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Automatic detection and recognition of human respi-
ratory patterns for health monitoring without any un-
comfortable sensors that make continuous measurements 
impossible was a key problem for technologies that use 
analysis of respiration and behavior of a human. As a re-
sult, there appeared a decision to detect respiration rate, 
based on signals, received from a variety of body sensors in 
real time. At continuous measurement of respiration rate, 
signals received from the sensors, wearable on the body, is 
much more preferable than signals received from external 
sensors (for example, a thermal sensor, a pressure sensor, 
etc.), even if the latter are more accurately. The main rea-
sons are listed below.

– Cameras, spirometers or other sensors, not subject 
to wearing out, suffer from environmental influence and 
are complicated to use. At the same time, sensors worn on 
the body do not, so they can carry out measurements much 
more frequently and even continuously, which provides 
more accurate results.
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Запропоновано метод розпiзнавання в реальному часi 
типiв (шаблонiв) дихання пацiєнта з цiллю монiторин-
гу його стану i загроз для здоров’я, що є частковим випад-
ком проблеми розпiзнавання людських активностей (HAR). 
Метод заснований на застосуваннi глибинного машин-
ного навчання з допомогою згорткової нейронної мережi 
(CNN) для класифiкацiї швидкостi руху його грудної клiтки. 
Показано, що прийнятi при цьому рiшення узгоджуються з 
технологiєю мобiльної медицини (mHealth) з використання 
натiльних датчикiв i смартфонiв для оброблення їх сигналiв 
в якостi обчислювальних edge-вузлiв, але CNN вiдкривають 
важливi додатковi можливостi з пiдвищеннi якостi обро-
блення сигналiв датчика-акселерометра в умовах наявно-
стi перешкоджаючих сигналiв (шумiв) вiд iнших джерел та 
iнструментальних похибок пристрою. Вхiднi сигнали попе-
редньо нормалiзується щодо осi обертання, щоб зменшити 
вплив шуму на результати, оскiльки акселерометр вимi-
рює гравiтацiйне прискорення (g) i лiнiйне прискорення (a). 
Запропоновано спосiб перетворення одновимiрних сигналiв 
(1d) акселерометра в двовимiрнi (2d) графiчнi зображення, 
якi оброблюються за допомогою CNN iз декiлькома оброб-
ними шарами, завдяки чому точнiсть визначення шабло-
ну дихання в рiзних ситуацiях для рiзних фiзичних станiв 
пацiєнтiв зростає в порiвняннi з випадком, коли двовимiр-
нi перетворення сигналiв акселерометра не вживаються. 
При цьому зростання точностi (або якостi) визначення 
рiзних типiв дихання вiдбувається при збереженнi достат-
ньої швидкостi процедур запланованого методу, що дозво-
ляє проводити класифiкацiю типiв дихання в реальному 
часi. Дану методику було випробувано в якостi компоненту 
Body Sensor Network (BSN) i встановлено високу точнiсть 
(88 %) визначення стану дихання пацiєнта, що в поєднаннi з 
даними контексту, отриманими з iнших вузлiв BSN, дозво-
ляє визначати стани пацiєнтiв i передбачати загострення 
їх респiраторних хворoб
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1. Introduction

The need to diagnose and monitor various respiratory 
diseases or their exacerbations contributed to the develop-
ment of various methods for respiration measuring. At the 
same time, recent advances in the IoT technology and deep 
learning [1] created an opportunity to combine them and 
create a system of continuous observation. Such a system 
could be used to detect or predict and prevent exacerba-
tions of dangerous conditions at various everyday human 
activities (such as walking, sleeping and other activities 
that alter the physical state).

Since the amount of air pollution in cities is constantly 
increasing, so does the number of people with respiration 
problems. Therefore, the possibility of permanent respira-
tory monitoring is using the accelerometer, which does not 
interfere with everyday activities, is studied. The use of 
such a system will make it possible to recognize the current 
state of a human, as well as predict potential aggravations.
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– A body sensor receives only target signals, while the 
signals from external sensors can be distorted by informa-
tion from other objects in the environment. This leads to the 
need for more complex preprocessing of a signal (which is not 
always possible).

