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Hooano cnexmpanvnuil po3xaao 0ns Hecamocnpsice-
Hoi modeni Dpiopixca i nasedeno yzazanvHeHHs 6i00MOT
Yy camocnpsicenomy eunaoxy Qynxuii Beiinsa na neca-
Mocnpsicenuti éunadox. Becmanoeneno, wo ons necamo-
cnpsicenoi modeni Dpiopixca doginvHull enemenm npo-
cmopy ModcHa nodamu K JUHIUHY KOMOTHAWIO 6AACHUX
eJlemenmis onepamopa, wio 6i0n0sidaoms MouKam cnekx-
mpa. Ilooyoosarno cnexmpanviuil po3xaad, moomo npeo-
CMmaesieHHs 006iNbHOZ0 eJleMeHma npocmopy 4epe3 61ac-
Hi yHKUil, wo ceéiduumb NPo No6HOMY 61ACHUX PYHKUTIL.
Ile 3pobneno 3 6paxyeannam cnexmpanivHux 0CodaUB0C-
mei (Mo6MoO 611ACHUX 3HAUEHD HA HenepePEHOMY CneKxmpi)
Hecamocnpacenozo onepamopa moodeni Mpiopixca. Ila
MOOeslb BUCMYNAE 8ANCTUBUM THCMPYMEHMOM OIS 3HAXO-
0JCeHnst P036°A3KYy 36uMalHUX OUpepeHuiarbHux PiHAHb
nicas 3acmocysanns 6i0nosionozo nepemeopenns Dyp’e.

3anpononosano 3azanvnuil memoo nodydosu cnexm-
Panviozo po3kaady (moomo e npue’a3anul 6UKIIOUHO 00
Mmodeni Dpiopixca), akuil epynmyemovcs Ha nowammi max
36aH020 PO32aNYHCEHHA PE30NbEEHMU | AKUU MONHCHA BUKO-
pucmosysamu 04 006iTbHUX HECAMOCHPANCEHUX Onepa-
mopie, a maxoic i 01 CAMOCHPAICEHUX Onepamopis.

Hosedeno, wo 3a ymoe iCHY8AHHS MAKCUMATLHOZO
onepamopa, pe3oaveéeHma 00NYcKae 6i00KPeMIACHHA PO3-
eanyycennsn. Brasani docmammni ymoeu oas icnyeamnns
Qynxuii Beiina m(() onn onepamopa necamocnpsicenoi
Mmodeni Dpidpixca ma ompumano popmyau ona ii o6uuc-
JIeHHs1 uepe3 pe30ibeeHmy.

Hoxazano, wo Qynxuia Beiins m({) oas camocnps-
JHCEH020 onepamopa cnisnadae 3 KAACUMHON QYHKUIEN
Beiinsa y sunaoxy onepamopa HImypma-Jliyeiana na nie-
oci. Haeedeno 0sa npuxaaou, 6 axux 3HalioeHo y3azaiv-
neny pyuxuiro Beiina m(() ons necamocnpsicernoi mooeni
Dpiopixca

Kmouogi croea: onepamop Illmypma-Jliysinns, mooenn
Dpiopixca, nepemeopenns Dyp’e, Ppynxuia Beiins, nene-
pepenuil cnexmp, pPO32aaYNCEHH Pe30Jb8EHMU, MAKCU-
ManvHull onepamop
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1. Introduction

The spectral theory is one of the most important direc-
tions of the theory of linear operators. Modern trends in
the development of the theory of non-self-adjoint operators
dictate the need for the appropriate development of spectral
decomposition issues.

The branching of the resolvent introduced in [1, 2] allows
us to generalize the notion of Weyl function. The complete-
ness of the system of eigenfunctions is important for the
practical implementation of the method of separating the
variables used in the theory of differential equations.

In the classical version, the Weyl function is determined
by the connection between the various solutions of equations
in different boundary conditions. It is possible to distinguish
between these solutions of equations by the nature of their
analyticity. It is known that the solution of differential

equations after the application of the corresponding Fourier
transform in many cases reduces to the analysis of a non-self-
adjoint Friedrichs model, that is, the sum of the operator of
multiplication by an independent variable and an operator
perturbed by a bounded term [3]. If the continuous spectrum
of the operator of the Friedrichs model operating in the Hil-
bert space contains the half-axis, then it is important to jump
during passing through this half-axis.

In [4], we give formulas for calculating the jump of the
resolvent, but do not give the representation of the resolvent
through the jump.

Having examined and analyzed a number of scientific
works, it can be argued that the problem part of the given
topic from the spectral theory remains open to research.
The logic of the theory of non-self-adjoint operators now
challenges the need for appropriate research in constructing
a spectral decomposition for the operator of a non-self-




adjoint Friedrichs model. To do this, you can use the concept
of branching resolvent.

2. Literature review and problem statement

In [5], the Friedrichs model plays an auxiliary role in the
study of the family of some operator matrices. This can be
applied to a variety of physical problems, using positively de-
fined operators of the Friedrichs model without their spectral
decomposition and Parseval’s equality.

It was proved in [6] that the spectral features of the
Sturm-Liouville operator on the direct axis generate some
growing components in the asymptotic behavior over time of
solutions of the corresponding evolution equations.

In the Friedrichs model for the Sturm-Liouville operator,
we use the calculations of all these components and some sca-
lar functions that characterize the breakpoints of the Fourier
transforms of the initial elements of the evolution equations.
A real example of an operator with a single spectral feature is
given and an auxiliary function is described which describes
the nature of the breakpoints. The asymptotic behavior of
the solution of the corresponding evolution equation is con-
sidered and Parseval’s equality is obtained using the Weyl
function, but it is not presented in sufficient detail.

