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3anpononoeano ananimuunuii Memoo po36’a3aHHsa 3a2a1bH020
ouepenuianvrozo pisnanns Mamoe 6 xanoniunii popmi. Memoo
TPYHMYEMbCA HA 810N0BIOHOMY MOUHOMY PO36 A3KY, AKUU 3HAll0e-
HO 015 00681IbHUX HUCTOBUX NAPAMEMPIE 6UXIOH020 Pi6HAHNA A 1 (.
B ce6o010 uepey, mounuii po3e’sa3ox eupaxceno uepes ynoamen-
manvui QyHKUii, AKi NPeocmMasaAIOMoCa PAOAMU NO CMENEHAX
napamempis a i q 3i IMIHHUMU Koeiyicnmamu.

Hapsoy 3 pisnannam Mamve, po3easdacmovcsa maxoxc pieHo-
cunvha domy cucmema oudepenuianvhux pienans. Iloxazano, wo
Mmampuus Bponcwvroezo, sxa ymeopena i3 pynoamenmanonux Qymi-
uill pienanns, aease co6oro mampuyanm cucmemu. Tum camum
dosedeno, wo pynoamenmanvni Gynxuii pienanns Mamve 3a0o-
BONILHAIOMb HANEPeo 3a0aHUM YMOBAM Y HYIb06I mouyi.

3 Memoro po3e’a3anis npoodaemu uucevioi peanizauii 3snatioe-
HUX mounux popmyn, pynoamenmanvhi pynxuii nooano cmenene-
eumu paoamu. JInsa oduucaennsa xoediyienmie cmenemnesux psoie
sueedeni 610n06i0HI pexypenmui cniei0HOUEHHSL.

Y pesynvmami docaiodxcenvy ompumano ocmamoyuni anaiimuy-
Hi popmyau 0L 00UUCTIEHHA XAPAKMEPUCMUNHO20 NOKAZHUKA T,
BUHAUEHHS K020 € UECHMPATLHOIO UACMUHOI 0YOb-saK0i 3a0aui,
Mamemamuunoro mooenno axoi € pienanna Mamove. Daxmuuno
6CMAHOBIEHO NPAMY AHANIMUYMHY 3ATEHCHICMb U 610 BUXIOHUX
napamempie pisuanns a, q. Ile ocobaueo eascaueo, ockinviu
napamemp v 6idiepac ponv iHOUKAMOPA MAKUX 6]ACMUBOCMEN
Ppo36°’a3kie pieuanns Mamoe, ax oomexncenicmo i nepioduunicme.

3anpononosanuii ananimuuHuii. mMemoo AEAAEMbCL Peas-
HO10 aNbMepHAMUBOI0 3ACMOCYEAHHIO HAOUNCEHUX MemOoDi npu
Po36’a3anni 0Yob-aKux 3a0a4, wo 3600AmvCs 00 pienanns Mamoe.
Hasenicmos ocmamounux ananimuunux opmya 00360asmume y no-
danvwomy yHuxamu npoyedypu NOWYKy po36’A3Kié PieHAHHS.
Hamomicmo, 013 po3e’szanus 3a0a4i y KOHCHOMY KOHKDEMHOMY
eunaoky, 00CMamubo Juue YUCeNbHO Peari3yéamu Oompumani ana-
JmuvHi popmyau

Kniouoei cnosa: sazanvie pisnanns Mamoe, ananimuunuii menmoo,
Pynoamenmanvii pynxuii, xapaxmepucmuuHuil NOKAZHUK
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In addition to the initial equation (1), the modified equa-

tion [2] is also used in applications:

The Mathieu equation is a special case of a second — order ,

linear ordinary differential equation with periodic coeffi-
cients. In the initial form, it can be written as [1]:

d*y
dz’

+(a—2qcos2z)y =0, 1)

where a, g are constant real parameters, —eo<z<oo,

Depending on the nature of the original problem, the
parameters a, g are determined in different ways. In the
majority of physical problems that lead to the equation (1),
the value of the parameter ¢ is specified, and the values of
the parameter a are found as eigenvalues, which guarantee
periodic solutions. Periodic solutions are expressed through
special Mathieu functions [2]. When the parameters a and ¢
are given in advance independently of each other, the equa-
tion (1) is called the general Mathieu equation [2]. Such an
equation arises, for example, in some problems of astrono-
my [3-5], in the study of a linear parametric oscillator [6],
etc. It is the general Mathieu equation that is the object
of research.

d
ﬁ—(d—chhZz)y:O. 2)

The equations (1), (2) have numerous applications in phy-
sics and engineering [7—11]. Moreover, a set of problems re-
duced to these equations can be divided into two main catego-
ries [11]: boundary value problems and initial value problems.