– Signals from an accelerometer can be used in combina-
tion with signals of other sensors to achieve greater accuracy 
or to get additional contextual information that can be used 
to recognize more complex images. For example, a more fre-
quent respiration rate while running should be considered 
normal, in contrast to the norm in a quiet state. Moreover, 
this context is critical to differentiate various chronic con-
ditions. For example, normal respiration is about 12 breaths 
per minute, or 6 l/min, whereas people with respiratory dis-
eases breathe faster and more deeply. Such a deviation is also 
apparent for many other common chronic diseases.

The problem of detecting respiration patterns can be 
considered as a special case of the problem of human activ-
ity recognition. A key factor that affects the quality of the 
solution of this problem is a good preprocessing of signals, 
collected from sensors. Usually this processing includes 
basic conversion of a signal (for example, wavelet transfor-
mation or a Fourier transformation) or an interpretation 
of unprocessed signals using statistical methods, such as 
variance and mean value [2]. Even though these procedures 
are widely used in many problems with time series, they do 
not depend on the problem and therefore can also be used to 
recognize respiration patterns.

Thus, the development of a method for continuous mea-
surement of respiration rate and determining a respiratory 
pattern by combining the use of signal preprocessing and 
convolution neural networks (CNN) in real time is a relevant 
problem for exploratory research.

2. Literature review and problem statement

There are many different methods to measure the hu-
man respiration. For example, using a spirometer can be 
described as a perfect solution to this problem, as 100 % 
measurement accuracy is guaranteed [3]. However, a spi-
rometer cannot be used permanently, since a patient must 
breathe into it, which it is impossible to do in everyday life.

There also exist many indirect methods for respiration 
analysis, for example, with determining of oxygen concen-
tration in blood [4]. However, since oxygen concentration 
changes quite slowly, this method does not apply to detect a 
respiratory change in real time, and, therefore, a dangerous 
condition of a patient [5]. In addition, respiration patterns 
can be detected by the sounds of the trachea. This meth-
od is good for selection of deep respiration or respiration 
during such activity as running. However, this method is 
not very good to detect different patterns in quiet states, 
because a sound changes very slightly. Just because of the 
noise created by the environment or other human move-
ments, it is very difficult to detect a respiration sound and 
its change [6].

Another way to measure respiration was proposed 
in [7]. Using a volume sensor based on a piezoelectric 
transducer, placed on the chest, a change in its circumfer-
ence during respiration is measured. There are other known 
methods that require a large number of additional sensors 
or medical equipment, which are pretty accurate, but are 
not designed for continuous and daily use.

On the other hand, accelerometers, worn on the body, 
can measure angular changes during respiration, assessing 
acceleration of the thorax movement, and hence the respira-
tion rate [8]. To do this, paper [8] applies the adaptive band-
pass filter using the principal components analysis (PCA) 
combined with digital processing of signals. To improve the 
quality of a signal from most available accelerometers (for 
example on a user’s smartphone or other devices available for 
carrying), the use of a Kalman filter is proposed in paper [9].

Based on the nature of a respiration signal, we consider it 
as a combination of several basic continuous motions, repre-
sented by signals of an accelerometer and a gyroscope (which 
did not influence accuracy of the experiment, and was not 
used after). The main problem with the use of this represen-
tation to detect respiration patterns is retrieving this pattern 
from a complex signal during the daily activities of a user.

Because computational power available on peripherals 
devices of the consumer market reached 16.6 GFLOPS, it is 
possible to use deep learning on intelligent sensors or a user’s 
device and consequently to deliver messages and recommen-
dations with a minimum delay and even offline, not depending 
on the server, or whether they are connected to the network. 

At the same time, retrieving precise signals from noise 
polluted raw data of an accelerometer is still quite a compli-
cated problem. A huge number of different routine actions, 
executed by people, make them difficult to detect.

3. The aim and objectives of the study

The purpose of this research is to determine 6 different 
types of respiration patterns, dependent on human activity.