The classical definition of the Weyl function is considered
in [7] with the help of the boundary triple for the Schrodinger
operator, and in [8—10] Weyl theory was investigated for
a self-directed Schrodinger operator. The establishment of
conditions for the existence of the Weyl function and the
resolvent structure was investigated without involving the
operator spectral decomposition.

n [11], the direct and inverse problem for the Sturm-
Liouville operator with discontinuous coefficients is inves-
tigated. Its spectral peculiarities are studied, orthogonality
of their own functions and one-time of their own values are
established. An asymptotic formula for the eigenvalues and
eigenfunctions of the Sturm-Liouville operator is considered,
a resolvent of the operator is constructed and a spectral de-
composition is obtained. It is shown that the eigenfunctions
form a complete system and the Weyl function is found.
A uniqueness theorem for the solution of the inverse problem
is proved. In this paper, these results are obtained for a finite
gap (0,m), that is, this refers to the space I*(0,m).

The problem of localization of spectral singularities of
dissipative operators in terms of the asymptotics of the cor-
responding exponential function is considered in [12] and the
solution of this problem for the spectral singularities of higher
orders is presented. We study the Weyl function for the
perturbed Laplacian in space I’ (RS), using a traditional
classical approach.

In [4], we give conditions for the Friedrichs model, which
allow us to write a formula for a jump of a resolvent on a con-
tinuous spectrum, but they are bulky and inconvenient for
use, and also there is no direct connection with the resolvent.

In [13], the Weyl matrix function is considered using the
so-called branching of a resolvent without considering the
spectral decomposition of the operator. Therefore, from the
viewpoint of scientific literature, the direction of research
concerning the theory of non-self-adjoint operators is incom-
pletely studied, requires new approaches to the consideration
of the questions of constructing the spectral decomposition
of a non-self-adjoint Friedrichs model and the generalization
of the Weyl function for a non- non-self-adjoint case.

3. The aim and objectives of the study

The aim of the paper is to provide a spectral decomposi-
tion of a non-self-direct operator of the Friedrichs model and
generalize the Weyl function in terms of the introduced con-
cept of the branching of the resolvent [13, 1]. Upon reaching
this goal, the construction of the spectral decomposition of
a non-self-directed operator of the Friedrichs model can be
used to solve problems of mathematical physics, which opens
up additional possibilities for the case of self-adjoint operators.

To achieve the aim, the following objectives were set:

— to use the concept of the branching of the resolvent and
the branching of the vector-function to generalize the Weyl
function to a non-self-adjoint case;

— to find sufficient conditions for existence and formulas
for calculating the Weyl function m(C);

—to show that the Weyl function for a self-directed
operator coincides with the Weyl classical function of the
Sturm-Liouville operator on the semicolon;

— to get the formula of the spectral decomposition of the
operator of the Friedrichs model.

4. Preliminary notions: branching of the resolvent
and Weyl function

Let H= Lf)(O,oo), p(t)>0. Suppose that the interval [0,c0)
coincides with the continuous spectrum of some operator:

T:H—H, D(T)=H. (1)

Denote T, =(T-¢)". The bilinear form of the resol-
vent (qu),\p) is an analytic function if {g[0,e0). Assume
that there exists such a linear space ® c H, ® = H, that the
form ® c H, ® = H, admits an analytic continuation (T§¢ \u)+
over the axis (O,w). Suppose that T:® — @, and the multi-
plicity m of the continuous spectrum of the operator T is
equal to 1, that is, m=1.

4. 1. Branching of the resolvent and Weyl function
Denote by #. e H {eQ\[0,) analytic by  element
on space H,

Q={¢:dist(¢[0,.0)) < £}, £>0.

Let a(C), b(C), r(C) be some functionals in H and
B(C :® — @ — a certain operator.

Definition 1. Branching of the resolvent T,:H — H is
called the representation of the operator-function 7; through
the vector-function hg e H, which has the same jump T,
when passing through a continuous spectrum, and the coeffi-
cients &, depend analytically on § and given by the spectral
data of the operator T.

Definition 2. Branching of the vector-function h. € H is
called the representation h € H through the scalar func-
tion (), which has the same jump as &, with a coefficient
analytic to { and determined by the spectral data of the
operator T.

The construction of the spectral decomposition will be
implemented in the form of a chain:

T, > h —m({). (2)



Consider all the eigenvalues, spectral features and their
eigenfunctionals. Their linear shell may be dense in space (so-
called completeness of the system of its eigenfunctions). The
decomposition of an arbitrary element is required in order to
submit any element through the system of its eigenfunctions.
This will mean that the system of its eigenfunctions is com-
plete. As is known, the completeness of the system of eigen-
functions is important for the practical realization of the
method of separation of variables, which is used for solving
differential equations with partial derivatives.

Consider the extension T, of the operator T, that is, the
operator is such that:

D(T,.)=D(T)+L, T,,

max

T. (3)

by
Then each value { is proper for the operator T, , and
the corresponding eigenvector will be the element £, in the
chain (2). So, we have the following Definition 3 for the
operator T':

T:H—H, D(T)=H.
Definition 3. We say that an element /,,{eQ\[0,%) se-
parates branching of the resolvent T;,{€ Q\ [0,e), if:

T¢¢:(¢,b(i))h€+3(c)¢, 0e®, {eQ\[0,w), 4

where the functions (¢, (C)) and B(£)¢, ¢ € @ are analytic in Q.
Definition 4. We say "that the scalar function m({),
e Q\ [0,) separates the branching #,, if:

() = m(5)(@(€).w)+(r(©).w),

yed, LeQ\[0,), )

where the functions g (C),\y) and (r((“,),w) are analytic in Q.
The function m(g) is called the Weyl function of the
operator T.
In other words, the branching of the resolvent T, is
given by the element /, and the branching %, — by the sca-
lar function m((). Determine:

(T,0.v). =lim(T,...0.v), owed

and similarly define elements (4, ), and functions m, (c),6>0.
Further, we assume on the operator T that there are ele-
ments ¢, y e ® such that:

(T,0,v), -(T,0,y) #0, 6>0. (6)

The contents of the functionals a(c), b(c) are presented
in the following Lemma.

