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При проектуваннi просторових конструкцiй необ-
хiдно знати напружено – деформований стан тiла. 
Серед таких задач зустрiчаються розрахунковi 
схеми, в яких є пiвпростiр з цилiндричними порожни-
нами, на межах яких заданi умови контактного типу. 
Сегмент таких задач недостатньо дослiджений та 
потребує уваги.

Запропоновано аналiтико-чисельний алгоритм 
розв’язання просторової задачi теорiї пружностi 
для пiвпростору з цилiндричними порожнинами. На 
межах порожнин заданi радiальнi перемiщення та 
дотичнi напруження, а на межi пiвпростору заданий 
один iз двох типiв граничних умов – перемiщення або 
напруження. Проведеними розрахунками встановлено 
напружено деформований стан пiвпростору. 

При фiксованих геометричних умовах було прове-
дено чисельний аналiз трьох варiантiв задачi, коли 
на межi пiвпростору заданi перемiщення та трьох 
варiантiв задачi, коли на межi пiвпростору заданi 
напруження. Проведено порiвняльний аналiз варiантiв 
з рiзними граничними умовами мiж собою.

Встановлено, що при рiзних видах заданих крайо-
вих умов (напруження або перемiщення), напружен-
ня   i   на межi прикладення таких умов змiнюються 
на протилежнi, тобто з розтягуючих на стискаючi 
або навпаки. Також встановлено, що крайовi умови на 
межi пiвпростору у виглядi напружень мають бiль-
ший вплив на напружений стан нiж крайовi умови у 
виглядi перемiщень. Цi твердження мають мiсце при 
заданих на межах цилiндричних порожнин граничних 
умов контактного типу, якщо задана функцiя перемi-
щень та задана функцiя напружень однаковi.

Наведений аналiз можна використовувати при 
проектуваннi конструкцiй, в розрахункових схемах 
яких є межа пiвпростору iз заданими на нiй гранич-
ними умовами контактного типу та цилiндричних 
порожнин, на поверхнi яких заданi перемiщення або 
напруження

Ключовi слова: цилiндричнi порожнини в пiвпро-
сторi, рiвняння Ламе, узагальнений метод Фур’є, 
нескiнченi системи лiнiйних алгебраїчних рiвнянь

1. Introduction

In the design of various structures, underground facili-
ties and communications, there is a need in assessing stresses 
in a half-space with cavities. For this, it is necessary to have 
a method for calculation of the problems of the theory of 
elasticity, which makes it possible to find a stressed-strained 
state of a half-space with cylindrical cavities. We explore 
the problem, where displacement or stress are assigned at 
the boundaries of a cavity, and the conditions of a contact 
type are assigned at the boundaries of a half-space in the 
form of radial displacement and tangential efforts. Ready 
calculations of similar problems in the spatial variant were 

not found, so the problem of calculation of such problems is 
important. In addition to the proposed algorithm of calcula-
tion, an analysis of the stressed state, which enables predic-
tion of the weak points at the stage of design, is presented in 
this paper.

2. Literature review and problem statement

To evaluate the stressed-strained state of a half-space 
with cylindrical cavities, several scientific studies apply the 
finite element method [1, 2], which is an approximated cal-
culation method and does not provide full reliability on the 
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accuracy of calculation when there are the infinite boundar-
ies of an elastic body. 

The most common problems for a half-space with cav-
ities are the problems when cavities are perpendicular to 
the surface of a half-space [3–6]. The calculation of these 
problems is based on the Weber integral transformation, 
the method of representations of Papkovich–Neuber, the 
theory of integral equations of Fredholm, the Neumann 
series, and the generalized integral equation of Cauchy. 
However, these methods cannot be used when cylindrical 
cavities are parallel to the surface of a half-space.

