to φ≈0.214. 

Note that at φ=0 (which corresponds to the early qua-
si-equilibrium stage of the system’s evolution), the extreme 
hyperbolic distribution (41) tends to the form of a purely 
hyperbolic distribution (Fig. 6, a).

11. Extreme hyperbolic distribution law and its 
relationship with real systems

The obvious question is: is there any reason to link 
the extreme hyperbolic distribution law to the empirically 
observed power distributions in real systems? The answer, 

most likely, should be in the affirmative, although at first 
glance, there are at least two arguments against it. 

First, the modal character of theoretical curve of the 
extreme hyperbolic law allegedly contradicts the existing 
practical examples of purely hyperbolic distribution (some 
of them were mentioned above).

Second, in the obtained theoretical curve the right (de-
scending) branch has a single exponent while real systems may 
exhibit distributions with a power degree different from unity.

Regarding the first objection. There are many examples 
of real distributions with a “heavy tail” that possess a mode. 
For example, distributions of the number of fatigue micro 
defects for their size [3], atmospheric aerosol particles for 
the magnitude of their diameters [20], shards of exploded 
ammunition for their mass [21], atmospheric turbulent pul-

sations for their intensity [4]. It is also known 
[22] that the complete empirical curve that de-
scribes the distribution of population in terms 
of income also exhibits a modal character rather 
than a monotonously decreasing hyperbola. The 
Pareto law actually approximates not the entire 
modal dependence, but only its right, down-
ward, branch, while ignoring the information 
on the distribution of income of the poor.

The small value of the mode, that is, the ε* coordinate 
in formula (13) results in an illusion of the monotonically 
decreasing hyperbolic dependence. As follows from (35), 
the mode is small at low value E/N ‒ for the systems with a 
shortage of resources. The mode is also small when the values 
of form-parameter ϕ  are low ‒ at an early stage of the qua-
si-equilibrium state (Fig. 6). 

If one constructs, under such conditions, a discrete dia-
gram with a large enough sampling rate, the small mode can 
become unobservable, having been absorbed by the width of 
the first column of the diagram.

In this regard, one can assume that many of the observed 
power distributions are actually the modal distributions with 
a “heavy tail”, which were not considered in detail.

It is important to note that the above does not apply to mo-
notonously decreasing rank distributions where the argument 
is the rank ‒ the number in the order of decreasing “weight”. 
This paper considers the fundamentally different distributions 
where the argument is the physical quantity ‒ an individual 
portion of resources. For such dependences, rank distributions 
are only a kind of shadow. Any modal distribution can always 
be reformatted into a monotonously decreasing rank correla-
tion with a natural loss of information. It is also pertinent 
to note that the result of such conversion easily explains the 
known phenomenon ‒ bend in the head and tail of a straight-
line rank dependence, built in logarithmic coordinates.

As regards the second objection, one must say the follow-
ing. Indeed, the exponent from a descending branch of the 
chart for the extreme hyperbolic law is always equal to unity, 
while in real systems it is often larger (rarely lower) than 
unity. There are two reasons, there are, to be exact, at least 
two sources for forming the non-unity distribution exponent.

The first reason (obvious) is related to the dimensionality 
of the argument of distribution. Indeed, in the extreme hyper-
bolic law, the argument is the size of the individual share of 
resources ε i  (energy, volume, ...). In practice, however, they 
often analyze distributions where the argument is the magni-
tude derived from resources (wavenumber, diameter, …).

The second, less obvious reason is related to the funda-
mental impossibility of real systems to be isolated. Typically, 
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each of them is included in the causal diagram with many 
other macro systems, mutually distorting a priori conditions 
for the formation of each other. For example, an economic 
system cannot exist outside of social or political system, 
while a demographic system could not 
be isolated from economic, or envi-
ronmental. Such a statistical interac-
tion between macro systems leads to 
the violation of condition for a priori 
equal probability of populating the 
“phase” cells, and hence to breaching 
the main postulate of statistical me-
chanics, which is an equal probability 
of microstates.

If the main postulate of statistical 
mechanics (the postulate of equal a 
priori probabilities) ceases to have 
effect, the entropy can no longer serve 
as a function, clearly describing the 
probability of a macro state of the system [23]. Such a task 
can be handled only by a more general function ‒ entropy 
divergence, which includes entropy as a component. This 
paper shows that the equilibrium state of the system in the 
general case must be matched with the requirement for a 
conditional minimum of the entropy divergence, rather 
than the conventional requirement for a conditional max-
imum of entropy.