Lemma 1. The functionals a(c) and b(c) in the rela-
tions (5) and (4) respectively are the eigenfunctionals of the
operators T and T*#, corresponding to the point 6 €(0,s) of
the continuous spectrum.

Proof. As T:®— ®, we replace in (4) the element ¢
with (T-C)¢, then

T,(T-8)0=((T-£)0,b(Z)) . + BE)NT -L)o.

Here T, (T -§)0=¢. If {—>0+0, then:
¢=((T~0)0.5())(h,), +B(o)(T - 0)o. ©)

From the equations (4), (6), it follows that (hc) —(h ) #

<

#0. Taking into account the equality (7), we have that
(T-0).b(c))=0.

So, b(o) is the eigenfunctional of the operator T*.
Substituting the equation (5) in the formula (4), we get:

(T0w)=(0.5())(m(@)(a(@).w)+(r() w))

Due to (6), we will have m, (6)—m_(c)=0. After sub-
stituting (T* —C)\u instead of y, and calculating the jump
over (0,00), we get:

0=(6.b(0))(m. (0)-m_(0))(a(o).(T" ~5)w).

Choosing ¢ such that (¢,b(c))#0, 6>0. Then, having
m, (6)—m_(c)#0, 6>0, we will get

(a((s),(T* —G)\u) =0, 6>0.

So, a(o) is the eigenfunctional of the operator T.
Lemma 1 is proved.

5. Definition of maximal operator Tix

Some operator 7, T is called the extension of the ope-
rator T, if:

D(T)=D(T,) and T,9=T¢, ¢peD(T).

Definition 5. The extension T, o7 is called the maxi-
mal operator for T

1) if for each element ¢ € @ and each value 6>0 there is
only one solution of the equation

(T,.—0) /=0, 6>0, e (8)

max

and if f, e ®;

2) if the solution of the equation (8) admits the analytic
prolongation f; in the region Q such that f, € D(T,, ) and
(T =€)/ =0, 0.

We will introduce the operator T,

max,o

: ® — @ in this way:
Tmax,(sq):(Tmax —G)_1¢:f6, G>0. (9)
Denoting T, 0= fC , we get

(T —C) T 0=0, 0@, {eQ. (10)

Obviously, T, : @ — ®.
Note that the operator T

' —0, 0>0 inthe equation (9)
is reversed.



Lemma 2. The operator has the following properties:
1) the equality is true for the operator:

Tnnx{ max, zq) Tnnx,szax,gq)y g’ Z€ Q’ (1 1)

2) the formal resolvent T,

m ']\ (o)
pseudoresolvent T CeQ in the linear space ®.

in the interval (0,c0) is the

max,(?
Proof.
1) Let u, v>0, the operators T, —v and T, —p com-
mute, i. e.
]—;nax,v]:nax,p = T;nax,uT;nax,v . (12)

By using the analytic prolongation and changing the
symbols v—{eQ, nu—zeQ, we obtain the equality (11)
from (12).

Using the relation (12), we have:

(C - 2) T;na\ QY‘max,zq) =

[(dex )_ (Tmax - Q)] max?; max, z¢

( max Z) max,z max Q(I)

(T =) e T = T = T 0

Therefore,

Tncd =T 0= (6= 2) T L0 §2€Q (13)
So, T,,,,. is a pseudoresolvent.

Lemma 2 is proved.

6. Functional c(¢) and branching T

The concepts, which we want to apply to the Friedrichs
model, we consider in the case if the maximal operator domain
differs in dimension from the area of the operator by one unit.
Suppose that the operator T, exists also for some ee H:

max

D(T,, )= (14)

max

D(T)+{e}, eeD(T).

In this case, we define the functional ¢(¢).
Definition 6. Let ¢(¢) be the functional in D(T,,,,), de-
termined by the condition

¢+c(0)eeD(T), 0€D(T,). (15)
For example, if 9 D(T,,,.), then:

1) 0€D(T) c(0)=0;
2) ¢=e:>c(e)=—1 as

e+c(e)e:(1+c(e))eeD(T),

we have 1+¢(e)=0, if 0eD(T,,.), then ¢=¢,+0e, aeC,
0, € D(T). Applying the functional ¢(¢), we have that:

c(8)=c(o,)+ oe(e) =,

then ((14), so ¢(¢,)=0) a=—c(¢) and

q): q)O _C(q))eED(Tmax)’

T,.,0=T0,—c(0)E, (16)

where T, e=E for some specified element Ee H. Having
the maximal operator 7, and the functional ¢(¢), we can

max

submit the branching of the resolvent T;.
Theorem 1. Let T ST be the maxnnal operator. Then

max

the resolvent T allows separation of the branching:

T.0=(0.b. )b +T,,..0, G Q\[0,e0), (17)
where
(0.6)=(T,.0). (18)
and the element:
he=e=T (T, ~c)e (19)
is the eigenvector T, namely:
(T —S)h. =0, c(h)=-1 ¢eQ\[0,e0). (20)
Proof. Considering the equation (10):
(T =6) T 0=0
and despite the fact that T, ¢eD(T,, ), we get:
T =0, +0te, ¢, €D(T). @1)
Then:
(T =) (0 +0) =0 = (T =)0 + (T, ~G)e =10,
¢+ 0T (T, —c)e=T0.
Substitute ¢, from the equation (21), and
(Tm - oce)+ ol (T, —c)e=T.4,
To=-0(e=T.(T,, ~c)e)+ 7,0
To=-oh +T, 0. (22)

As ¢(e)=-1, then c(hg) =-1(19). From the formula (22),
with c(Tq))z 0 and c(h ):—1 we have that:

S S

0=—o(~1)+¢(T,,, .0).