Boundary value problems arise when solving a two-di-
mensional wave equation written in elliptic coordinates. The
following problems can serve as examples [7]:

— on vibrations of an elliptic membrane;

—on the free oscillation of water in a lake of elliptic
boundary;

—on transverse vibrations of gas in a hollow elliptic
cylinder;

— on vibrations of an elliptic plate;

— on an elliptic cylinder in a viscous fluid,;

— on the electrical and thermal diffusion;

—on the diffraction of sound and electromagnetic wa-
ves, etc.




In initial value problems, there is only the equation (1).
These include the problems [7]:

—on vibrations in a spring mechanism with a periodic
driving force;

—on the stability of the rod (tension string) when ap-
plying a periodic component to a constant axial tensile force;

— on the frequency modulation of a sound signal;

— on rotation of an inverted pendulum with a periodically
oscillating suspension point [8, 10];

— on ship stability in waves [8, 11];

— on motion of elementary particles in a cyclotron with
a periodically changing magnetic field [8, 12];

— on motion stability and resonance phenomena in quadru-
pole traps and filters used in mass spectrometers [10, 12—23].

The last list also includes some problems of quantum
mechanics [11, 24].

According to the Floquet’s theorem [25], the equa-
tion (1) has a partial solution:

vz

y(2)=e""9(2), 3
where @ (2) is the periodic function with the period =, 7 is the
imaginary unit, and o is the characteristic exponent, which
depends on the parameters a and g. For this reason, the repre-
sentation (3) is used, as a rule [7, 26, 27], to find fundamental
solutions of the Mathieu equation.

In addition to finding fundamental solutions, the central
problem is the determination of the characteristic exponent
o, which depends on the parameters a, g and plays the role of
an indicator of such basic properties of solutions of the equa-
tion (1) as boundedness and periodicity [7, 8, 27]. Two basic
approaches are used to find o.

The first approach is actually based on the formulas [3, 27]:

sin? (%) = A(0)sin’ (R\Z/;J’ a#(2r)% (4)
cosmv=2-A(1)-1, a=(2r)". )

Here 7 is the integer, and A(v) is the Hill determinant [7]
of infinite order, which for the equation (1) has the form
of [3,7, 27]:

0
0 &, 1 &, 0 0 0
A(v)= 0 0 & 1 & 0 0 ) (6)
0 0 0 & 1 & 0
0 0 0 0 & 1 E
where
g, =—d  (r=.-2-1,01,2..).
Y (v+2r) —a

In the implementation of formulas (4), (5), the determi-
nant (6) is taken in a finite truncated form, depending on the
given accuracy of computations [27].

The second approach [2, 5, 7, 26, 28] consists in solving
one of the equations:

cosmv = y,(m) = y; (1), )

cosnv=1+2y1’(g)y2 (g), 8

where y1(2), y2(z) are the fundamental functions of the equa-
tion (1) satisfying the following conditions:

[%(0) yz(o))_(1 0] ©
yi(0) y,(0)) \0 1

Herewith, y{(2) is an even function, and y»(z) is an odd
function of z. So in this case, the problem of finding the cha-
racteristic exponent v is actually reduced to the determina-
tion of fundamental solutions possessing these properties.

In general, it should be noted that a large number of
both theoretical and practical problems are reduced to the

Mathieu equation. That is why the study of this equation is
an urgent scientific and practical problem.

2. Literature review and problem statement

The Mathieu equation has for a long time been an object
of systematic research. Recently, the number of publications
related to this equation has increased dramatically. In partic-
ular, this is due to the successful development of the direction
in mass spectrometry associated with quadrupole traps and
filters. The point is that the motion of ions in these traps un-
der a superposition of electric fields is described precisely by
the equation (1). Herewith, a special case when @ =0 turned
out to be very relevant in these applications.