To accomplish the set goal, the following tasks were set:
– generate a dataset for the experiment; 
– undertake preliminary data preparation and cleaning; 
– dentify respiration patterns, using CNN and collect-

ed data.

4. Data collection, their preprocessing and the 
construction of a neural network 

To validate the proposed solutions and the hypotheses, 
first, it is necessary to generate a dataset. For this purpose, 
we developed an application for Android, which collects data 
from the accelerometer, attached to the chest of a user, and 
passes the data to the smartphone using Bluetooth with a 
discretization frequency of 30 Hz (30 values per second). To 
get different respiration patterns, data are updated after var-
ious physical actions of a patient that include quiet respira-
tion, respiration after push-ups, respiration during running, 
deep respiration, fast respiration, respiration with a delay. An 
accelerometer was attached over the ribs under the nipple 
(Fig. 1) using a scotch tape. Previously, by changing the po-
sition of an accelerometer on the chest, it was found that this 
position gives the greatest amplitude of the moving chest and, 
as a consequence, the clearest respiration signal. In addition, 
the same place for an accelerometer was used in paper [10].

To obtain more balanced data, the test group of 8 users 
(4 people of each gender) was studied, four of them were  
25 years old, two of them were 40 years old and two more 
were 55 years old. All users, included in the test group, had 
a medium level of physical activity. The measurements were 
made with the use of a smartphone with the developed appli-
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cation and a sensor, attached to the chest. Each action was 
recorded within 5 minutes (data after push-ups were recorded 
within 30 minutes and a series of 10 push-ups was repeated). 
9,000 values for each type of activity for each person were 
recorded within 5 minutes when accelerometer data with the 
frequency of 30 Hz (30 values per second) were recorded. 
Thus, a complete set of data includes 432,000 values. Because 
the data, taken from one person, are fully used for dataset 
testing, it is supposed to be enough to test the methods and 
hypotheses.

The data acquired from the sensor have the following 
structure: a timestamp (in the Unix format with millisec-
onds), their acceleration along the X axis, acceleration along 
Y axis, and acceleration along the Z axis.

1486291984848|1.61407470703125|–
–9.95855712890625|2.83917236328125.

After the recording session, the data were stored on a 
mobile phone, and then marked by adding an activity col-
umn. The resulting dataset was divided into parts for testing 
and training. Because measurements were conducted with 
generalized data, describing human activities, individual 
data, collected from one of the participants, were stored sep-
arately for subsequent verification of working capacity of the 
model. Because different people have different lungs volume, 
chest movement and other physiological 
parameters, this means that if the tech-
nique is valid for a person, not included 
in the test group, it can be used in rela-
tion to other people.

Convolution neural networks are 
used successfully for image recognition 
problems [11]. An accelerometer produces 
one-dimensional signals unlike two-di-
mensional images. It was therefore decid-
ed to convert a received signal in a 2D-im-
age and compare the results with the 
traditional approach, using a 1D-signal. 

Conversion of 1D-signal into a 
2D-image can be performed in several 
ways, inter alia, by using normalization 
and transformation into the matrix. Us-
ing this approach, samples of a signal 
inside the observation window are con-
verted into a grey color image with the 
scale of 0–255. At this image, a darker 

color means a greater amplitude in the original signal and 
pixel coordinates – (i, j) of the M×N matrix for each of n-th 
sample of a signal where

i
N
M

=  and j
N
M

= .      (1)

Fig. 2 shows this approach.
This approach is simple and convenient to work with be-

cause it does not require great computing power, but at the 
same time, has a considerable drawback: it 
is very susceptible to noise and anomalies, 
so it cannot be used for our data. 

As shown in [7], an alternative can 
be an approach, when signals are added 
together sequentially by stacking as an im-
age, which allows each sequence of signals 
to correlate with other sequences. Then 
the 2D discrete Fourier transform (DFT) 
was performed, and its magnitude is an im-
age that is used as the input signal of CNN. 
This approach is modified by inclusion 
of signals normalization procedure before 
stacking into a single image.

