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IIpu npoexmyeanmi npocmoposux KOHCMpPYKUii Heoo-
Xxi0no 3namu nanpysceno — deopmosanuii cman mina.
Ceped maxux 3zadau 3ycmpinaromvcs po3paxynrosi
cxemu, 6 AKUX € NIBNPOCMIP 3 UYUTTHOPUMHUMU NOPONCHU-
HAMU, HA MENHCAX AKUX 3A0aHT YMOBU KOHMAKMHO20 MUny.
Ceemenm maxux zaodau HedoCmMamuvbo 00CIONCEHUE ma
nompeoye yeazu.

3anpononoeano aHAIIMUKO-UUCETbHUN ATl20pUMM
Po38’a3anns npocmopoeoi 3adaui meopii npyrcHocmi
ons nienpocmopy 3 uuninopuunumu noposichunamu. Ha
Mexcax nopocHuM 3adani paoianvii nepemiuenHs ma
domuuni nanpymicenns, a Ha Medxnci nienpocmopy 3a0anuii
00uH i3 060X MUNi6 epAHUMHUX YMOE — nepemiuenns ado
nanpyocenns. lposedenumu po3paxynxamu 6Cmanoeieno
Hanpydceno depopmosanuii cman nienpocmopy.

IIpu ¢ixcosanux zeomempuunux ymosax 0yio npoge-
deno uucenvHull ananiz mpvox eapiamnmie 3adaui, KoaU
Ha Medici nienpocmopy 3a0amni nepemiwjeHnHss ma mpbvox
eapianmis 3ada4i, Koau Ha Medxci nienpocmopy 3aoami
nanpyocenns. lposedeno nopiensnvnuil ananiz eapianmis
3 PI3HUMU 2P AHUMHUMU YMOBAMU MIdC CO0010.

Bcmanosaneno, wo npu pisnux éudax 3adanux xpaiuo-
eux ymoe (nanpyxncenns abo nepemiwenns), Hanpyicem-
HA 1 Ha MeNCi NPUKIAOEHHS MAKUX YMOE 3MIHIOIOMbCS
Ha npomusiesncni, moomo 3 po3mAZYOUUX HA CMUCKAIOHL
abo naenaxu. Taxoxc ecmanosneno, wo Kpaiiosi ymosu Ha
Medici nienpocmopy y euznndi HanpyiceHv MarOmv Gib-
Wull 6NAUE HA HANPYHCEHUU CMAH HINC KPAUOBi YMOBU Y
euznsnoi nepemiuwens. Ili meepoxcenns maromo micuye npu
3a0aHux Ha mexncax YUHOPUMHUX NOPONCHUH 2PAHUMHUX
YMO6 KOHMAKMHO20 MUny, AKW0 3a0ana PYnKuis nepemi-
wenb ma 3a0ana PYnKuis Hanpyicens 00HAK06I.

Hagedenuii ananiz MojxcHa 6uxKopucmosyeamu npu
npoexmyB8anHi KOHCMPYKUill, 8 PO3PAXYHKOBUX CXeMAX
AKUX € Medca Nienpocmopy i3 3a0anumu Ha Hill epanuy-
HUMU YMOBAMU KOHMAKMHOZ0 MUNY MA UUITHOPUHHUX
NOPOXNCHUH, HA NOBEPXHI AKUX 3a0aHi nepemiuenns aoo
HaANpYIHCeHHs

Kniouoei caosa: uyuninopuuni nopoycHunu 6 nienpo-
cmopi, pieuanuns Jame, yzaeanvnenuti memod Dyp’e,
HecKinueni cucmemu MHIUHUX afleeOpaiunux pieHanb
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1. Introduction

In the design of various structures, underground facili-
ties and communications, there is a need in assessing stresses
in a half-space with cavities. For this, it is necessary to have
a method for calculation of the problems of the theory of
elasticity, which makes it possible to find a stressed-strained
state of a half-space with cylindrical cavities. We explore
the problem, where displacement or stress are assigned at
the boundaries of a cavity, and the conditions of a contact
type are assigned at the boundaries of a half-space in the
form of radial displacement and tangential efforts. Ready
calculations of similar problems in the spatial variant were

not found, so the problem of calculation of such problems is
important. In addition to the proposed algorithm of calcula-
tion, an analysis of the stressed state, which enables predic-
tion of the weak points at the stage of design, is presented in
this paper.