When a =0, there is no constant component in the com-
bination of supply voltages and ions in a trap are under the
influence of only a radio-frequency electric field varying ac-
cording to the harmonic law. On the parameter plane (a, g),
the values a =0, 0<g <@uax =0.92 set the lower bound of the
first stability zone of ion oscillations.

In [8], two physical processes corresponding to the value
a=0 are considered, namely: focusing and acceleration of
ion motion in a quadrupole radio—frequency electric field;
focusing of charged particles in a cyclotron by means of an
azimuthally variable magnetic field. In [13], for the values
a=0, g =0.36, parametric resonance excitation of ion oscil-
lations by the biharmonic power supply of the quadrupole
filter is studied. In [14], the case of a =0 allows considering
the equations of ion motion in only one of the coordinates.
In [15], for a=0, ¢=0.2+0.85, the quadrupole field accep-
tance as a function of the initial phase is studied. The pa-
per [16] is devoted to estimation of the potential energy of
an ion in the quadrupole field for @ =0 and small values of ¢.
With the same values of the parameters, in [17] the time-of-
flight mass-separation of ions in two-dimensional radio-fre-
quency fields is considered.

n [28], for the Mathieu equation, a whole set of issues
is considered. Including: finding eigenvalues, stability of
solutions of differential equations, calculation of eigenvalues,
calculation of the characteristic exponent, calculation of the
values of the equation solutions for large values of the argu-
ment. Computing algorithms are proposed for the numerical
solution of these problems.

The authors of [29] propose a combined approach for
constructing solutions to the Mathieu equation, combining
the Floquet theorem and the describing function method.
An approximate solution of the equation is constructed by
replacing the infinite Fourier series for the periodic factor



in the Floquet representation with the truncated finite sum
of the terms of the series. Then this truncated solution is ap-
plied to the Mathieu equation with damping. In [30], stable
solutions of the homogeneous Mathieu equation in the first
stability zone are considered as oscillations modulated in
amplitude and frequency. The authors have made an attempt,
using computing experiments, to establish the relationship
between the nature of the oscillations and the ratio of the
equation parameter values. The solutions of the Cauchy
problem for the Mathieu equation with various combinations
of parameter values are obtained by numerical integration.
The publication [31] is devoted to various generalizations
and extensions of the Mathieu equation. These extensions
include: effects of linear viscous damping, geometric non-
linearity, time lag effect, quasiperiodic excitation or elliptic
excitation. The aim is to provide a systematic review of the
methods for determining the appropriate stability diagram,
its structure and features. In [32], the first integrals of va-
rious extensions of the Mathieu equation with damping were
obtained. In [33], the generalized Mathieu equation, which
describes the behavior of a parametrically excited pendulum
system in the two-frequency combined excitation is studied.
The approximate boundaries of the regions of stability and
instability of the equation solutions are constructed. Cases
of periodic and quasiperiodic effects on the system are con-
sidered. An analysis of resonant phenomena in the system
with the commensurability and incommensurability of the
frequencies of the effects is carried out. The main method
of research in this paper is the perturbation method. An
approximate solution of the generalized Mathieu equation
is sought as a uniformly convergent series with respect to
a small parameter.

Also, it is necessary to mention a so-called «matrix me-
thod» [19-22] of solving the equation (1), which is widely
used to find the equations of ion motion in quadrupole traps.
This method is also numerical and is suitable for finding only
periodic solutions (the case of v =0), since the periodicity is
the basis of the method algorithm.

As for the general Mathieu equation, the authors know
only one universal numerical solution method for any given
parameter values, which was presented in [27]. The method
is based on the representation of fundamental solutions in
the form of (3), Fourier transform and finding the values of
the characteristic exponent by the formulas (4)—(6). The
proximity of the method is dictated by the need to replace
the infinite determinant with a truncated finite option.
Other researchers, as a rule, operate within the framework
of the traditional approach devoted to finding periodic solu-
tions of equation (1) and its generalizations.