So, o= C(T q)) and the relations (17), (18) are proved.

max, ¢

It remains to prove that the element h_ is the eigenvec-
tor T, i.e. the relations (19), (20) are true. We have:

max’



Moreover, c(hg) =-1 uniquely identifies /_ as the eigen-
vector of the operator T, .

Theorem 1 is proved.
Note 1. The Weyl function exists, if the operator T

max

exists (see (43), (44)).

7. Friedrichs model

Let
5 1
H=1L/(0,%), p(t)= ;\/%

We denote @, @ = H as the subspace of the functions ¢(1),
which admit the analytic prolongation ¢({), {=1+iu in the
domain Q.

We denote by S: H — H the operator S¢(t)=1t0(t), T>0
with the maximal definition domain D(S). Let G be the
Hilbert space and V =A'B, where A,B:H —G are limited
integral operators. The operator

T=5+V, V=AB, D(T)=D(S),

R(A"),R(B')c@ (23)

is called the Friedrichs model. We obtain another definition
of the maximal operator S, (Definition 5 and calculations
in (14), (15) wheﬂe T=35).

If S, =(5-¢) ", Ce[0,], then:

5=y Lo

This decomposition coincides with (17), therefore,
v(t)-w(©)
-

In order to get S, . ¢, we solve the equation S, . w(t)=0(t)or

max,

S ¥ (1) = (24)

‘V(T)_‘V(G):q)(r).

T—0

(25)

The solution of the equation (25) gives:

V(1) =(S ~0)0(1)=(1-0)0(t)+ (o).

Thus, we have the following definition S,
different from (16).

¢, which is

max’

v)-v()

v(t) 1
©) P

SCW(T)=Q=\I’ T—C

Definition 7. Domain of definition:

D(S,..)={0 e H:3c(0):10(t)+c(0)e H}

and the maximal operator:

(27)

S 0(T)=10(7)+¢(0), T>0.

Keep the same decomposition (14), where e('c) = b n :
T+
p(s)+{—L 1.
T+1

Note that the definition of the functional ¢(¢) according
to (26) is equivalent to the same definition according to (15).
Indeed,

D(S,.)= (28)

0(1)+c(0)e H & (1+1)0(1)+c(0)e H &
& ¢(T)+%e D(S) e 0+c(d)eeD(S).

Find the value of ‘c(q))‘ Multiplying the equation (27)
by Xjoap We obtain:

[0 16:0) < g S0 (O] o (1) <

1

<[ flsoter otaz) +{fto) o) <

o

Smax¢

5m¢(f)2p(r)dTJ;+G ¢(T)zp(f)dfjé <

<

+[o]

From here:

le(o)|=<C(

+ol)-

5 (29)
Thus, the functional c((])) is continuous in the sense of
the norm of the operator §_, .
As the operator S, is an extension of the operator S,
then the next Lemma 3 will be used in Theorem 2.
Lemma3. Let SO and the operator S, =($-z)"
be limited. Let V=AB and the operator K(z)=1+BS A
has a limited inverse operator. If T=S+A'B, then for

T = (T— 2) we have:

T.=5 -$S AK"'(z)BS.. (30)
Proof. The equation (T—z)f =g or (S —z)f+ A'Bf=g
means:

f+SABf=Sg. (31)

Applying B, we get (1+ BS'ZA*)Bf =BS.g, so
Bf=K'(2)BS g.

Substitution of Bf in the equation (31) gives /, i. e. (30).

Lemma 3 is proved.

The second equation (5) of the branching (4), (5) can be
determined from the equation (4), which is written for the
adjoint operator.

Indeed, through formal transformations we have:

(Sé L W) = (SE‘V’ 1)’



For the equation (32) we need to identify the functio-
nal (e,1) on the elements of the sum (28).
Definitions 8. Denote (-, 1) or «1» as the functional

defined in:
|1
D .
(S)+{T + 1}

by the relations:

D(Smax) =

(0.1)=lim(,1,),

1y (x)= XN (x), 6eD(S)

(i,i):—i.
T+1

The value (¢,1) of the functional «1» on the item ¢ exists
in the domain of elements ¢, which is dense in H (for exam-
ple, if ¢ is a finite function or rapidly declining function ¢(t)
at T—oo). This means that the functional «1» is unboun-
ded (46).

If A:H— H is the bounded operator ‘(A*f,1) <C|f
J € H, then we define the element A-1 by the relation:

(33)

and

(3%

)

(/,A)=(A/1), feH.

According to the formula (35), the value of the operator
A on the functional «1» is determined provided that the
value (A* f ,1) is the bounded functional from /, so, according
to the Riesz representation, there exists the element A, € H.

Suppose, for example, A= S, then Af= Szf eD(S)and

(35)

(5. 1)=lp (5.1 )=Tip (5.4,

where
> 1% 1 1% 1
St == _Jtdt<= _Jrdt=C".
H S VH n{[“t—g‘zﬁ T<75'0[“C—g‘2\/; T
Finally, |(A"/.1) <C]//]-

For example, the relation (32) means that:

hy,=S.1 or hy_(1)= (36)

1
T-¢

Regarding the calculation (¢,1) and ¢(¢), see also (47).

8. Operators Tax,c and (T )max,c

Using Lemma 3 for getting the maximal operator for the
operator T from the relations (23).
Theorem 2. Let

max,§ max,{

N(§)=1+BS,, A (N.(§)=1+AS,,..B).
According to (24)). If the conditions hold:

HBS

max,{

A HC <1,

\AS

max,{

B <1 e

then the operator T=S+A'B (T* = S+B*A) has the maxi-
mal operator:

T, =S..+AB

max max ((T* )ma T Smax + B*A) (38)
Proof. Let T=S+A'B, 1>0. Taking into consideratior}
the conditions (37), there exists the inverse operator N (o)

and by Lemma 3, there exists the inverse operator:

T:nax,o = (Tmax _0)71 = Smax,o - ‘Svmax.cslq*N((j)71 BSmaX.G (39)
and the relations (8), (9) are valid.