2. Literature review and problem statement

To evaluate the stressed-strained state of a half-space
with cylindrical cavities, several scientific studies apply the
finite element method [1, 2], which is an approximated cal-
culation method and does not provide full reliability on the




accuracy of calculation when there are the infinite boundar-
ies of an elastic body.

The most common problems for a half-space with cav-
ities are the problems when cavities are perpendicular to
the surface of a half-space [3—6]. The calculation of these
problems is based on the Weber integral transformation,
the method of representations of Papkovich—Neuber, the
theory of integral equations of Fredholm, the Neumann
series, and the generalized integral equation of Cauchy.
However, these methods cannot be used when cylindrical
cavities are parallel to the surface of a half-space.

Papers [7-9] consider the problems of diffraction of
waves in a half-space with a single cylindrical cavity based
on the Helmholtz equation. Since article [7] considers all
regions to be proportional to e’**, in fact a flat problem with
the use of the transformation of the plane with a circular
opening into a concentric ring is solved. Papers [8, 9] also
consider flat problems, the wave equation of which is solved
approximately using the comformal transformation and
the collocation scheme of the least square. The described
algorithms make it possible to calculate the problems of a
half-space with only one cavity.

Articles [10, 11] are devoted to determining the stressed
state of the final cylinder. The method is based on the su-
perposition of solutions and decomposition into Fourier and
Dini series. But the problems for elastic bodies with multiple
boundary surfaces cannot be solved within the framework of
the classical approach. For such problems it was necessary to
create a generalized Fourier method [12], the substantiation
of which for spatial problems of the elasticity theory was giv-
en in [13]. This method was laid as the basis for the approach
to the solution of the considered problem.

The first major problem of the theory of elasticity for
transversally-isotropic bodies limited by coordinate surfac-
esin cylindrical and parabolic coordinates of the stationary
parabolic cavity is solved in [14] and with actual parabolic
inclusion in [15]. The applied problem about the effect of
a concentrated force on a sandstone half-space with para-
bolic inclusion was considered in [16]. The thermo-elastic
boundary problem for a transversally-isotropic half-space
with a spherical cavity was considered in [17]. In articles
[18, 19], the first and the second basic problems of the elas-
ticity theory for a half-space with a single cylindrical cavity
were explored. The second basic problem of the elasticity
theory for a half-space with several cylindrical cavities was
solved in [20]. All these papers are based on the generalized
Fourier method, but the algorithms, presented in them, do
not make it possible to directly address the mixed problems
with the boundary conditions of the contact type and ex-
plore the stressed state of a half-space with such boundary
conditions. For this, it is necessary to explore further the
possibility of solving the problem with the contact type
conditions.

Mixed problems were considered for a space with cy-
lindrical cavities, when displacements are assigned on the
boundaries of some cavities, stresses are assigned on the
boundaries of other cavities [21]. Mixed problems for space
were considered when displacements are assigned on some
boundaries, stresses are assigned on the other boundaries,
and the conditions of the contact type are assigned on the
third boundaries [22]. These works are based on the gener-
alized Fourier method, but can not be applied directly to
the problems in a half-space.

It follows from the above that the problems for a half-
space with cylindrical cavities with the boundary conditions
of the contact type need studying.

That is why it is appropriate to develop the analyti-
cal-numerical method for solving a mixed problem of the
elasticity theory for a half-space with cylindrical cavities
and some boundary conditions of the contact type.

3. The aim and objectives of the study

The aim of this research is the evaluation of the stressed-
strained state of a half-space with cylindrical cavities, under
the following conditions: radial displacements and tangen-
tial stresses are assigned at the boundaries of cavities, and
one of the two types of boundary conditions — displacements
or stresses — is assigned at the half-space boundary.