The methods used for research in the above publications
have one common property. For each new set of the va-
lues a, g, a solution procedure should be repeated. It is quite
clear that in this case it is not possible to obtain analytically
the dependence of the exponent v on the parameters a, g. It
would be possible to determine such a dependence with an
analytical method of solution.

There are also other advantages of the analytical method.
In particular, as shown in [15, 16], even in the case of perio-
dic solutions, when studying the fundamental properties of
physical processes and phenomena, the analytical approach
can be more versatile and flexible in comparison with nu-
merical methods. Moreover, solutions can be more complex
and can be expressed, for example, through quasiperiodic
functions [21].

Therefore, it is promising to develop an analytical me-
thod for solving the equation (1), suitable for any values
of the parameters a and g. Such method is proposed in the
paper. In particular, explicit analytical formulas for the ex-
ponent v are derived as functions of the parameters a and q.
The Floquet’s theorem is not used in this case.

3. The aim and objectives of the study

The aim of the paper is to develop an analytical method
for solving the general Mathieu equation.

To achieve the aim, the following objectives were formu-
lated:

— to find the fundamental functions of the equation that
satisfy the given conditions;

— to obtain the exact solution of the equation;

— to represent the fundamental functions by power series;

— to obtain analytically the formulas for the characte-
ristic exponent as functions of the initial parameters of the
equation.

4. Exact solution of the general Mathieu equation

Together with the equation (1), we consider the equiva-
lent system of differential equations:

=P(2)D(2).

dd(z2)
e (10)

Here the vector of unknowns and the matrix of the coef-
ficients of the system have the form of:

y(2)
D(z)= ;
’ (y’(Z))

0 1
P(z)= )
—a+pcos2z 0

where p =2¢ is indicated.

The fundamental solutions y,(z) (n=1,2) of the equa-
tion (1) will be sought as series in powers a”p* ™ (k=0,1,2,...)
(m=0,1,....k) with variable coefficients:

ok
yn (Z) = z z amlnkimﬁn,m,k—m(‘Z)7

k=0 m=0

(11)

where B,,,.,(2) (n=12) (k=0,12,.) (m=0,1,...k) are un-
known functions that are assumed to be continuous together
with their first and second derivatives. So far we assume that
the series (11), as well as similar series composed of the first
and second derivatives:

ok
Y(2)=33.a"p "Bl ()

(12)
k=0 m=0
ok
Y= 3a" p" "B (2), (13)
k=0 m=0

uniformly converge. In this case, an operation of termwise
differentiation of the series will be possible, as a result of
which the notation y/(z), y.(z) for the sums (12), (13) will
be true.



(z) from the

We find the unknown functions B
condition:

n,m,k—m

d’y,
dz?

+(a—pcos2z)y,=0 (n=12). (14)

Using the representations (11), (13), after the transfor-
mations, we come to the need to fulfill the equality:

n 0 0(2)"‘20 (Bn 0 (2)+Bn,k—1,0(2))+

+z p (Bn 0:(2)— COSQZBn,(),k—l(z)) +

= m _b-m Bnmk m( )+Bnm 1,k— m(Z) _
+22a p (—COSQZBn,m,kM(Z) =0.

k=2 m=1

To satisfy it, we equate all the coefficients with the po-
wers a™pF " (k=0,1,2,...) (m=0,1,...,k) to zero:

Broo(2)=0 (n=12); (15)
Brio(2)+B,40(2)=0 (F=1,23,..); (16)
Bros(2)—cos2zB,,, (2)=0 (k=123,.); (17)
Brnin (DB in(2)—c0s22B, , (2)=0

(k=2,34,.)(m=1,2,..k=1). (18)

To the obtained differential equations (15)—(18), we at-
tach the corresponding conditions:

B B )
B,ro(0)=P,,0(0)=0 (k=123,..); (20)
B0 (0)=P,,,(0)=0 (k=123,..); 21
By i (=B 1, (0)=0

(k=2,3,4,.)(m=1,2,...k—1). (22)

Then, integrating each of the equations (15)—(18) twice
and realizing the specified conditions, we have:

Boo(2)= 2" (n=1,2); (23)
Boio()==[[B, 1 1o(2)dzdz (k=123,..); (24)
B,o(2)= jjcos 22B,,,(2)dzdz (F=1,2,3,..); (25)