According to results from [23], the equilibrium distri-
bution of the macrosystem, which is under conditions of 
statistical interaction, is a multiplicative combination of its 
natural isolated allocation and distribution of a priori proba-
bilities of populating the cells 1 2( , ,..., ,..., ),i Mp p p p  generated 
under the influence of additional factors. Thus, instead of 
laws (10), (13), the following expressions are obtained, re-
spectively:

ε
−

ε= ⋅ **

**

1

**

i

iin p
e

n p
and 

−
ε

ε ε= ⋅
ε

*

*

* *

1
,ii i

i

n p
e

n p

where pi is the a priori probability of populating the i-th cell, 
p** and p** are the a priori probabilities of populating the 
modal cells for exponential and hyperbolic laws, respectively. 
Paper [23] provides examples of how, in real systems, a given 
mechanism produces an exponent of power distributions 
different from unity. 

All of the above suggests that many empirically observed 
power (with a heavy tail) distributions may in fact be unde-
tected extreme hyperbolic distributions, which are formed in 
accordance with the entropy variational principle.

12. The combined symmetry of two kinds of distributions

Based on the extended entropy approach, I have re-
ceived two pairs of distributions. The first pair is the 
exponential distribution of carriers (10) and its resource 
spectrum (9), the second pair is the extreme hyperbolic 
distribution of carriers (13) and the corresponding resource 
spectrum (14). 

These dependences possess a combined (cross) symme-
try, clearly observed at a logarithmic scale. Thus, the expo-
nential distribution (10) is the mirror symmetry of curve 
(14) (Fig. 8, a), and the extreme hyperbolic distribution (13) 
is the mirrored symmetrical curve (9) (Fig. 8, b).

The ratio of symmetry is invariant relative to the combina-
tion of two transforms ‒ mutual interchange between statuses 
of the system agents and their comparative kinetic activity (by 
analogy with the combined CP-symmetry in physics). 

Currently, many authors perceive exponential and hyper-
bolic distributions as two independent forms of the existence 
of macro systems. But the above results suggest that these 
distributions can only regarded as two different statistical 
interpretations of the same equilibrium state. The choice of 
point of view depends on the circuit representation of the 
analyzed macrosystem ‒ depending on the distribution of 
roles among its agents (carriers or resources) and their com-
parable activity.

12. Discussion of this study results

The benefit of the extended entropy method proposed 
here is that it has made it possible, owing to better account-
ing for the combinatorial configurations of the macrosys-
tem’s agents, to consider the stage-wise character in the 
formation of its equilibrium state, as well as to rigorously 
describe the finite properties of its distribution.

Similar to physical kinetics, distributions form against 
the background of the more active activity by one of the 
agents (which has a shorter relaxation time). The extended 
entropy method made it possible to find out that the real 
macro system, in the case of a larger kinetic activity of the 
carriers, forms the exponential type of distribution, and in 
the case of a greater activity of the resources ‒ the so-called 
extreme hyperbolic type of distribution with a “heavy tail”.

Using the proposed method, I have obtained expressions 
for these two distributions and corresponding resource 
spectra, and discovered their combined (cross) symmetry, 
which is invariant relative to the combination of two trans-
forms ‒ interchange of statuses between the system’s agents 
and their relative activity. The existence of the combined 
symmetry allows me to consider these two different types of 
distributions just as two different statistical interpretations 
of the same equilibrium state. 

Analysis of many empirically observed hyperbolic distri-
butions suggests that they are actually the extreme hyper-
bolic distributions, formed in accordance with the entropy 
variational principle.

The advantage of the extended entropy method is also 
in that it makes it possible, if applied to actual macro sys-
tems, to methodically and consistently analyze the finite 
properties of their distributions. A given approach assumes 
that the maximum coordinate (as the distribution type 

 
 

 
 

 
 

 
 a                                                                     b  

Fig. 8. The combined symmetry of the exponential and extreme hyperbolic types of 
statistics: a – distribution (10), spectrum (14); b – spectrum (9), distribution (13)
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itself) forms as a result of self-organization of the mac-
rosystem; its value should also be searched for using an 
extreme criterion. It is shown that the finite distribution 
properties are conveniently related to the magnitude of a 
form-parameter, which is the ratio between its modal and 
maximum coordinates. I have determined the equilibrium 
values for the form-parameters of exponential and extreme 
hyperbolic distributions, which are, respectively, equal to 

bal 0.407...ψ ≈  and bal 0.214....ϕ ≈
Specifically, this result could be applied to the estimation 

of the upper bound of distribution of the absolute velocity 
values of gas molecules at equilibrium motion. The Maxwell’s 
law implies that the upper bound of this distribution is equal 
to infinity. This is justified from the computational point 
of view and is acceptable given the rapid attenuation of ex-
ponent. There are tasks, however, where one needs to know 
energy of the quickest molecule (for example, to determine the 
threshold temperature of the onset of chemical reaction). The 
equilibrium value for form-parameter bal 0.407...,ψ ≈  obtained 
in this work, could be interpreted as the ratio of energy pos-
sessed by a molecule, a representative of the majority, to the 
energy possessed by the fastest molecule in the finite version 
of Maxwell distribution. In this case, the ratio between the 
maximum and modal velocity values can be estimated as:

≈ ≈max mod 1 0.407 1.57.V V  

This (at first glance) unexpected result agrees well 
within our intuitive understanding. Under equilibrium con-
ditions, in a dense mass of randomly moving balls, one single 
ball among them cannot move at a very high speed, very 
different from the velocity of the majority.