To accomplish the aim, the following tasks have been set:

—to develop the analytical-numerical algorithm of cal-
culation;

— to conduct numerical studies for a half-space and two
cylinders and to analyze the influence of the type of bound-
ary conditions on the stress in the zone of the isthmus be-
tween the cylinders and the isthmus between the half-space
boundary and a cylinder.

4. Analytical and numeric algorithm for calculation

4. 1. Problem statement

Elastic homogeneous half-space has N circular cylinder
parallel cavities, non-crossing each other and the boundary
of a half-space (Fig. 1).

The cavity will be considered in the cylindrical co-
ordinate system (p,, z where p is the number of the
cylinder), a half-space will be considered in Cartesian
coordinates (x, y, z), which are equally oriented and com-
bined with the coordinate system of the cylinder with
number p=1. The half-space boundary is located at the
distance y=h, the equation of the surface of the cylinders
Sy pp=R,,p=1,2,., N Itisnecessary to find a solution to
the Lame's equation

Aii+(1-20) " Vdivi=0

under conditions that at the boundaries of a half-space, one
of the two types of boundary conditions — displacement
(73 (x,z) or stress f, (x,z), is assigned at the boundaries of a
half-space, and conditions of the contact type are assigned at
the boundaries of the cavities

U, (q)p,z)‘pp:Rp = U(()P) (¢p,z),

— (P)( )
Tm\p,,:R,, T (9,2);

TpZ\p,ﬁRp = Tgp) ((I)ﬂ’z)

where the right sides of these equalities are the known func-
tions.

All the assigned vectors and functions will be considered
descending to zero at long distances from the origin along
coordinate z for cylinders and along coordinates x and z for
a half-space.



sary to find the unknown functions Hy, (1, p) and
Vi M from the boundary conditions.
" For transition between the coordinate sys-
P tems (Fig. 1), we will use the formulas:
— for transition from the coordinates of the
ﬁ_ y X cylinder with number p to the coordinates of a
' hal ’ : half-space, we will generalize formula [18]
p . Zi-signA)" = .
alp p Skm (Mp,}\,) _ ( 1-s1gn ) J' " a}(;) 'e—sz‘7 W
Rl e ' 2 —oo
élp —*pl
(pp _ k= 1, 3,
3 = pl Yp
X, ="p cosa,, 5, (M,2)=
Yp =ip sin oy 0 X i sien ) = N
”_y » =%J‘”’"'[[m‘u—7+k %] i
Xp o g
H(1-o)al %, ()

Fig. 1. Half-space with cylindrical cavities

4. 2. The method of solution
Let us select the basic solutions of the Lame's equation
for the specified coordinate systems in the form of [12]:

iy (Mihp)= Nu (M iap); (k=1 2, 3); )
R (Mp;%)= 1, (Ap)e
gk,m(M,,ﬂv): I: (P,,J\r) Az+m¢] k=123; 3)
1 4 1
=3V Nﬁd)=x(0—1)€§1)+xv(y');
Ngd)=%rot(é3“)-); H(Mhp) = e

1 1 d 0
NP ==v; NW== =2 )| v-e?=||;
= Nj X[V(pap]+4(c 1)(V é, az)]’

NP = %rot(ééz) -); S (P,ﬁ}”) =(sign)" K,, (P”lpp);

A+, —co< A, <00,

where My=(x, y, z), M,=(p,, &, 2) are the points of a space,
respectively, in Cartesian coordinates and in the cylindri-
cal coordinate system, connected with p — cylinder; &%,
(j=1,2,3) is the orts of the Cartesian (k=1) and cylindrical
(k=2) coordinate systems; O is the Poisson coefficient;
I, (%), K, (x) are the modified Bessel functions; R, S,,.,
(k =12, 3) are respectively internal and external solutions
to the Lame's equation for a cylinder; ﬁ,(e—), ﬁ,(:) are the
solutions to the Lame's equation for a half-space.