Because the accelerometer measures 
gravitational acceleration (g) and linear 

acceleration (a), as people move in different directions, 
the accelerometer rotates and each axis measures different 
acceleration (g or a). To continuously measure the motion 
on axis a and reduce noise (exclude irrelevant measure-
ments), it is necessary to normalize the measurement values. 

The θt angle shows how axis rotation changes over time 
from t–1 to t:

θt t ta a= ×( )−
−cos ,1

1      (2)
 

where a is the vector of values over time. To reduce the 
effect of noise on results, each observation is normalized by 
rotation angle θt, at time t. Thus, a normalized signal will 
take the form:

a axt x t= × θ ,  a ayt y t= × θ ,
 
a azt z t= × θ .    (3)

Fig.	1.	General	scheme	of	the	system	and	the	point	where	an	accelerometer	is	
attached	

Fig.	2.	Conversion	of	signal	into	a	matrix	[12]
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Since the sliding window method is used, the Hamming 
function H(n) for the normalized signal was applied for the 
purpose of noise reduction. 

As a result, the algorithm of preprocessing of an unpro-
cessed input signal takes the following form:

1. To normalize the input signal relative to the rotation 
axis as described above. 

2. To apply the Hamming window function for already 
normalized signal. 

3. To convert the signal from our window using the algo-
rithm from [7]. 

4. To apply DFT for the obtained image.
Upon implementing a given approach to the data from 

sensors, results are transmitted to CNN. The process of sig-
nal processing is shown in Fig. 3.

To evaluate how the proposed method of preprocessing 
improves the quality of pattern detection, it was compared 
to the case of using CNN for the normalized signal as input 
data [14].

Convolution neural networks (CNN) are one of the most 
reliable, flexible and widely used meth-
ods for detection of signal patterns. At 
higher layers, different features of signals 
are detected (for example, in this case for 
characteristic of each chest movement). 
Deeper layers receive schemes of signals 
in high-level representation (for multiple 
movements). Each level can have some 
operators of convolutions or associations, 
therefore, several patterns, learnt from 
different aspects, can be used together. 
As a result, it is possible to detect more 
complex patterns compared to other tra-

ditional statistical methods such as Support Vector Ma-
chines (SVN), Random Forest or others [15].

For experiments, we used the sliding window strategy to 
process the signal both applied to the original signal and for 
the case of image generation from an input signal. The basic 
idea of a sliding window is to divide the signal of time series 
into short fragments.

When the data are acquired at a frequency of 30 ob- 
servations per second, the sliding window size that is 
equal to 90 samples corresponds to 3 seconds of observa-
tions and a window step size that is equal to 32 samples 
is 1.06 seconds. A larger or smaller pitch size can be used 
either to increase accuracy (lower) or to decrease re-
quired computing power (larger), or energy consumption, 
which is a critical parameter. Therefore, a compromise 
between accuracy and the number of computations must  
be found.

Since the main objective of the study is to identify the 
respiration type in real time with minimal delay, a higher 
computational cost can be a problem, causing large delays 
(especially when applying not very powerful devices). For 
the first experiment with input data in the form of a normal-
ized signal, window segments are generated and a third di-
mension is added to each component, so that the input vector 
for CNN should contain full segments, an input segment, a 
channel entrance (Fig. 4). 

For the first experiment with input in the form of a 
normalized signal, window segments are generated and 
added to each component of the signal in the form of a third 
dimension, so that the input vector for CNN should take the 
following form: [complete segments, an input segment, an 
input channel]. 

Since the signal is one-dimensional and it implies the 1D 
convolution, it is necessary to change the generated windows 
that will be normalized to height 1. 

For the second experiment with stacking and signal 
processing as a graphic image, changes are introduced. 
Since there are 3 sequences of input signals, in accordance 
with the used algorithm, each signal is repeated four 
times. As a result, the size of the input signal is equal to 
12×32, where parameter 32 is determined by the selected 
window size.

The model consists of one convolution layer, followed 
by the maximum pooling layer, and another convolution 
layer. After that the model contains a fully-connected 
layer, which is connected to a Softmax layer (in problems 
of classification or pattern detection, the last CNN layer 
is usually is a Softmax layer – multilinear logistics regres-
sion). The described neural network architecture is shown 
in Fig. 4. 