Papers [7–9] consider the problems of diffraction of 
waves in a half-space with a single cylindrical cavity based 
on the Helmholtz equation. Since article [7] considers all 
regions to be proportional to eikx, in fact a flat problem with 
the use of the transformation of the plane with a circular 
opening into a concentric ring is solved. Papers [8, 9] also 
consider flat problems, the wave equation of which is solved 
approximately using the comformal transformation and 
the collocation scheme of the least square. The described 
algorithms make it possible to calculate the problems of a 
half-space with only one cavity.

Articles [10, 11] are devoted to determining the stressed 
state of the final cylinder. The method is based on the su-
perposition of solutions and decomposition into Fourier and 
Dini series. But the problems for elastic bodies with multiple 
boundary surfaces cannot be solved within the framework of 
the classical approach. For such problems it was necessary to 
create a generalized Fourier method [12], the substantiation 
of which for spatial problems of the elasticity theory was giv-
en in [13]. This method was laid as the basis for the approach 
to the solution of the considered problem.

The first major problem of the theory of elasticity for 
transversally-isotropic bodies limited by coordinate surfac-
es in cylindrical and parabolic coordinates of the stationary 
parabolic cavity is solved in [14] and with actual parabolic 
inclusion in [15]. The applied problem about the effect of 
a concentrated force on a sandstone half-space with para-
bolic inclusion was considered in [16]. The thermo-elastic 
boundary problem for a transversally-isotropic half-space 
with a spherical cavity was considered in [17]. In articles 
[18, 19], the first and the second basic problems of the elas-
ticity theory for a half-space with a single cylindrical cavity 
were explored. The second basic problem of the elasticity 
theory for a half-space with several cylindrical cavities was 
solved in [20]. All these papers are based on the generalized 
Fourier method, but the algorithms, presented in them, do 
not make it possible to directly address the mixed problems 
with the boundary conditions of the contact type and ex-
plore the stressed state of a half-space with such boundary 
conditions. For this, it is necessary to explore further the 
possibility of solving the problem with the contact type 
conditions.

Mixed problems were considered for a space with cy-
lindrical cavities, when displacements are assigned on the 
boundaries of some cavities, stresses are assigned on the 
boundaries of other cavities [21]. Mixed problems for space 
were considered when displacements are assigned on some 
boundaries, stresses are assigned on the other boundaries, 
and the conditions of the contact type are assigned on the 
third boundaries [22]. These works are based on the gener-
alized Fourier method, but can not be applied directly to 
the problems in a half-space.

It follows from the above that the problems for a half-
space with cylindrical cavities with the boundary conditions 
of the contact type need studying. 

That is why it is appropriate to develop the analyti-
cal-numerical method for solving a mixed problem of the 
elasticity theory for a half-space with cylindrical cavities 
and some boundary conditions of the contact type.

3. The aim and objectives of the study

The aim of this research is the evaluation of the stressed-
strained state of a half-space with cylindrical cavities, under 
the following conditions: radial displacements and tangen-
tial stresses are assigned at the boundaries of cavities, and 
one of the two types of boundary conditions – displacements 
or stresses – is assigned at the half-space boundary. 

To accomplish the aim, the following tasks have been set:
– to develop the analytical-numerical algorithm of cal-

culation; 
– to conduct numerical studies for a half-space and two 

cylinders and to analyze the influence of the type of bound-
ary conditions on the stress in the zone of the isthmus be-
tween the cylinders and the isthmus between the half-space 
boundary and a cylinder.

4. Analytical and numeric algorithm for calculation

4. 1. Problem statement
Elastic homogeneous half-space has N circular cylinder 

parallel cavities, non-crossing each other and the boundary 
of a half-space (Fig. 1). 