The analytic prolongation (39) gives:

]—;nax.gq) = Smax,cq) - Smax,QA*N (§)71 BSmax,Q . (40)

Similarly,

(), 0= S = S, BN () AS, 0.

We have that:

T,=5,-5(AK ()" B)S,

(1) =5, -5, (4K (5)" B)* S..
As [s.1y[<C, N=12., then:

() rf=clsalscert

According to the equation (35), the element 7,1 is de-
fined. As R(A*) c®, then T, . :®— ® and the relation (10)

is made of (in addition, (8), (9§) are also performed).
Theorem 2 is proved.
If T=8+A'B and the operator K({)=1+BS A", {€[0,)
is reverse, then (according to (30)):

(T-0)"0=T,0=S.0-S,A'K()" BS,0,
K(C)=1+BS.A".

From the equations (Tm—z;)hfo, (27) and defini-
tion 8, it follows that

(S=C)h +Vh +c(h)=0,
(T=8)h, ==c(h)-1, h=—c(h)T.A.
Given (20), we obtain ¢ hg)z—l. From here h, =T 1.

So the decomposition (17) of the resolvent for the oper-
ators Tand T*:

T.0=(0.6; )1+ T,,,.0,

(T*)g V= (W’aE)(T*)g 1+(T*)max,z v



Theorem 3. Let T=S5+A'B (according to (23)). Then
the condition (37) is sufficient for the existence of the
Weyl function m(C) of the operator T (def. 4). If the condi-
tions (37) are satisfied, then:

m(Q)=(T11), CeQ\[0,). (42)

Proof. According to Theorem 2 and condition (37), there
exist the operators T, and (T"),,.. According to defini-
tion 5 ((9), (10)) we define the operators T, (T"),... By
Theorem 1 and definition 8, we obtain the relation (41), where

the element /. =T 1 separates the branching T;¢. Finally,
()= (w)=(1(1") v =
~(wa (1), 1)+ (1), )

According to definition 4, we have the relation (42),
where:

(43)

m(©)=(1(T"), 1)=(r:11).

Theorem 3 is proved.
Note 2. Functions:

(RE)=(1(),,..v). (a@)v)=(va)veo

are analytic functions of {e &, and the functionals a(c) and
R(o) are the eigenfunctionals of the operators T and T, ,
corresponding to the point >0 (see [2]).

The relation (43), namely:

a(C)em(C)+R(C)=h e H, (44)

determines the function m({) clearly if the functionals a({)
and R(() are clearly defined, too.

9. Sturm-Liouville operator on the semiaxis

Let us pay attention to the branching of the resolvent
of the Sturm-Liouville operator on the semiaxis. Our goal is
to show that the separation of the branching (according to
definition 3—4) is a natural way to reduce in two stages that
part which is the branching 7, =(T —¢) " itself.

Of course, there is the question about the relation bet-
ween analytic functions in Q and analytic in Q\[0,),
where [0,e0) is the continuous spectrum of T.

To begin with the non-self-adjoint operator L, genera-
ted by the differential expression ly=-y”, y(0)=0 in the
space I (0,<><>). Using the unitary operator:

. : 1
F: I2(0,00) — L2 (0,00), p(r)=;\/¥,r> 0,

given that the relations:
sinx/t

¢(r>=Fy(r)=Iy(x>de,

y(x)zF"¢(x)=lj¢(1)sinxﬁdt. (45)
T 0
Diagonalize the operator L, namely FLF™'=S.
Lemma 4.
1) Let:
D(L,, )= {y € ’(0,%0): y’ —abs.cont., y” e LZ(O,oo)},
Lo y==y"
and the operator:
T sina/t
o(t)=Fy(t)= J‘y(x)gdx
0 VT
be given by the formulas (26), (27). Then:
F‘Lma\xl“i1 = Smax' (46)
2) If ¢=Fy, then:
c(0)=-y(0). (6.1)=y'(0). (47)

Proof.
1) If yeD(L,,,), then the equality:

_]3 ,,( )sinx\ﬁdx:

D
=-y(0)+ sz(x) Sinj%\/g

=—y(0)+1Fy(1),

dy =

yy el (O,oo)

is true if and only if FL , y=S, Fy, coincides with the
equality (46) and, in addition, ¢(¢)=-y(0).

2) The derivative by the variable x in the relations (45)
is y'(O):(¢,1).

So, conditions (47) are proved.

Lemma 4 is proved.

Note. As:
! 1
Fle™)(t)= —
(e )(T) 1+71’
then

e

Therefore, the equality (34) is proved.
Let us calculate (¢,1), where ¢=Fy, using the formu-
la (47), we have

(6.1)=5'(0)=(y(x))

=(Fo(x)) (48)

x=0

x=0

Similarly,

c(6)=-F"o(x)| _,
if 02 D(S) (otherwise ¢(9)=0).



Consider the differential expression:

ly=-y"+q(x)y,y(0)=0.

Mark the operator through M =L+Q. Fourier trans-
form (45) M gives the operator:

T =FMF™ =S+V, V=FQF™"

=F(L+Q)F™" (49)

Consider the differential expression:
ly=-y”+q(x)y, y(0)=0.

Suppose ¢(x) is a complex-measurable function and
‘q(x)‘ <Cexp(—ex), x>0, €>0. (50)

Let:

a(0)=, (W, (v). |a,(x)=la. ()]

Qy(x)=q(x)y(x), x>0,

then similarly, Q=0Q,Q,. Let: M =L+Q. Fourier transfor-
mation (45) of the operator M gives the operator:

T=FMF"'=F(L+Q)F"'=5+V,

V=AB, A'=FQ, B=Q,F". (51)

Theorem 4.