Fig.	3.	Processing	the	accelerometer	signal: a	–	incoming	
signal;	b	–	signal	image;	c	–	amplitude	spectrum

a

b

c

Fig.	4.	CNN	architecture	for	the	first	experiment
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CNN are trained using iterative optimization with the 
help of the backpropagation algorithm. The most widely 
used method of optimization is stochastic gradient de-
scent (SGD) and YellowFin optimizer [16]. In the exper-
iment, YellowFin optimizer was used because it has the 
lowest learning error and dynamic learning speed, while 
SGD usually accumulates an error after 300 epochs [16].

The function of training cost of our CNN architecture 
is Softmax with L2 regularization. The rectified linear 
unit (ReLU) was used in the study as an activation func-
tion. CNN hyperparameters are:

– number and types of layers; 
– size of filters for convolution and convolution pitch 

for each pooling layer;
– size of pooling domain and pooling pitch for each 

pooling layer; 
– number of units for each fully connected layer.
The CNN, shown in Fig. 5, was constructed based on 

the above operators. All CNN layers can be grouped into 
five sections, as described below. 

The first convolution layer has the filter size and depth 
60 (the number of channels is obtained as the output from 
a convolution layer). The size of a pooling layer filter is 
set equal to 20 with the pitch of 2. Then a convolution 
layer takes an input layer with the maximum pooling level, 
applying the size 6 filter and it will have one tenth of the 
maximum depth of maximum pooling layer. After this the 
output is smoothed for the vector of entrance of a fully 
connected layer.

1,000 neurons are placed in a fully connected layer 
(this can be determined by a configuration). This lay-
er uses the hyperbolic tangent function tanh for non-
linearity. Softmax layer is determined for output of 
probabilities of class marks. Function of negative log 
likelihood [17] is minimized by using stochastic gradient  
descent (SGD).

The use of the source input (with some preprocessing) 
in the CNN architectures is a normal situation for appli-
cations of deep learning in subject domain of computer 
vision. CNN, however, are generally not as effective with 
1-dimensional signal and for the second experiment, the 
signal was converted into a 2D-image. 

For the second experiment with the signal, converted 
to a 2D-image, the first and second CNN convolution lay-
ers (Fig. 5) perform two-dimensional convolution on their 
inputs. The output map is generated as follows:

y b k xi j
i

ij i= + + ×










∑

−

1
1

exp ,     (4) 

where kij is the convolution kernel on the i-th input display xi 
for generation of the j-th output display yj, bj.

The pooling layer is arranged as the sub-sampling meth-
od. Output yi is calculated by accepting the mean values of 
non-overlapping regions xi with filter m x m.

 
y r c

x r m p c m q

mi
p

m

q

m

i
,

,
,( ) =

× + × +( )
= =∑ ∑1 1

2    (5)

 
where r, c are the coordinates of pixel yi.

After completely connected layer, 1D-vector f at the out-
put is obtained. Function Softmax is applied to determine 
the probability of each class, which corresponds to probabil-
ity of each of 6 different respiration types:

p s
g

g
g f w hs

j

N

j

j
i

i ij ja
( ) = = × +







=∑
∑

1

0, , ,max   (6)

 
where w and h are the coefficients of 
Softmax function, and s is one of the 
predictable classes. 

5. Evaluation and comparison of 
accuracy of respiration patterns 

detection

The main problem for results 
evaluation was the problem of im-
balance of classes. It is much easier 
to register a low physical activity 
for many, especially older people 

(who are the main target group of the developed solution). 
The result was obtaining much more data, recorded for qui-
et respiration than for other types. To reduce the effect of 
unbalanced classes, it is possible to use various unbalanced 
data groups for each epoch in YellowFin optimizer [18]. 

To assess the results of the constructed model, several 
indicators were calculated:

– Precision, recall;
– F1;
– Training loss;
– Learning accuracy.
Testing accuracy was verified using records from a 

person who was not added to the learning dataset, which 
helped avoid re-training on specific people. 