The cavity will be considered in the cylindrical co-
ordinate system ( ,pρ  ,z  where p is the number of the 
cylinder), a half-space will be considered in Cartesian 
coordinates (x, y, z), which are equally oriented and com-
bined with the coordinate system of the cylinder with 
number p=1. The half-space boundary is located at the 
distance y=h, the equation of the surface of the cylinders 
Sp: ρp=Rp , p=1, 2,…, N. It is necessary to find a solution to 
the Lame's equation

( ) 1
1 2 div 0u u

−∆ + − σ ∇ =
� �

under conditions that at the boundaries of a half-space, one 
of the two types of boundary conditions – displacement 

( )0 ,dU x z
�

 or stress ( ), ,df x z
�

 is assigned at the boundaries of a 
half-space, and conditions of the contact type are assigned at 
the boundaries of the cavities
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  p=1, 2,…, N,	 (1)

where the right sides of these equalities are the known func-
tions.

All the assigned vectors and functions will be considered 
descending to zero at long distances from the origin along 
coordinate z for cylinders and along coordinates x and z for 
a half-space.
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Fig. 1. Half-space with cylindrical cavities

4. 2. The method of solution
Let us select the basic solutions of the Lame's equation 

for the specified coordinate systems in the form of [12]:

( ) ( ) ( ); , ; , ;d
k d k du M N u M± ±λ µ = λ µ
�

 ( )1, 2, 3 ;k = 	 (2)

( ) ( ) ( ) ( )
, ; ;p i z m

k m p k mR M N I e λ + φλ = λρ
�

( ) ( ) ( ) ( )
, ; ; ,p i z m

k m p k m pS M N s e λ + φ λ = ρ λ 
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 1,2,3;k = 	 (3)
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1 ;dN e y= σ − + ∇ ⋅
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  ∂ ∂ = ∇ ρ + σ − ∇ −     λ ∂ρ ∂  
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( ) ( )( )2
3 3rot ;p i

N e= ⋅
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�  ( ) ( ) ( ); sign ;
m

m p m ps Kρ λ = λ λ ρ

2 2 ,γ = λ + µ  , ,−∞ < λ µ < ∞

where Md=(x, y, z), Mp=(ρp, ϕp, z) are the points of a space, 
respectively, in Cartesian coordinates and in the cylindri-
cal coordinate system, connected with p – cylinder; ( ),k

je
�

 
( )1, 2, 3j =

 
is the orts of the Cartesian (k=1) and cylindrical 

(k=2) coordinate systems; σ  is the Poisson coefficient;  
Im (x), Km (x) are the modified Bessel functions; , ,k mR

�
 , ,k mS
�

 
( )1, 2, 3k =  are respectively internal and external solutions 
to the Lame's equation for a cylinder; ( ),ku −�  ( )

ku +�  are the 
solutions to the Lame's equation for a half-space.

The solution to the problem will be represented in the form of 

( ) ( ) ( )

( ) ( ) ( )

3

, ,
1 1

3

1

;

, ; , ,

N
p

k m k m p
p k m

k k d
k

U B S M d

H u M d d

∞ ∞

= = =−∞−∞

∞ ∞
+

= −∞ −∞

= λ ⋅ λ λ +

+ λ µ ⋅ λ µ µ λ

∑∑ ∑∫

∑ ∫ ∫
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	 (4)

where ( ), ;k m pS M λ
�

 and ( ) ( ); ,k du M+ λ µ
�

 are the basic solutions, 
which are assigned by formulas (2) and (3), and it is neces-

sary to find the unknown functions Hk (, ) and   
from the boundary conditions.

For transition between the coordinate sys-
tems (Fig. 1), we will use the formulas: 

– for transition from the coordinates of the 
cylinder with number p to the coordinates of a 
half-space, we will generalize formula [18]
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where

2 2 ,γ = λ + µ  ( ), ,
µ − γ

ω λ µ =
λ

y>0, m=0, ±1, ±2,…;

– for transition from the coordinates of a half-space 
to the coordinates of the cylinder p, we will generalize 
formula [18]