1) There exist values C, >0, €, >0 such that if 0<C < C,,
0<e<g,, then for the operator T (provided (50)) the suf-
ficient condition (37) of the existence of the Weyl func-
tion m({) is true.

2) The Weyl Function m({)= (Tgi,i) (according to (42))
in the case of the self-adjoint operator T coincides with the
well-known Weyl function of the Sturm-Liouville operator
on the semiaxis.

Proof.

1) Taking into consideration the conditions (37), we
denote by

N(C)e=c+BS, Ac=ctQF S, FQ.

max,{

We have:

FQie(0)=Ja (eln) ™ a

0

so according to the formula (24):

sin y\/; _sin y\/z

S FQrc(7) = T% (y)c(y)%y '

As:

(t)sin xtdr,

T

i 1y
Flo(x)=—o
then:
Q2 F71Smax,§FQ1*C (x) =

siny\/—_siny\/i
J _[q1 \/—T_c\/zdy sinx/tdt.

*Qz

singr _siny g
Sm,gFQIC(T)=Iq1(y)6(y)%y'

Changing the order of integration, while:

QF'S, FQic(x)=
sin y\/; _sin y\/z

zi%uﬁ%ka>I’ﬁr-cﬁ:

sinavtdr |dy =

=—qy(x )J (v (@) (y,2)dy, (52)

sinyJt _sin y\/z
= Jr N4

A

:I ( )smx\/—d‘t

sinx/tdt =

sinyt _sin y\/i
o)=L

Having done the replacement Jt =6, we get:

I(y,x)=[h(y.0)sin x6-20d0 =
0

=2jeh(y,e)d(1_c%xe).

0

Using the formula:

siny6—6 n\/y)/i

0 ¢

)

0h(y,0)=

integrate by parts:



[(y:x)=

eh(y’e).1—cosxe B
0
=2 siny@—@smy\/z =
_]‘-’1—cosxe \/i 0
. X 0°-C
L o
B smy@—esmy ¢
1—-cosx® \/z
:_QJ' ~ de
0 X 0" -

0

Thus, the expression I(y,x) is bounded ‘I(y,x)‘ <K for
all y, x. According to the relation (52), we obtain:

~0,(0) [0, (9)eln) (),

0

BS, . Ac(x)=

max,g

therefore,
|BS o]~ o)

Obviously, there exist C, and ¢, (according to (50)) such
that HBS‘M,;A H <ifor C< CO, € <g,. Thus, paragraph:
1) proved:

%qz(x)f%(y)c(?/)l(y’x)dy’

0

BS, . A'c(x)=

max,{

2) It is known that:

Mf(x)=(M=8)" f(x)=

( ))I (60) £ (0)de +5(x,0) jee(zfg)) (6)dr.
In result,
(Mc)*g(x)=s(xyc)ze{f?jg))g(t)dt+

Taking into consideration (35), we have:

(v T0)=((%) wi)=(F () Frwit) =),

where y(x)= ((ME) g)(x), g=F"y.
A simple calculation gives:

and
(W,Tc1)=y'(0)=[g,e(32€)]ﬁ =
:[F-lw,e(t“/i)] {W,Fe(t’\/i)] .

(V)

Finally,

)

and (according to (47)) we will have:

1
elt)) | [eenE)] € E)
(n11)=| F, 1= (0)= :
¥ e(e) ) e(\E)
the known expression for the Weyl function m(g).
Thus, the relation (42) is proved for the Sturm-Liouville
operator on the semiaxis.

Item 2) is proved.
Theorem 4 is proved.

10. Spectral decomposition based on the branching
of the resolvent

The operator T S+V (according to (23)).
If . =(T C) then:

(T.(T-8)0.w)=(0.w)
(T.T0.w)-C(T0.w) = (0 w).

Therefore,

Fow)=—(rov)s

Since

dg
\;\JA ¢

é(TgTW)-

=2mi,

then from the condition:

lim [ L(r7o,w)dg=0 (53)
N‘M\C‘:N C

it follows that:
(¢,\|;)=-i.hm j (T:0,v)ds (54)

N—seo
2mi N Ly

Branching of the resolvent is given by the formulas
(41)—(43), which implies:

(Tov)=(o(¢))~
x[m(©)(@(©)w)+(r(6)w) | +(BE)ow).



We assume that the operator T has its eigenvalue A, and
spectral singularities o ;. Then, for:

%(w) = —(Tg¢,w)+%(TgT¢,w)

from (55) it follows that:

(ow) ~(T.0w) =
=(0,6(0))(m. (6)=m_(0))(a(c), ). (56)

Let v>0. Denote by C, the contour in the C-plane,
{=x+iy, which leads successively through the points (0,-v),
(N,—v), (N,v), (O,v), (0,—v), where N = const > 0. Deforming
the contour |{|=N into the contour C, we get that:

[ (ro.w)dg =] (1:0,y)dC.

[g=N C,

Let v—0. Then, given the formula (56), we get:

| (ow)de=

=N

Stz

(m.(0)-m_())(9,6(c))(a(c).v)do+ ;+; (57)

j

Example 1. Let a,pe®, o,pe D(S) and G =C. Define the
operators A,B: H — C by the equalities:

Ao=(0,a),, Bop=(0,), (58)

To find the adjoint operator A" :C — H, we'll use the equa-
lity (A¢,c). = (q),A*c)H. Since A¢=(¢,a),,, then (¢,a), -C=
=(¢,A’c o SO A'c=co. Similarly, we consider the ope-
rator B, so:

A'c=co, B'd=dp, (59)

where ¢,d e C are some numbers.
Perturbation looks like:

Vo=A'Bo=A"((0.8),)=(6.8), o

Due to the definition (58)—(59), we have:

K(C)e=c+BS Ac=c+ B(CS;(X) =c+ (Sgoc,B)H c.
So,
K(g)=1+(S.ap) - (60)

Vo=ABo=A ((¢, B)u ) = (¢, B)u .
Let To=S50+(0,), o If:

(T-8)o=(S-C)o+(0.B), =,

we get

o+(0,B), =S v.