Because in this research, 6 different classes (respira-
tion patterns) with binary metrics are classified [19], it 
is necessary to display this classification as 6 different 
binary classifications, where each time one class is consid-
ered positive and all other classes are marked as negative 
(classification of one against all) [20]. It is facilitated by 
the construction of the confusion matrix, shown below 
in Fig. 6 in order to better understand efficiency of the 
constructed model.

Table 1 shows that after 40 learning epochs, the con-
structed model clearly started retraining, resulting in the 
level of 84 % accuracy of the model. The same can be seen 
in Table 2, 88 % accuracy was shown for the preprocessed 
signal, which is better than in the previous case, but still far 
from being perfect.

Fig.	5.	CNN	architecture	for	the	preprocessed	input	signal
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Table	1

Metrics	using	a	normalized	signal

Number of 
epochs 

F1 
score

Recall Precision
Training 
Accuracy

Training 
Loss

Testing 
Accu-
racy

Epoch 0 0.615 0.67 0.6 0.67 7.82 0.45

Epoch 10 0.839 0.881 0.825 0.881 3.63 0.765

Epoch 20 0.942 0.947 0.941 0.947 2.653 0.818

Epoch 30 0.969 0.971 0.97 0.971 2.179 0.834

Epoch 40 0.976 0.977 0.977 0.977 1.81 0.843

Epoch 50 0.98 0.98 0.98 0.98 1.709 0.836

Table	2

Metrics	using	signal	transformation	into	image	

Number 
of epochs 

F1 
score

Recall
Preci-
sion

Training 
Accuracy

Train-
ing Loss

Testing 
Accu-
racy

Epoch 0 0.515 0.57 0.5 0.57 5.73 0.37

Epoch 10 0.727 0.732 0.749 0.76 4.02 0.65

Epoch 20 0.919 0.918 0.925 0.95 2.756 0.729

Epoch 30 0.959 0.951 0.939 0.961 2.217 0.8

Epoch 40 0.973 0.97 0.981 0.98 1.756 0.88

Epoch 50 0.983 0.983 0.983 0.983 1.69 0.873

Table	3

Confusion	matrix	of	CNN	for	unprocessed	signal	

Respira-
tion types

Quiet 
respira-

tion 

Respira-
tion after 
push-ups

Deep 
respira-

tion 

Fast 
respi-
ration 

Respi-
ration 
during 

running 

Respi-
ration 
with 
delay 

Respira-
tion with 

delay 
0.97 0.028 0 0 0 0

Respi-
ration 
during 

running

0.026 0.64 0.33 0 0 0

Fast res-
piration

0 0.2 0.75 0 0 0.055

Deep res-
piration

0 0 0 0.65 0.33 0.014

Respira-
tion after 
push-ups

0 0 0 0.24 0.76 0

Quiet res-
piration

0 0.051 0.029 0 0 0.92

Table	4

Confusion	matrix	of	CNN	for	a	signal,	converted	into	image	

Respi-
ration 
types

Quiet 
respira-

tion

Respira-
tion after 
push-ups

Deep 
respira-

tion

Fast 
respi-
ration

Respi-
ration 
during 

running

Respi-
ration 
with 
delay 

Respira-
tion with 

delay 
0.95 0.041 0.014 0 0 0

Respi-
ration 
during 

running

0.021 0.73 0.23 0.021 0 0

Fast res-
piration

0 0.19 0.72 0.017 0.069 0

Deep res-
piration

0 0.015 0.015 0.71 0.26 0

Respira-
tion after 
push-ups

0 0.043 0 0.19 0.77 0

Quiet 
respira-

tion
0 0 0.029 0 0 0.97

As can be seen from the confusion matrix, given in Ta-
bles 3, 4, the proposed approach can determine quite accu-
rately the quiet respiration and the respiration with a delay, 
while a lot of erroneous starts are recorded when trying to 
classify other types of respiration. There is especially a lot 
of misclassification between running and fast respiration, as 
well as between push-ups and deep respiration. This can be 
explained by the fact that the signals from respiration with 
a delay and quiet respiration is less likely to be accompanied 
by other activities, associated with the thorax movement, 
and therefore are more unique. While during fast respiration 
and running (as well as push-ups and deep respiration) chest 
movement are more identical and, in addition, a received 
signal is interfered with by huge amount of data of physical 
activity, due to which a respiratory movement of the chest is 
harder to recognize.