( ) ( ) ( ), ,p pm i x y
k k m p

m

u i R M e
∞
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where

( ) ( ) ( )
, , , ;pi m z

k m p k m pR M b e
φ +λ= ρ λ ⋅

�� �

,
p p

x y  are the coordinates of cylinder p relative to the cylin-
der number 1.
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where ,eρ
�

 ,eφ
�

 ze
�

 are the orts in the cylindrical coordi-
nate system, 

– for transition from the coordinates of cylinder p to 
coordinates of cylinder 1 [12] 
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( ) ( ) ( ) ( ) ( )1

3, 1 1 1 3, 11 , ;pn i m nmn
p m n p nb K e b− α

−ρ = − λ ⋅ ⋅ ρ λ
�� �� �
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b K b
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−
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− + − −

λρ = − λ ⋅ ρ λ − ×


 × λ + λ ⋅ ρ λ ⋅ 

�� �� � �

�
�� �� � 	 (7)

where αp1 is the angle between the coordinate axis x1 and 
section 1 ,p�  

( ) ( ) ( )sign .
m

m mK x x K x= ⋅�

For transition from the coordinates of cylinder 1 to co-
ordinates of cylinder p in formula (7), the places of indices 
should be changed

To satisfy the boundary conditions at the boundary of 
half-space y=h, the left part (4) with the help of transition 
formula (5) will be re-written in the Cartesian coordinates 
through the basic solutions ( ).ku −�  If the boundary conditions 
on the boundary y=h are assigned in displacements, the re-
sulting vector (at y=h) will be equaled to the assigned vector   
but if boundary conditions are assigned in stresses, we will 
find the stress for the resulting vector and equal it (at y=h) 
to the assigned vector ( ), .df x z

�
 Vectors

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10
1 2 3,  d d d

d x y zU x z U e U e U e= + +
� � � �

and

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2 3, d d d

d yx y yzf x z e e e= τ + σ + τ
� � � �

preliminarily represent by the double Fourier integral. From 
the resulting equations, we will find the functions Hk (, ) 
through ( ) ( ), .p

k mB λ
Using the formulas of transition from the Cartesian sys-

tem to the cylindrical system (6), as well as from one cylin-
der to the other (7), we will rewrite (4) in the coordinates of 
the cylinder number p through basic solutions , ,k mR

�
 , .k mS
�

 If 
now we find Uρ (ϕρ, z) and stresses τρϕ, τρz, for the right side 
of equation (4) on the surface of each cylindrical cavity and 
take into consideration boundary conditions (1), we will ob-
tain the system of equations for coefficients ( ) ( ), ,p

k mB λ  which 
includes functions Hk (, ), for each cavity p. The determi-
nant of this system is not equal to zero, moreover 

– for ( ) ( ) ( )2 2
0 1 20 8 1 ,m x K x K x= ∆ = − σ ⋅ ⋅ ⋅ 	 (8)

– for
 

( ) ( ) ( )1 11 4 ,m m m mm m K x K x K x− +≥ ∆ > ⋅  ,x = λ ρ  0.λ ≠

Functions Hk ( , ), which were expressed above 
through ( ) ( ), ,p

k mB λ  will be substituted in the equation with 
expressions ( ) ( ), .p

k mB λ  As a result, we will obtain the totality 
from N∙3 of non-finite systems of linear algebraic equa-
tions for determining unknown ( ) ( ), .p

k mB λ  
For the derived systems, using inequality (8), a definite 

possibility of solution on conditions of not touching the 
boundaries was proved. Moreover, these systems can be 
solved with the truncating method and approximate solu-
tions converge to the exact ones. Functions ( ) ( ), ,p

s mB λ  found 
from the infinite system of equations, will be substituted 
in expressions for Hk (, ). This will determine all the un-
known problems.

5. Numerical studies for a half-space and two cylinders

We have two parallel cylindrical cavities in a half-space 
(Fig. 1), p=2. A half-space is isotropic material, Poisson ratio 
σ=0.35, the elasticity modulus E=2 kN/cm2. The boundary 
of a half-space is located at the distance h=40 cm, the cylin-
ders, the radii of which are R1=R2=10 cm, are located on the 
horizontal axis (α12=0) at the distance of 12 50�=�  cm. 