The solution to the problem will be represented in the form of

0= iif S BY (1), (M, :0)dh+
p=1 k=1 _o m=—c0
+ > T ]:Hk (M ;A1) dud, 4)

where kavm (Mp;h) and ﬁ,(;) (Md;h,u) are the basic solutions,
which are assigned by formulas (2) and (3), and it is neces-

where

Y= ,7\‘2+u27 (D(}\”M):%y
y>0,m=0, £1, £2,.;

— for transition from the coordinates of a half-space
to the coordinates of the cylinder p, we will generalize
formula [18]

i =Y (i-0)" Ry, (M, )-¢""", (k=1,3);

m

Gl = M

<3 [ g, 22) R0,

+v-R,,, (M, )+4u(1-0)R, ] (6)
where

o0, )

x,.y, are the coordinates of cylinder p relative to the cylin-
der number 1.

lzn(pp,k):ép-I;(kpp)+i-ln(7»pp)-[é¢KZ+ézj;

P

by, (p,M)=8,[(10-3)-1; (A, )+ hp,1/(%p, ) |+

4 1 . ,
(;’pp )1, (09, )]+ezzxppzn(xpp);

+é¢i~m[1;(xpp)+

where é, &, € are the orts in the cylindrical coordi-
nate system,

— for transition from the coordinates of cylinder p to
coordinates of cylinder 1 [12]

S (M ;1) = 2 b (p,)- €M), k=123
b1mpn1 ( 1) = (_1)" Iszn ()\,Zm ) : ei(”’*ﬂ)“m : 131'” (p1 y 7\4)3



(M) € bjn(pl,X),

bsm:1 (p)=(-1)"'K

B8 0= R (1, B 12,0

MR (14 Roa (1,0 B R, D)

where ay, is the angle between the coordinate axis x; and
section 4y

K, (x)=(signx)"- K, (jx]).

For transition from the coordinates of cylinder 1 to co-
ordinates of cylinder p in formula (7), the places of indices
should be changed

To satisfy the boundary conditions at the boundary of
half-space y=h, the left part (4) with the help of transition
formula (5) will be re-Written in the Cartesian coordinates
through the basic solutions u If the boundary conditions
on the boundary y=h are a531gned in displacements, the re-
sulting vector (at y=h) will be equaled to the assigned vector
but if boundary conditions are assigned in stresses, we will
find the stress for the resulting vector and equal it (at y=h)
to the assigned vector f,(x,z). Vectors

U (x,2)=U\"8" + U’ + U\

and

f(x z)=

preliminarily represent by the double Fourier integral. From
the resulting equations, we will find the functions Hj, (A, p)
through B (A).

Using the formulas of transition from the Cartesian sys-
tem to the cylindrical system (6), as well as from one cylin-
der to the other (7), we will rewrite (4) in the coordinates of
the cylinder number p through basic solutions Rk ak If
now we find U, (¢,, z) and stresses Ty4, Tps, for the rlght side
of equation (4) on the surface of each cylindrical cavity and
take into consideration boundary conditions (1) we will ob-
tain the system of equations for coefficients B ?) )(A), which
includes functions Hj, (A, p), for each cavity p. The determi-
nant of this system is not equal to zero, moreover

g0 1 650 4 150

—for m=0 |A0|:8(1—G)~x2~K12(x)~K2(x) , ®)

— for m>1‘A ‘>4m K, (2)K,(x)K,, (x), x=|N

p, A#0.

Functlons Hp (A, p), which were expressed above
through B (A 2, will be substituted in the equation with
expressions B( (). As aresult, we will obtain the totality
from N-3 of non-finite systems of linear algebraic equa-
tions for determining unknown B} ().

For the derived systems, using inequality (8), a definite
possibility of solution on conditions of not touching the
boundaries was proved. Moreover, these systems can be
solved with the truncating method and approx1mate solu-
tions converge to the exact ones. Functions B ( ) found
from the infinite system of equations, will be substituted
in expressions for Hy, (k, w). This will determine all the un-
known problems.