6. Discussion of results of using CNN to determine the 
respiration patterns 

The proposed method for recognition of respiration 
patterns and the proposed data preprocessing allows 
CNN to fix the patterns of an accelerometer signal in dif-
ferent situations and temporal scales with the use of 2D 
convolutions for obtaining high-level characteristics for 
the patterns detection. To prove that this method works 
better than the use of just an original signal as original 
data, these two approaches were compared when using the 
same dataset.

All determined patterns are standardized for prediction 
of the known respiration patterns. The key points, proposed 
in the present method, are:

– the use only one of body sensor to detect a respiration 
pattern; 
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– conversion of an accelerometer signal into a 2D-image 
using previous;

– normalization relative to the axis rotation; 
– the use of deep learning methods to create a model that 

is independent of the characteristics extraction procedures; 
– the possibility of using this approach to determine 

other types of human actions.
Using the proposed approach, it is possible to determine 

the respiration patterns with an 88 % accuracy, which can be 
considered a good result for using only one sensor. 

At the same time, it is necessary to point out the limita-
tions and shortcomings of the examined approach:

– when adding new patterns, it is necessary to modify 
the set of input data for neural network learning, and this 
will increase the size of the final model, which could make it 
difficult to use on mobile devices; 

– if different respiration patterns are very similar to each 
other, the probability of recognition error increases.

It is also interesting to combine the obtained data with 
the data from other body sensors (for example, heat rate 
measuring) for forecasting more complicated human actions, 
which can become a promising subject-matter for subsequent 
studies. For example, the combination of the value of heart 
rate and current state of human respiration will enable an 
accurate prediction of the possibility of asthma attack. It is 
important to note that when adding data from other sensors, 
it is advisable to study the applicability of other architec-
tures of neural networks excluding CNN. 

7. Conclusions

1. To explore the possibility of automatic classification 
of respiration types (patterns) of patients, an input data 
array, taking into account different states of patients, is 
needed. This dataset was collected with the help of the body 

accelerometer, it contains 432,000 measurements of various 
types of respiration of 8 patients of all ages in their various 
states (quiet respiration, deep respiration, fast respiration, 
respiration with a delay, respiration after push-ups and after 
running). This is a decisive factor for the formation of the 
input data array, taking into account different states of pa-
tients. The input control data array, not involved in machine 
network learning, was additionally generated in order to 
validate the proposed method for the respiration patterns 
recognition.

2. To obtain a graphical representation of the generated 
dataset required for the effective use of CNN, it was pro-
posed to convert 1D-signals of the accelerometer into the 
2D graphical image using normalization and transformation 
into a matrix. An input signal is previously normalized 
relative to the rotation axis to reduce the effect of noise on 
the results because an accelerometer measures gravitational 
acceleration (g) and linear acceleration (a). It also uses the 
idea of sliding window, lying in separation of a signal of time 
series into short fragments. The values of a signal inside the 
window are processed by the discrete Fourier transform 
(DFT), with the help of which a grey image with the scale of 
0–255, which is used as an input signal of SNN, is obtained.

3. The proposed method for respiration patterns clas-
sification using the CNN network can be realized in two 
versions. The first version is designed for processing 1D 
input data and is based on the interaction of layers with 1D 
convolution, and the second basic version – with interaction 
of layers with 1D and 2D convolutions through the pooling 
layer. Conducted experimental studies with the specified 
options have shown the advantages of the second option 
in terms of accuracy of recognition of respiration patterns, 
reaching 88 % on the selected arrays of indicators. This 
proves the usefulness of the proposed signal preprocessing 
when using deep learning in the problem of recognition of 
respiration patterns of patients.
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