Several variants of the problems with various boundary 
conditions were calculated – three variants, when displace-
ment was assigned at the boundary of a half-space and three 
variants when stresses were assigned at the boundary of a 
half-space. In all variants, conditions of the contact type are 
assigned at the boundaries of the cylinders.

An infinite system of equations was reduced to the finite 
by parameter m – the order of the system. The influence of 
the value of parameter m was studied in [18]. The integra-
tion boundaries for the assigned boundary functions were 
taken from –1...1. Calculation of integrals was performed 
using quadratic formulas of Filon and Simpson. Accuracy of 
the implementation of the boundary conditions at specified 
values of geometrical parameters was brought to 10–3 (m=8).

Variant 1
Displacement ( ) ( ) ( ) 0d d d

x y zU U U= = =  is assigned at the 
boundary of a half-space. At the boundary of cylinder 1, radial 
displacement is assigned 

( ) ( ) ( )21 4 2 2
0 1, 10 10U z z−φ = ⋅ +

and tangential stresses ( ) ( )1 1 0,zρφ ρτ = τ =  are assigned at the 
boundary of cylinder 2, boundary conditions are

( ) ( )2
0 2, 0;U zφ =  ( ) ( )2 2 0.zρφ ρτ = τ =  

Fig. 2 shows the diagram of normal stresses on the isth-
mus between cylinder 1 and the boundary of a half-space 
(Fig. 2, а) and on the isthmus between the cylinders 1 and 2 
(Fig. 2, b) in plane z=0.

The most stressed state is on the surface of the "loaded" cyl-
inder 2, where stress σρ=–0.271 kN/сm2, σϕ=0.052 kN сm2, 
σz=–0.161 kN/сm2. On the isthmuses, the stressed state at 
the boundary of a half-space (Fig. 2, а, distance is 40 сm) 
and on the boundary of the cylinder 2 (Fig. 2, b, distance is  
40 сm) differ from each other: thus stress σρ=–0.0261 kN/сm2 
increases near the surface of cylinder 2, unlike the half-space, 
where σρ decreases (σρ=–0.014 kN сm2), at the boundary of a 
half-space has compressing forces (σϕ=–0.008 kN/сm2), and 
at the boundary of cylinder 2, vice versa, stretching forces 
(σϕ=0.006 kN/сm2).

  
 

a                                               b

Fig. 2. Normal stresses in the coordinates of cylinder 1 in 
plane z=0: а – on straight line x=0 between cylinder 1 

and the boundary of a half-space; b – along section O1O2 

between cylinders 
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Variant 2
At the boundary of a half-space, the displacement is 

assigned 

( ) ( ) ( ) 0.d d d
x y zU U U= = =

At the boundaries of cylinders 1 and 2, radial displace-
ment

( ) ( ) ( ) ( ) ( )21 2 4 2 2
0 1 0 2, , 10 10U z U z z−φ = ϕ = ⋅ +

and tangential stresses are assigned

( ) ( ) ( ) ( )1 1 2 2 0.z zρφ ρ ρφ ρτ = τ = τ = τ =

The diagram of normal stresses in Fig. 3 shows how 
stresses changed at loading cylinder 1 and cylinder 2.