Multiplying by
B:(0.8), (1+(S.c:B), )= (ScwB).

According to the formula (60), we have that:

(0B), =gy (5v8)

So,

1
Ly= SC‘V_@(SL‘V’B)SCO‘-

According to (24):

v(®)-v(©)

Smax.cw(r) = T —(:

(61)

We calculate yzc(Smaxé\y) according to the defini-

tion ¢(¢) as (26):

2

TTW(T)_“’(T)W

dt<eo, )
far: p(t)dr<es, ye

0

or

Il (@ n) - e <
Since:

T

q 1, ﬁao, T—> 0o,

According to (58)—(59), we get that:

N(¢)" BS, . W=ceC.

From here,

AN(C)" BS, v =ca

and in accordance with the formula (62), we obtain:

(S AN () BS,00)=
= (N(©) " BS ¥ )o(Suunct) =2 Q)N (§) " B,
Recall (40):

T;nax.gq) = Smax,Cq) - Smax,éA*N (g)_1 BSmax,gq)V

(62)



so from the previous formulas according to (18), it follows ~ where we obtain B :C* — H by analogy,
that:

L B'd=d,+dp,, d:(d‘)ecz.
(6.8) = ¢(T,0ec0) = 0() = ()N (£) " BS 020 (63)

Perturbation has the following form:
According to (61), we have that:

Vo=ABo= (B¢)1 oy +(B¢)z oy = (¢’B1)H oy +(¢’B2)0‘2

S S
To=50- (g;)(q) B) Since
therefore, S A c=cS.0,+c,S.0,,
. 1
To=S8.0———(0,5.0)5.p. then
¢ 4 K(C)( ¢ ) ¢
. (c Seoy +c,S.0, B1)H
Considering (35) and belonging of o, e D(S), we get: BS Ac= .
(c1S€oc1 +0,5.0, BZ)H
. T 1
701)= ]| S.000)- B(5)|p(r)de= Let
( 9 ) .g[ ¢ K(C)( )

. . K({)c=c+BS,A'c=
4{4,(. C]dr—K(g)(q)Soc)(S[Si) (0.7,1).  (64)

0

2(61]4_[(5;0‘1751)1, (SC%BJHJ(QJ
From here, K (S€a1,32)11 (SCOLZ’BZ)U g

ie.
1 1
TA(t)= —-C K@) (553,1)5& = K()=t+ [(Sgoclﬁi)” (SEOLZBJ” J
L_(L_L) L (5i)se (65) (S.08.), (Scov.B.),
t+1 (t+1 t=3) K@)\
The equality ¢ =T,y means that (T -{)o=y or (§-{)+
and according to (42), we obtain: +A'Bop=y:
m(g)=(T;1,1)= 0+S,ABo=S5y. (68)
1 (= .
__ . Appl th tor B, t:
et o g SBsa) @) b e
where it is taken into account that: Bo+BS A'B,=BSqy or K(C)Bo=BS,y.
p(1)= %\/; Let det K (§)#0. Then K ({)” there exists B¢=K(§)71BS§\|1.

Substituting B¢ in the relation (67), we obtain:
and (33), (34) are used.

Example 2. Let o, B, e ® N D(S), G=C?. We define the
operators A,B: H — C* by the equalities:

From here:
A¢=[(¢,a1)H} B¢=((¢,B1)H} “ om here

(0.2), (.., To=S,0-SBK(() " ASpeD(S).
We'll find the adjoint operator A™:C* — H. Let:

Ty=0=Sy-SAK(®) BSy. (69)

In the dense set of elements in H ¢ € H, we have that:
G ] 2
c:( eC

(FF01)= lim (T;0.t,), =
Th lity (Ad,c) . =(0,A ) b : r i}
e equality (A9.c),. =(¢.47), becomes = [ Sco(x)-$.BK(Q) " 45.0(7) p()d. (70)
0
(0.0,), ¢ +(d0x,), T, =(0,Ac) .
( ) Let k,(€) be the analytical functions such that:

From here, P
. K@E)'=| " 71
Ac=c0,+c,0,, © (km kzz] h




Consider (67) and

ASZq): (SE¢70C1)H ,
(Sz¢’(x1)11
then
" (S:0.0u), i (Se0.00)
K@) AS.0= =
(6) A, (Sc0.01) yt(S.0.00)
(k@50 +(ok, @5, (4 -
(¢, k,, (C)Sg% )H + (¢7kzz (§)5§a2 )H d, .

(72)

Then from (70), it follows that:

) SZB1 _] p(‘c)d‘t.

For the set of elements ¢, dense in H we have that:

<r)dr=(¢,;gjy,

. o qu) T)-(0,X,
] s

Tqu)(r)p

therefore,

and, as a result,

Ti(Y)=—

T—
_ 1
T+1

Apply the functional 1:

(s (551)x, -
T_] (559,

\Hﬁ
)‘

(n1.1)=-1-

(b ot e (- (o

where to according to (73):

(X1,1)=

11(@)(5;(X1r1)+
(X, 1)=ky, (C)(SQOHJ)*'

12 (C)(Sg(xz’1)’
22 (?;)(5@5,1)

and we obtain the Weyl function:

1

m(Q)=(T:11)=-1- I(m_r@] (7)de-

_[m (5§0c1,1) TRy (Q)(Sgazyi)](%&J) -
[ (Q)(Sc0ti 1) sy (€)(Scts1)|(S:B21),

(73)

which is similar to the classical case.