Brnin(D==[ [ By 1pn(2)—c0522B, ., (2))dzdz

00

(k=2,3, 4,.)(m=1,2,...k—1). (26)

The formulas (23)-(26) are recurrent. By means of
these formulas, the functions B,,(2), B,.(2), By sn(2):

which we call generating are successively determined from
the known initial function B, ,,(2). For such functions, the
equality (14) will be satisfied 1dent1cally by construction.
Now it is necessary to prove that the series (11)—(13) do
converge uniformly.
The proofs of the series (11) are based on the following
estimates, which follow directly from the formulas (23)—(26):

n—1

Boo(@|=[d" (n=12); (27)
B.io(2) s!! Boi1o(2)|dzdz (k=1,2,3,.); (28)
Box(2)|< M Boosi(2)] dadz (k=1,2,3,.); (29)
By ()] H( Bt 4[]z

(k=2,3,4,..)(m=1,2,...k—1). (30)

Carrying out the operations prescribed by the recurrent
formulas (27)—(30) successively for the values £=0,1,2,..;
m=0,1,...,k, in general, we come to such a result:

‘ ‘n+2 k-1

Boin (D] CH (31)

(n+2k-1)0

where C}' is the number of combinations of £ by m.
Considering (31), for the series (11) we have:

ok
9, Y lal" [P "B (2]
k=0 m=0
- n+2k1 A o k
2 n+2k 1)!;0 I ;(n+2k—1)!‘2‘

Applying the d’Alembert principle to calculate the con-
vergence radius of the last power series, we obtain:

hm(n+2k)(n+2k+1)—oo
\a\+\ |+

This proves that the series (11) converge uniformly.

In much the same way, the uniform convergence of the
series (12) is also proved. As regards the series (13), their uni-
form convergence follows immediately from the identity (14),
according to which they are proportional to the series (11).

Thus, two solutions y,(z) (n=1,2) of the equation (1) are
determined by the formulas (11), (23)—(26). In this case, it is
easy to verify that the Wronskian matrix:

AZ)= (%(2) yQ(Z)J
y1(2) y5(2)

satisfies the system (10). In addition, taking into account
(19)—(22), we find:

y,(0) y,(0)) (1 0
A(0)= = . 32
@ (%’(0) y;(O)] (0 1) ©2



Consequently, A(2) is the transition matrix [34] of the sys-
tem (10), and the functions y,(z) (n=1,2) are the fundamen-
tal solutions of the equation (1) satisfying the conditions (9).

The general solution of the system (10) is expressed by
the formula:

(2) = A(2)D(0). (33)

From this, we obtain the general solution of the equa-
tion (1) in the form of:

y(2)=y(0)y,(2)+y'(0)y,(2),

where the integration constants are expressed through the
initial parameters y(0), y’(0).

5. Identity for the fundamental functions
of the Mathieu equation

Using the Jacobi formula [34]:
|A(2)|=|A(0)]exp U Sp P(z)dz],
0

where Sp P(2) is the trace of the matrix P(z), which in our
case is zero, for the fundamental functions we obtain the
identity:

¥ (2)y(2)-y(D)y,(2)=1. (34)

This identity can be very useful in solving specific problems.

6. Representation of fundamental functions
by power series

From the point of view of applications, it is expedient to
transform the formulas for fundamental functions to a form
convenient for their numerical implementation.

As for the generating functions B,,,(z), they are found
by the formula (24) in an explicit form:

D'

D et (p-123),
212 ¢ )

Bio(2)= (35)

In the formulas for the generating functions (25), (26),
we use the expansion:

oo 2j
cos2z=20j22j, ¢, =(-1)’ 2 (36)

= @pr

As can be seen from the formula (25), the generating
functions B,,,(z) under the condition (36) are represen-
ted by power series, the smallest power of which is equal
to n+2k—1. Consequently,

Bou(=2"%"Sd, oY (k=12,3,.), 37)
=

where d,, 1 are the coefficients to be determined. Herewith,

Broii(2)= s zdn,o,k—u 2 (k=123..).

j=0

(38)

Assuming here £=1 and comparing the result with the
expression (23), we find the initial values:
d,o00=1 dn,0,0,j =0 (j=123,..). (39)
Performing the operations prescribed by the formu-

la (25), we multiply the series (36), (38) and integrate the
result twice. Thus, we will have:

oo

e . .
Bn,(),k(z) — Zn+2k—1 2 n0k-Lj ZZ] (k — 1, 2, 3,"')’

Jj=0 nk,j

(40)

where

J
€0kt = ZCH dn,O,/c—Li’

i=0

Sy =+ 2(k+ j)=2)(n+2(k+ j)—1).