   
 
 a                                               b 

Fig. 3. Normal stresses in coordinates of cylinder 1 in plane 
z=0: а – along the straight line x=0 between cylinder 1 

and the boundary of the half-space; b – along section O1O2 
between cylinders

Thus, in comparison with variant 1 (Fig. 2), on the 
isthmus between cylinder 1 and the boundary of a half-
space (Fig. 3, а), the stress almost did not change (σρ= 
=–0.269 kN сm2, σϕ=0.048 kN/сm2, σz=–0.160 kN/сm2 on 
the cylinder and σρ=–0.016 kN/сm2, σϕ=–0.008 kN/сm2, 
σz=–0.008 kN сm2 on the half-space), however, on the 
isthmus between cylinders 1 and 2 (Fig. 3, b), stresses 
have symmetric location relative to �12/2, at the sur-
face of the cylinders, extreme values (σρ=–0.293 kN/сm2, 
σϕ=0.058 kN/сm2, σz=–0.161 kN сm2), between cylinders 
stresses decrease (σρ=–0.068 kN/сm2, σϕ=0.014 kN/сm2, 
σz=0.005 kN/сm2).

Variant 3
Displacement ( ) ( ) 0d d

x zU U= =  is assigned at the boundary 
of a half-space

( ) ( )( ) ( )( )22 24 2 2 4 2
1210 10 10 / 2 10 ,d

yU z x− − = − ⋅ + ⋅ ⋅ − +  �

and graphically shown in Fig. 4. At the boundary of cylin-
ders 1 and 2, radial displacement

( ) ( ) ( ) ( )1 2
0 1 0 2, , 0U z U zφ = φ =

and tangential stresses are assigned

( ) ( ) ( ) ( )1 1 2 2 0.z zρφ ρ ρφ ρτ = τ = τ = τ =

In this variant, the boundary of the half-space with the 
maximum values in the middle between the cylinders is 
"loaded", which influenced the stressed state on the isth-
muses (Fig. 5). 

Thus, on the line between cylinder 1 and the half-space 
boundary (Fig. 5, а) σρ=–0.005 kN/сm2 has an extreme 
value at the border of cylinder 1, at the same time σϕ and σz 

have the extreme values between the cylinder and the half-
space boundary (σϕ=–0.003 kN/сm2, σz=0.002 kN/сm2). 
On the isthmus between the cylinders (Fig. 5b), due to the 
vertical pressure of the boundary points of the half-space, 
stress σϕ, which is directed perpendicularly to the half-
space boundary, has extreme compressing values contrary 
to the maximum assigned displacements of the half-space 
(σϕ=–0.004 kN/сm2). Stress σρ=–0.001 kN/сm2 also has a 
small increase in compressing forces on the surface of the 
cylinders.

Fig. 4. Function of normal displacement   which is set on the 
surface of the half-space

    

  
 

 
 

a                                               b 

Fig. 5. Normal stresses in the coordinates of cylinders 1 
in plane z=0: а – on straight line x=0 between cylinder 1 

and the half-space boundary; b – on section O1O2 between 
cylinders

Variant 4
Stress is assigned at the half-space boundary

( ) ( ) ( ) 0.d d d
y yx yzσ = τ = τ =

Radial displaceme

( ) ( ) ( )21 4 2 2
0 1, 10 10U z z−φ = ⋅ +

and tangential stresses ( ) ( )1 1 0,zρφ ρτ = τ =  are assigned at the 
boundary of cylinder 1, at the boundary of cylinder 2 bound-
ary conditions

( ) ( )2
2, 0;U zρ φ =  ( ) ( )2 2 0.zρφ ρτ = τ =

Compared to variant 1, in this case stress is assigned at 
the boundary of a half-space (diagram of the stressed state 
is shown in Fig. 6). 
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Fig. 6 shows that a change in boundary conditions at the 
half-space boundary did not affect the stressed state of the 
isthmus between the cylinders (Fig. 6, b), but affected the 
stressed state of the isthmus between cylinder 1 and half-
space boundary (Fig. 6, a). Thus, at the boundary half-space 
σρ=0, σϕ and σz have now not compressing but stretching 
values (σϕ=0.015 kN/сm2, σz=0.015 kN/сm2).