In addition to a given result, one can also notice that the 
equilibrium magnitudes of form-parameters for both distri-
butions bal 0.407...ψ ≈  and bal 0.214...ϕ ≈  exhibit a quanti-
tative relationship with some known constants. Thus, their 
inverse values sufficiently enough match the Feigenbaum 
constants [26]: bal1 ψ ≈ α  and bal1 ϕ ≈ δ  (which are, respec-
tively, 2.503...,α =  δ = 4.669...), and their sum is

bal bal 1 ,ψ + ϕ F≈  

where F ≈ 1.618...  is the number of Phidias (golden ratio). 
The following approximation also holds: 

 

Among other things, there is a newly found fact here, 
not noticed by anybody before, which is beyond the scope of 
this paper. It turns out that the Feigenbaum constants are 
associated with the number of the golden ratio via a close 
correlation 

+ ≈
α δ F
1 1 1

.  

The study reported in this article is continuation of ear-
lier work [14, 27]. However, they are limited to a particular 
case when a system has only one type of resources. Problems 
in which the same carriers possess several different kinds of 
resources require a more complex solving technique. That is 
due to that the distribution of carriers among the cells of one 
type of resource typically deform the a priori probability of 
populating them into cells for a different type of resource. 
Based on the results obtained in [25], the violation of the 

equality of a priori probabilities when populating the cells 
leads to a violation of the basic postulate of statistical phys-
ics, namely the condition for an equal probability of micro-
states. In this case, based on the results obtained in [25], a 
maximum of entropy can no longer act as a criterion for the 
equilibrium state of the system. One should use a more gen-
eral criterion, specifically a minimum of entropic divergence.

Thus, this is the planned next step of the initiated re-
search related to the analysis of macro systems with a po-
ly-resource character of distributions.

13. Conclusions

1. The proposed extended entropy method considers 
a macro system to be an object at which a limited set of 
“resources” are allocated among the final set of “carriers”. 
The method implies counting the combinatorial configura-
tions not only on the set of “carriers”, but also on the set of 
“resources”, as two equal agents of the system. In this case, 
the equilibrium state is regarded as the implementation of 
complex experience with two possible variants of priority ‒ 
first, “carriers” enter the equilibrium, followed by “resourc-
es”, and vice versa. The criterion for a complete equilibrium 
state used here is a conditional maximum of entropy of the 
complex experience.

2. The result of solving an extreme problem for these 
two variants is the two types of distributions ‒ exponential 
and extreme hyperbolic (with a heavy tail). Each of them 
is matched with its neighbor distribution (denoted as a 
spectrum), formed in the process of complex experience. I 
have found a universal and a very convenient technique to 
parametrically record all four ratios via their modal char-
acteristics.

3. A technique for determining the finite characteristics 
of distribution is proposed. It is expected that the coordinate 
of its right (upper) bound forms not arbitrary, but rather a 
product of self-organization of the macrosystem; it can also 
be determined based on the extreme principle. A convenient 
parameter was established, taking into consideration the fi-
nite properties of distribution. The so-called form-parameter 
is the ratio between its modal and maximum coordinates. 
The equilibrium values for form-parameters of the exponen-
tial and extreme hyperbolic distributions were determined 
from the condition for a maximum of entropy of com-
plex experience. They are, respectively, bal 0.407...ψ ≈  and 

bal 0.214...ϕ ≈  It was found that their inverse magnitudes are 
quantitatively close to the universal Feigenbaum constants.

4. Based on the results of the study conducted, a conclu-
sion was drawn on that the comparative kinetic activity of 
carriers and resources is the key factor that determines the 
type of statistical distribution in a macro system. The high-
er kinetic activity of carriers generates exponential distri-
bution, and the larger activity of resources predetermines 
the distribution with a heavy tail. In addition, I have justi-
fied the statement made by assumption that the empirically 
observed hyperbolic distributions in many macro systems 
are actually the extreme hyperbolic distributions, formed 
in accordance with the entropy variational principle.

5. It is shown that the distributions and spectra, related 
to the exponential and extreme hyperbolic type, possess 
combined symmetry, clearly observed at the logarithmic 
scale. Given this, it is concluded that the exponential distri-
bution and the distribution with a heavy tail can be occa-

( )− ϕ ≈ F2

bal1 1 .
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sionally regarded as two different statistical interpretations 
of the same equilibrium state. The choice of point of view 
depends on the circuit representation of the analyzed mac-
rosystem, that is, on the distribution of roles of its agents 
(carriers or resources), as well as on their relative activity.

The relevance of the results obtained is predetermined 
by the existing need for effective methods to analyze mac-
ro systems, by the growing demand for quantitative and 
qualitative predictions of their behavior in different fields 
of activity.
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