By comparing the formulas (37) and (40), we obtain a
recurrent formula for the required coefficients:
j
2 Cii dn,O,k—Li

d i=0
Jurs

n0kj —

Thus, the coefficients of the series (37) are completely
determined by the formulas (39), (41).

Analyzing the formula (26), taking into account (35)—(37)
we conclude that the generating functions B, ,,,(z) arealso
power series with the smallest power n+2k—1. Therefore, we
can write:

(k=1,2,3,.)(j=0,1,2..). (41)

Bn_myk,m(z) — 2n+2k71 idn,m_k—m,j 221'
j=0
(k=2,3,4,..)(m=1,2,...k-1), (42)

where d,, . are the required coefficients. Reducing the in-
dices k and m by unity in the formula (42), we obtain:

2k-3 . 2j
Bn.m—l.k—m(z)z Z”+ zdn,m—Lk—m,] z !
J=0

(k=23,4,.)(m=1,2,...k-1), (43)
and reducing only the index % by unity, we have:
Bn,m,k—m—1(z) = Zn+2k73 idn.m,k—m—Lj sz
=0
(k=2,3,4,.)(m=1,2,.,k-1). (44)

The value £=2 in the formula (43) corresponds to the
initial values d, 1, which are already determined by the
formula (41). Assuming k=2 in the formula (44) and com-
paring the result with the formula (35), we determine the
initial values d,1;:

1

dﬂ.1,0,0:_m; d,,moyj:O (]:1,2,3,)

(45)



Substituting the values (43), (44) instead of B, ,,_,, ,,(2),
B,.mimi(2) in the formula (26), multiplying the series and
integrating twice, we obtain:

nm-1,k-m,j _2j
J z J

B (Z) 2n+2k12 "mkm1]
k=
" " fﬂk]

(k=2,3,4,.)(m=1,2,...k—1), (46)

where

J
en,m,kfmftj = chfi dn,m,kfm%,i'

i=0

Comparing the formulas (42) and (46), we come to a re-
current formula for the required coefficients:

J
2 iji dn,m,kfmfti - dn,m%,kfm,j
i=0
f;z,k,j

(k=2,3,4,.)(m=1,2,.. k—1)(j=0,1,2...).

d

n,mk-m,j =
47)

Thus, the set of formulas (47), (41), (45) completely de-
termines the coefficients of the series (42).
Transforming the formula (11) as:

yn<z>=ﬁ,l,o,o<z>+ia’*ﬁn.k,0<z>+

oo Rl

+2p BWOA(Z)‘FZZampk "Bt (2)

k=2 m=1

and considering (23), (35), (37), (42), for fundamental func-
tions we have:

N (GO
Z (n+2k—D1°

k=

y,(z)=2"" zz oy 22D+ (n=1,2) (48)
=0
3030 k= 2(k+j)
Z 27:1 mdﬂmk—m; (e
or
v (2)=cos\az+y., Y p'd,,, "+
=1 j=0
o k-1 o .
22 . md1mk—m; 2(k+]), (49)
k=2 m=1 j=0
Y,(2)= TSID\/_Z+;20“0 dy, ki
j
o kel o
222 . mdek m,j Z(kﬁ)ﬂ. (50)
k=2 m=1 j=0

It is obvious that y{(z) is an even solution, and y»(z) is odd.

To obtain fundamental solutions for the modified Mathieu
equation (2), it is sufficient to replace z with iz in the for-
mula (48) or in the formulas (49), (50).