11. Discussion of the results of spectral
decomposition construction

In terms of the concept of branching the resolvent and
the associated concepts of vector function and maximal
operator branching, spectral decomposition of an arbitrary
non-self-adjoint operator of the Friedrichs model was con-
structed. In addition, it is shown that the Weyl function m ()
for the self-adjoint operator coincides with the classical Weyl
function in the case of the Sturm-Liouville operator on the
semiaxis.

The advantage of this study is that the approach can be
applied for any non-self-adjoint operators and to any opera-
tor in Hilbert space. In practical terms, we have advantages,
particularly when the operator is given by an ordinary diffe-
rential equation, as it was illustrated in the examples.

The received results can be applied:

— to spectral decomposition of an arbitrary non-self-ad-
joint operator;

—to the analysis of solutions of differential equations
after the Fourier transform;

— to the analysis of solutions of evolution equations and
consequently to the problems of the theory of scattering.

However, the approach of constructing the spectral de-
composition for integral non-self-adjoint operators will have
weaknesses; and needs further developments.



The topics of these studies can be developed in the case of
the spectral decomposition of the operator, which has a mul-
tiple continuous spectrum. For example, the Sturm-Liouville
operator has a double aliquot spectrum in the entire axis and
the Weyl function in this case is a square matrix of size 2x2.

In addition, for research of the spectral decomposition of
the operator, the space of vector functions, for example, can

2) Satisfying these conditions, the Weyl function, consi-
dering definition 5, becomes as follows:

m(§)=(T:11), {eQ\[0,e).

The proposed approach formally uses the element 1, which
is actually an unbounded functional in the space H and only

be considered. in a sense; is close to the number 1 (considering definition 5).
But it is possible under certain conditions on some opera-
tor A to calculate A-1 as a part of the space.

3) The formula for the spectral decomposition of the
Friedrichs model non-self-adjoint operator while integrating

the resolvent:

12. Conclusions

The method of constructing the spectral decomposition
of the Friedrichs model non-self-adjoint operator was imple-
mented under the scheme: T, — 4. — m(g).

With the concepts of branching of the resolvent, vector
function branching and maximal operator, the following re-
sults were received.

1) Sufficient conditions for the existence of the Weyl
function m(§) of the non-self-adjoint operator of the Fried-
richs model were found, that is:

(6,y)=— 1 im N(m+ (0)-

| N—eo
2 N==y

. (6))(00(0))alo) v)do+ X+

The examples are given, where the generalized Weyl
function m(C):(TCM) is found.
These results shows that the classical Weyl function

HBSmax,ZA*HG<17 in case of the Sturm-Liouville operator on the semiaxis
coincides with the Weyl function m({) for the self-adjoint
HASmang*H <1, {eQ. operator.
& e
References

1. Muminov M. L., Lokman C. Finiteness of discrete spectrum of the two-particle Schrodinger operator on diamond lattices // Nano-
systems: Physics, Chemistry, Mathematics. 2017. P. 310-316. doi: https://doi.org/10.17586/2220-8054-2017-8-3-310-316
2. Kukushkin M. V. Evaluation of the eigenvalues of the Sturm-Liouville problem for a differential operator of second order with frac-
tional derivative in the junior members // Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika.
Fizika. 2017. Issue 6. P. 30-35.
3. Cheremnikh E. V. Model Friedrichs’ and problems with nonlocal boundary conditions // Mat. Methods and Fiz.-Mekh. Field. 2000.
Vol. 43, Issue 3. P. 145-156.
Ibragimova B. M. The eigenvalues of the Friedrichs model in the one-dimensional case // The young scientist. 2014. Issue 5.
Cheremnikh E. A remark about calculation of the jump of the resolvent in Friedrichs’ model // Eastern-European Journal of Enter-
prise Technologies. 2012. Vol. 1, Issue 4 (55). P. 37-40. URL: http://journals.uran.ua/eejet/article/view /3317
6. Muminov M. L, Rasulov T. H. On the number of eigenvalues of the family of operator matrices // Nanosystems: physics, chemistry,
mathematics. 2014. Vol. 5, Issue 5. P. 619-625.
7. Time asymptotic behavior of exponential function of Sturm-Liouville operator on the line / Gouasmia O., Diaba A., Diaba E, Che-
remnikh E. // Global Journal of Pure and Applied Mathematics. 2016. Vol. 12, Issue 6. P. 5233-5243.
8. Behrndt J., Langer M., Lotoreichik V. Boundary triples for Schrodinger operators with singular interactions on hypersurfaces //
Nanosystems: Physics, Chemistry, Mathematics. 2016. P. 290—302. doi: https://doi.org/10.17586,/2220-8054-2016-7-2-290-302
9. Gesztesy F, Weikard R., Zinchenko M. Initial value problems and Weyl-Titchmarsh theory for Schrédinger operators with opera-
tor-valued potentials // Operators and Matrices. 2013. Issue 2. P. 241-283. doi: https://doi.org/10.7153 /oam-07-15
10. Diaba F, Cheremnikh E., Ivasyk H. On time asymptotic of the solutions of transport evolution equation // Mathem. and computer
modeling. 2010. P. 208-223.
11. Naboko S., Romanov R. Spectral singularities and asymptotics of contractive semigroups // Acta Scientiarum Mathematicarum.
2004. Vol. 70, Issue 1-2. P. 379-403.
12.  Mamedov K. R. oglu, Karahan D. On an inverse spectral problem for Sturm-Liouville operator with discontinuous coefficient //
Ufimskii Matematicheskii Zhurnal. 2015. Vol. 7, Issue 3. P. 119—131. doi: https://doi.org/10.13108/2015-7-3-119
13.  Cheremnikh E. Branching of resolvent and Weyl function for Sturm — Liouville // Journal of Lviv Polytechnic National University.

Physical and mathematical sciences. 2014.