5. Numerical studies for a half-space and two cylinders

We have two parallel cylindrical cavities in a half-space
(Fig. 1), p=2. A half-space is isotropic material, Poisson ratio
0=0.35, the elasticity modulus £=2 kN/cm?. The boundary
of a half-space is located at the distance #=40 cm, the cylin-
ders, the radii of which are Rj=R2=10 cm, are located on the
horizontal axis (ay2=0) at the distance of ¢,, =50 cm.

Several variants of the problems with various boundary
conditions were calculated — three variants, when displace-
ment was assigned at the boundary of a half-space and three
variants when stresses were assigned at the boundary of a
half-space. In all variants, conditions of the contact type are
assigned at the boundaries of the cylinders.

An infinite system of equations was reduced to the finite
by parameter m — the order of the system. The influence of
the value of parameter m was studied in [18]. The integra-
tion boundaries for the assigned boundary functions were
taken from —1...1. Calculation of integrals was performed
using quadratic formulas of Filon and Simpson. Accuracy of
the implementation of the boundary conditions at specified
values of geometrical parameters was brought to 1073 (m=8).

Variant 1

Displacement U = U,(;l) =UY=0 is assigned at the
boundary of a half-space. At the boundary of cylinder 1, radial
displacement is assigned

U(()l)(q)pz):
1)

and tangential stresses tp¢—t =0, are assigned at the
boundary of cylinder 2, boundary conditions are

10722 +10°)

UP(9,,2)=0; 1) =1 =0.

Fig. 2 shows the diagram of normal stresses on the isth-
mus between cylinder 1 and the boundary of a half-space
(Fig. 2, @) and on the isthmus between the cylinders 1 and 2
(Fig. 2, b) in plane z=0.

The most stressed state is on the surface of the "loaded " cyl-
inder 2, where stress 0,=—0.271 kN/cm?, 64=0.052 kN cm?,
0,=—0.161 kN/cm?. On the isthmuses, the stressed state at
the boundary of a half-space (Fig. 2, a, distance is 40 cm)
and on the boundary of the cylinder 2 (Fig. 2, b, distance is
40 cm) differ from each other: thus stress 6,=—0.0261 kN/cm?
increases near the surface of cylinder 2, unlike the half-space,
where o, decreases (6,=—0.014 kN ¢cm?), at the boundary of a
half-space has compressing forces (o5=—0.008 kN/cm?), and
at the boundary of cylinder 2, vice versa, stretching forces
(6$=0.006 kN/cm?).

0,10 010 |
x[em] x,[em]

0,00 0,00

-0.10 e, [KN/em?] -0.10

—#- O, [kN/cm?] 0.20
—a— 0z, [kN/cm?]

——0,, [kN/cm?]
—&- 0y, [kN/em?]

-0,20
’ —a—0,, [kN/em?]

-0,30 -0.30

10 15 20 25 30 35 40 10 15 20 25 30 35 40

a b

Fig. 2. Normal stresses in the coordinates of cylinder 1 in
plane z=0: g — on straight line x=0 between cylinder 1
and the boundary of a half-space; b — along section O;0,
between cylinders



Variant 2
At the boundary of a half-space, the displacement is
assigned

z

U9 =y =y =g
x Y :

At the boundaries of cylinders 1 and 2, radial displace-
ment

U (0,,2)=UP (0,02) =107 (22 +10?)’
and tangential stresses are assigned

(1) _ () — (2 _ (2 _
Too = Tpe = Tpp =T = 0.

The diagram of normal stresses in Fig. 3 shows how
stresses changed at loading cylinder 1 and cylinder 2.

0.10 0.10
0,05 x,[cm]
0.00 e

0,00 L[em]
-0,05 -0.10
-0.10 a— 2

- S, [kN/em?]
0,15 -0,20 —— oy, [KN/em?]

—&- Gy, [kN/cm?|

—— 0z, [KN/cm?] -0,30
-0,40

20 25 30 35 40 10 15

a b

-0.20
-0.25
-0,30

—#- oy, [kN/cm?]
—4— o, [KN/cm?]