7. Analytical formulas for the characteristic
exponent

Having the fundamental solutions y,(z) (n=1,2) in an
explicit form, based on the formulas (7), (8), (49), (50), we
can obtain three equivalent formulas for determining the cha-
racteristic exponent v. We write down here only two of them:

cosnv=cosvan+ Y Y ptd,,, mH +

k=1 j=0
oo . &
—m 2( +7).
+Z z d1 m,k—m, ] ’ (5 1)
k=2 m=1 j=0
cosmv =1+

- 2(k+j)—1
+222p (k+])d10k]( ) +

k=1 j=0

- 2(k+j)-1
Za km(k+])d1mk m](g)
x ik : (52)

It should be noted that in the scientific literature, along
with the characteristic exponent v, the exponent w =7v is also
used. To calculate y, the formulas (51), (52) can also be used
considering the equality cosmo = chmy.

The values of the characteristic exponent L, calculated in
the program mode using the formula (51) or (52), were com-
pared with the previously known values [35]. For some sets
of the parameters a, ¢, such comparisons are given in Table 1.

Table 1
Comparison of the values of u
q=0.2 q=04 q=0.6 g=0.8
Author’s method
a=0.1 0.3501 0.4431 0.5901 0.8660
a=0.3 0.5732 0.6549 0.8330 0.2816
Table values
a=0.1 0.3502 0.4433 0.5904 0.8670
a=0.3 0.5739 0.6565 0.8375 0.2845
Relative error, %
a=0.1 0.03 0.04 0.05 0.12
a=0.3 0.12 0.25 0.54 1.04

These results validate the formulas (51), (52). Moreover,
the practice of calculations shows that for rather large values
of the parameters a and g, it is more expedient to use the for-
mula (52), since the corresponding numerical series converge
faster there.



8. Formulas for a special case

In a special case when a =0, the formulas (48), (51), (52)
are simplified:

k=t j=0

y(2)=2" (1"' iipkdn,(),k,j Zwﬁj)) (n=12); (53)

costv=1+Y ptd,,, 0", (54)
=1 j=0
- e 2kt )1
COS“"Z1+4(;Z{;pk(k+j)d1,o,k,j(g) ]X
=1 j=
- o o - 2(k+j)+1
x| S+ > dzo,k,j(*) . (55)
2 =33 2

As was shown above, such a case is common in practice.
Therefore, for the convenience of applications, the formu-
las (53)—(55) are given separately.

9. Discussion of the results of research
of the Mathieu equation

Whenever the research of a physical phenomenon is
reduced to a differential equation, the key issue is the con-
struction of its exact (analytical) solution. After all, it is
the exact solution that carries information of a qualitative
nature and forms the most complete picture of the studied
physical phenomenon. However, researchers often face the
known mathematical problem on this path, which is the lack
of a universal method for finding exact solutions for diffe-
rential equations with variable coefficients. Probably, this
can explain the preferential use of approximate methods.

This also applies fully to the general Mathieu equation,
the exact solution of which, for arbitrary values of the para-

meters a and ¢, was not known. This can explain the lack
of an analytical research method in the scientific literature.
Such a method is developed.

An analytical method opens up new promising research
opportunities for a wide class of astronomy, physics and
engineering problems reduced to the Mathieu equation.
Moreover, the application of this method in the long term
will allow solving certain problems only by the numerical im-
plementation of the finite analytical formulas obtained here.

In general, the work is of a theoretical nature. Compa-
rison of several values of the characteristic exponent, cal-
culated by the author’s method, with the previously known
table values, although validating the formulas obtained, can-
not be considered a full-fledged approbation of the method
in practice. This lack of research can be overcome by demon-
strating the capabilities of the method on several practical
problems. This direction is seen by the authors as further
development of the research.

10. Conclusions

1. An analytical method for solving the Mathieu equa-
tion, suitable for arbitrary values of the parameters a and ¢
independent of each other is developed. The method is based
on the exact solution of the equation.

2. The fundamental functions of the Mathieu equation
are found. It is important that these functions satisfy the
given conditions at the point z=0.

3. To solve the problem of numerical realization, the
fundamental functions are represented by power series. The
coefficients of these series are calculated by means of the
derived recurrent relations.

4. To calculate the characteristic exponent o, finite analy-
tic formulas are obtained. These formulas actually establish
a direct functional dependence of v on the initial parameters of
the equations @ and ¢g. This allows investigating the solutions
of the Mathieu equation for boundedness and periodicity.
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