    

   
 
 

 
 

a                                                   b 
Fig. 6. Normal stresses in coordinates of cylinder 1 in plane 
z=0: а – on straight line x=0 between cylinder 1 and half-
space boundary; b – on section O1O2 between cylinders

Variant 5
Stress is assigned at the boundary of the half-space

( ) ( ) ( ) 0.d d d
y yx yzσ = τ = τ =

At the boundary of cylinders 1 and 2, tangential stresses

( ) ( ) ( ) ( )1 1 2 2 0z zρφ ρ ρφ ρτ = τ = τ = τ =

and radial displacement are assigned

( ) ( ) ( ) ( ) ( )21 2 4 2 2
0 1 0 2, , 10 10 .U z U z z−φ = φ = ⋅ +

The stressed state on the isthmuses is shown in Fig. 7
    

    
 
 
 

 
 

a                                               b 

Fig. 7. Normal stresses in the coordinates of cylinder 1 in the 
plane z=0: а – along the straight line x=0 between cylinder 
1 and half-space boundary; b ‒ along section O1O2 between 

cylinders

Compared to variant 2, as in the previous case, chang-
es affected the isthmus between cylinder 1 and half-space 
boundary (Fig. 7, a): at the half-space boundary, stresses 
σρ=0, σϕ and σz now have not compressing but stretching 
values (σϕ=0.014 kN/сm2, σz=0.017 kN/сm2).

Variant 6
At the half-space boundary, stress ( ) ( ) 0d d

yx yzτ = τ =  is as-
signed.

( ) ( )( ) ( )( )2224 2 2 4 210 10 10 / 2 10 .d
y qpz x− − σ = − ⋅ + ⋅ ⋅ − +  

�

At the boundaries of cylinders 1 and 2, radial displa- 
cement

( ) ( ) ( ) ( )1 2
0 1 0 2, , 0U z U zφ = φ =

and tangential stresses are assigned

( ) ( ) ( ) ( )1 1 2 2 0.z zρφ ρ ρφ ρτ = τ = τ = τ =

In contrast to variant 3, at the half-space boundary, 
stresses are applied instead of displacements, which influ-
ences the stressed state of the isthmuses (Fig. 8).

Load in the form of a single stress, unlike the load in the 
form of a single displacement, have a greater impact on the 
stressed state. Thus, the stress on the isthmus between the 
cylinders (Fig. 8, b) has the same form as in Fig. 5, b, but is 
larger in values, for example, the stress between the cylin-
ders in variant 6 σρ=–0.012 kN/сm2, σϕ=–0.049 kN сm2, 
σz=0.002 kN/сm2, in variant 3 σρ=–0.001 kN/сm2, σϕ= 
=0.004 kN/сm2, σz=0.0004 kN/сm2 
    

    
 
 
 
 

 
 

a                                                          b 

Fig. 8. Normal stresses in the coordinates of cylinder 1 in 
plane z=0: а – along the straight line x=0 between cylinder 1  

and the half-space boundary; b – along section O1O2 
between the cylinders

On the isthmus between cylinder 1 and the half-space 
boundary, unlike variant 3 (Fig. 5, а), the values of stress-
es are higher, moreover, σz in this case is compressing and 
increases at the half-space boundary (σz=–0.024 kN/сm2). 
Stress σρ also, unlike variant 3 (Fig. 5, а), at the half-space 
boundary is compressing (σρ=–0.023 kN/сm2). Stress σϕ, 
in comparison with variant 3 (the maximum value σϕ= 
=–0.003 kN/сm2), has higher values (the maximum value 
σϕ=–0.034 kN/сm2).

6. Discussion of the obtained results for the stressed 
state and the method for solving the problem

In the framework of the accepted linear model of the 
homogeneous isotropic medium and precise problem state-
ments, the derived results (distribution of stress fields in a 
multi-link body) are explained by the response of an elastic 
body to:

1) existence of some flat and curved surfaces that limit 
the body;

2) selected system of boundary conditions on these sur-
faces.

For another system of boundary conditions, at other 
equal factors, the response of an elastic body will be differ-
ent. 