20 25 30 35 40

10 15

Fig. 3. Normal stresses in coordinates of cylinder 1 in plane
z=0: g — along the straight line x=0 between cylinder 1
and the boundary of the half-space; b — along section 0,0,
between cylinders

Thus, in comparison with variant 1 (Fig. 2), on the
isthmus between cylinder 1 and the boundary of a half-
space (Fig. 3, a), the stress almost did not change (o,=
=-0.269 kN cm?, 64=0.048 kN/cm?, 6,=—0.160 kN/cm? on
the cylinder and 6,=—0.016 kN/cm?, 04=-0.008 kN/cm?,
0,=—0.008 kN cm? on the half-space), however, on the
isthmus between cylinders 1 and 2 (Fig. 3, b), stresses
have symmetric location relative to f15/2, at the sur-
face of the cylinders, extreme values (6,=—0.293 kN/cm?,
0$=0.058 kN/cm?, 6,=-0.161 kN cm?), between cylinders
stresses decrease (0,=—0.068 kN/cm?, 04=0.014 kN/cm?,
0,=0.005 kN/cm?).

Variant 3

Displacement Uid) = Uid) =0 is assigned at the boundary
of a half-space

v =—{10% (2 +102)2).(1o*‘ (et /27 +102)2),

and graphically shown in Fig. 4. At the boundary of cylin-
ders 1 and 2, radial displacement

U(()1) ((])1,2) = U(()Z) (¢2’2) =0
and tangential stresses are assigned
(O CV N ) B )
Too = Tpz = Tpo = Tpe = 0.
In this variant, the boundary of the half-space with the
maximum values in the middle between the cylinders is

"loaded”, which influenced the stressed state on the isth-
muses (Fig. 5).

Thus, on the line between cylinder 1 and the half-space
boundary (Fig. 5, @) 0,=—0.005 kN/cm? has an extreme
value at the border of cylinder 1, at the same time o4 and o,
have the extreme values between the cylinder and the half-
space boundary (c4=—-0.003 kN/cm?, 6z=0.002 kN/cm?).
On the isthmus between the cylinders (Fig. 5b), due to the
vertical pressure of the boundary points of the half-space,
stress o4, which is directed perpendicularly to the half-
space boundary, has extreme compressing values contrary
to the maximum assigned displacements of the half-space
(06$=—0.004 kN/cm?). Stress 6,=—0.001 kN/cm? also has a
small increase in compressing forces on the surface of the
cylinders.

Fig. 4. Function of normal displacement which is set on the
surface of the half-space

0,002 0,001
— a2 —
0,000 >
0 x,[em]
Am] o001 |t
-0,002 —o— 0, [KN/cm?]
-0,002 = Gy, [KN/cm?]
N/cm?] *
-0,004 —= o [K —a o, [KN/cm?
= oy, [KN/em?] -0,003 (kN/em?]
-0,006 —— 0z, [kN/cm?] -0,004
10 15 20 25 30 35 40 10 15 20 25 30 35 40
a b

Fig. 5. Normal stresses in the coordinates of cylinders 1
in plane z=0: @ — on straight line x=0 between cylinder 1
and the half-space boundary; b — on section 0,0, between
cylinders

Variant 4
Stress is assigned at the half-space boundary

Radial displaceme
U9 (6,,2) =102 +10?)

and tangential stresses )= ‘csz) =0, are assigned at the
boundary of cylinder 1, at the boundary of cylinder 2 bound-
ary conditions

2 Q) _
UP(9,2)=0; 1) =1 =0.
Compared to variant 1, in this case stress is assigned at
the boundary of a half-space (diagram of the stressed state
is shown in Fig. 6).



Fig. 6 shows that a change in boundary conditions at the
half-space boundary did not affect the stressed state of the
isthmus between the cylinders (Fig. 6, b), but affected the
stressed state of the isthmus between cylinder 1 and half-
space boundary (Fig. 6, @). Thus, at the boundary half-space
0,=0, 04 and o, have now not compressing but stretching
values (65=0.015 kN/cm?, 6z=0.015 kN/cm?).

0,10 0,10

0,05 x,[em]
0,00 0,00

0,05 x,[em]

—+— G, [kKN/cm?] -0,10

—=- oy, [kN/em?] 020
—&— G, [kN/cm?] ’
-0,30 -0,30
10 15 20 25 30 35 40 10
a b
Fig. 6. Normal stresses in coordinates of cylinder 1 in plane
z=0: a — on straight line x=0 between cylinder 1 and half-
space boundary; b — on section 0;0, between cylinders

—+—0p, [kN/em?]
—&- Oy, [kKN/cm?]
—4— 0, [kN/cm?]

15 20 25 30 35 40

Variant 5
Stress is assigned at the boundary of the half-space

At the boundary of cylinders 1 and 2, tangential stresses

)

_ .0
oo =T 0

92:

()
T =T =1

and radial displacement are assigned
2

U (0,,2)=U (0,,2) =107 (2" +10?)

The stressed state on the isthmuses is shown in Fig. 7

0,10 0,10
0,05 W
; 0,00
0,00 > x,[em]
0,05 x[em] g 19

——0p, [KN/em?] -0,20
—&- oo, [kN/cm?]

—o—0p, [kN/cm?]
= oo, [kKN/em?]

-0,30
0,25 —4— o, [kN/em?] —4— G, [kN/cm?]
-0,30 ‘ -0,40
10 15 20 25 30 35 40 10 15 20 25 30 35 40
a b

Fig. 7. Normal stresses in the coordinates of cylinder 1 in the
plane z=0: a — along the straight line x=0 between cylinder
1 and half-space boundary; b — along section O;O, between

cylinders

Compared to variant 2, as in the previous case, chang-
es affected the isthmus between cylinder 1 and half-space
boundary (Fig. 7, a): at the half-space boundary, stresses
0,=0, 04 and o, now have not compressing but stretching
values (05=0.014 kN/cm?, 6,=0.017 kN/cm?).

Variant 6
At the half-space boundary, stress 1:_(;) :‘c(y’? =0 is as-
signed.

o = _(10’4 (2 +102)2).(104 ‘((x_fq,, /2)2 +102)2J‘

At the boundaries of cylinders 1 and 2, radial displa-
cement

Uy (0,2)=U;"(0,,2)=0
and tangential stresses are assigned

R

In contrast to variant 3, at the half-space boundary,
stresses are applied instead of displacements, which influ-
ences the stressed state of the isthmuses (Fig. 8).

Load in the form of a single stress, unlike the load in the
form of a single displacement, have a greater impact on the
stressed state. Thus, the stress on the isthmus between the
cylinders (Fig. 8, b) has the same form as in Fig. 5, b, but is
larger in values, for example, the stress between the cylin-
ders in variant 6 6,=—0.012 kN/cm?, 6,=-0.049 kN cm?,
0,=0.002 kN/cm?2, in variant 3 0,=-0.001 kN/cm?, 0p=
=0.004 kN/cm?, 6,=0.0004 kN/cm?
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Fig. 8. Normal stresses in the coordinates of cylinder 1 in
plane z=0: a — along the straight line x=0 between cylinder 1
and the half-space boundary; b — along section 0,0,
between the cylinders

On the isthmus between cylinder 1 and the half-space
boundary, unlike variant 3 (Fig. 5, a), the values of stress-
es are higher, moreover, o, in this case is compressing and
increases at the half-space boundary (6,=—0.024 kN/cm?).
Stress o, also, unlike variant 3 (Fig. 5, a), at the half-space
boundary is compressing (o,=—0.023 kN/cm?). Stress oy,
in comparison with variant 3 (the maximum value o4=
=-0.003 kN/cm?), has higher values (the maximum value
04=—0.034 kN/cm?).