Based on the generalized Fourier method, the analyti-
cal-numerical algorithm of calculation of the spatial problem 
of the elasticity theory was developed. The algorithm implies 
the following boundary conditions: one of the two types of 
boundary conditions – displacement or stress – at the half-
space boundary, the contact type conditions in the form of 
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radial displacements and tangential stresses at the bound-
aries of several parallel cylindrical cavities. The developed 
algorithm makes it possible to calculate the problems with 
similar boundary conditions with predetermined accuracy 
(depending on parameter m) and can be used for the design 
of various structures.

In comparison with papers [1–11], the proposed algo-
rithm makes it possible to obtain the accurate solution to a 
similar problem and, in comparison with [13–22], to consid-
er the boundary conditions of the contact type, as well as the 
half-space boundary. 

In terms of shortcomings, it should be noted that at a 
decrease in the distance between the boundaries of the body, 
the algorithm becomes less effective as it requires an increase 
in the order of system m and respectively an increase in time 
to compute the integrals of matrix elements. The algorithm 
does not make it possible to solve the problem when the 
boundaries of a body touch or intersect.

Subsequent development of research in this area is re-
quired to solve similar problems in a layer with cylindrical 
cavities, which in the absence of algorithms with accurate 
analytical methods was not explored at all but is found in 
calculation schemes when designing structures. 

When considering a layer with cylindrical cavities, it will 
be necessary to take into consideration the lower boundary 
of the half-space. In this case, the system of equations is 
significantly complicated in analytical and numerical terms.

7. Conclusions

1. Numerical analysis of the stressed-strained state of a 
half-space and two cylindrical cavities shows that

– for different types of boundary conditions (stress or 
displacement), stresses σϕ and σz at the boundary of applica-
tion of such conditions change for the opposite, that is, from 
stretching to compressing or vice versa; 

– at the conditions of the contact type assigned at the 
boundary of a cylindrical cavity, specifically, zero tangential 
stresses and normal displacement in the form of a wave of 
the height of 1 cm, normal stresses on the surface are equal 
to: σρ=–0.27 kN/сm2, σϕ=0.05 kN/сm2, σz=–0.16 kN/сm2;

– boundary conditions at the half-space boundary in 
form of stresses have a greater impact on the stressed state 
than the boundary conditions in the form of displacements. 
These statements are true at the boundary conditions of 
the contact type, assigned at the boundaries of cylindrical 
cavities, if an assigned displacement function and assigned 
function of stresses are the same.

2. Numerical studies of the algebraic system for a half-
space and two cylinders provide an opportunity to argue that 
its solution can be found with any degree of accuracy by the 
reduction method. This is proved by a high precision of sat-
isfaction of the boundary conditions. For geometric param-
eters of the solved problem (R1/h=0.25; 1 1 12/ 0( ) ,4R R+ =� ) 
at m=8, boundary conditions are satisfied with the accuracy 
of 10-3. At an increase in the order of system m, the calcula-
tion accuracy will be increased 

3. The presented diagrams give a pattern of the distri-
bution of stresses in the most interesting areas, such as on 
the isthmus between cylindrical cavities, and on the isthmus 
between the half-space boundary and the surface of the cy-
lindrical cavity.

An analysis of the stressed state of the cylindrical 
cavity with the boundary conditions of the contact type 
revealed that at approaching its surface, stress σρ increases 
regardless of the fact whether it is overloaded or not. Thus, 
at the "loaded" cylinder (Variant 1, Fig. 2, b), stress σρ in-
creases up to –0.026 kN/сm2, at the "unloaded" cylinder in 
variant 6 (Fig. 8, а) σρ increases up to –0.11 kN/сm2 

4. The reliability of the presented algorithm is proved by 
a high level of satisfaction of the boundary conditions and 
the resulting diagrams can be used in assessing the stressed 
state in the structures with similar conditions.
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