6. Discussion of the obtained results for the stressed
state and the method for solving the problem

In the framework of the accepted linear model of the
homogeneous isotropic medium and precise problem state-
ments, the derived results (distribution of stress fields in a
multi-link body) are explained by the response of an elastic
body to:

1) existence of some flat and curved surfaces that limit
the body;

2) selected system of boundary conditions on these sur-
faces.

For another system of boundary conditions, at other
equal factors, the response of an elastic body will be differ-
ent.

Based on the generalized Fourier method, the analyti-
cal-numerical algorithm of calculation of the spatial problem
of the elasticity theory was developed. The algorithm implies
the following boundary conditions: one of the two types of
boundary conditions — displacement or stress — at the half-
space boundary, the contact type conditions in the form of



radial displacements and tangential stresses at the bound-
aries of several parallel cylindrical cavities. The developed
algorithm makes it possible to calculate the problems with
similar boundary conditions with predetermined accuracy
(depending on parameter m) and can be used for the design
of various structures.

In comparison with papers [1-11], the proposed algo-
rithm makes it possible to obtain the accurate solution to a
similar problem and, in comparison with [13—22], to consid-
er the boundary conditions of the contact type, as well as the
half-space boundary.

In terms of shortcomings, it should be noted that at a
decrease in the distance between the boundaries of the body,
the algorithm becomes less effective as it requires an increase
in the order of system m and respectively an increase in time
to compute the integrals of matrix elements. The algorithm
does not make it possible to solve the problem when the
boundaries of a body touch or intersect.

Subsequent development of research in this area is re-
quired to solve similar problems in a layer with cylindrical
cavities, which in the absence of algorithms with accurate
analytical methods was not explored at all but is found in
calculation schemes when designing structures.

When considering a layer with cylindrical cavities, it will
be necessary to take into consideration the lower boundary
of the half-space. In this case, the system of equations is
significantly complicated in analytical and numerical terms.

7. Conclusions

1. Numerical analysis of the stressed-strained state of a
half-space and two cylindrical cavities shows that

— for different types of boundary conditions (stress or
displacement), stresses 64 and o, at the boundary of applica-
tion of such conditions change for the opposite, that is, from
stretching to compressing or vice versa;

—at the conditions of the contact type assigned at the
boundary of a cylindrical cavity, specifically, zero tangential
stresses and normal displacement in the form of a wave of
the height of 1 ¢cm, normal stresses on the surface are equal
to: 0,=—0.27 kN/cm?, 64=0.05 kN/cm?, 6,=—0.16 kN/cm?;

—boundary conditions at the half-space boundary in
form of stresses have a greater impact on the stressed state
than the boundary conditions in the form of displacements.
These statements are true at the boundary conditions of
the contact type, assigned at the boundaries of cylindrical
cavities, if an assigned displacement function and assigned
function of stresses are the same.

2. Numerical studies of the algebraic system for a half-
space and two cylinders provide an opportunity to argue that
its solution can be found with any degree of accuracy by the
reduction method. This is proved by a high precision of sat-
isfaction of the boundary conditions. For geometric param-
eters of the solved problem (R{/h=0.25; (R,+R,)/ ¢,,=0,4)
at m=8, boundary conditions are satisfied with the accuracy
of 10-3. At an increase in the order of system m, the calcula-
tion accuracy will be increased

3. The presented diagrams give a pattern of the distri-
bution of stresses in the most interesting areas, such as on
the isthmus between cylindrical cavities, and on the isthmus
between the half-space boundary and the surface of the cy-
lindrical cavity.

An analysis of the stressed state of the cylindrical
cavity with the boundary conditions of the contact type
revealed that at approaching its surface, stress o, increases
regardless of the fact whether it is overloaded or not. Thus,
at the "loaded" cylinder (Variant 1, Fig. 2, b), stress o, in-
creases up to —0.026 kN/cm?, at the "unloaded” cylinder in
variant 6 (Fig. 8, @) o, increases up to —0.11 kN/cm?

4. The reliability of the presented algorithm is proved by
a high level of satisfaction of the boundary conditions and
the resulting diagrams can be used in assessing the stressed
state in the structures with similar conditions.
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