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1. Introduction

Modern goniometric systems that represent complex
program-technical complexes [1] are considered the most
accurate optical measuring systems. Goniometric systems
are used for contactless measurement of angles in different
industrial fields, navigation, scientific research, at tes-
ting and calibration laboratories, as well as metrological
centers.

As an example, the goniometric systems could be applied
for setting navigation sensitive elements (accelerometers
or gravimeters) in the electronic stability systems for cars,
stabilizers for weaponry, etc.

Contemporary goniometric systems represent complex
software-technical complexes, organized as a set of various
technical tools with diverse properties. Specifically, they
include sensors, measuring transducers, analog and digital
input and output modules [1], etc. At the same time, the
main trend in the development of modern measuring equip-
ment implies the search for improving the effectiveness of
its functioning. The indicators of operational effectiveness
of measuring systems are, among others, the accuracy, relia-
bility and performance efficiency of measurements. In this
case, accuracy can be enhanced by improving the methods
of measurement, computational algorithms and other proce-
dures, which ensure achieving the specified accuracy via less




expensive but not less effective techniques. Ensuring high
reliability of measurements, in addition to the use of technical
means with high instrumental precision, is achieved by addi-
tional application of the entire complex of specialized activi-
ties. Particularly, by increasing requirements for qualification
of personnel, strict compliance with schedules for equipment
verification, thorough performance of standard and certifica-
tion tests, compliance with measurement procedures, calcula-
tion and normalization of measurement error components. As
is known, the sources of measurement errors that emerge in
all measuring equipment and systems, including goniometric,
are methodological, instrument and subjective errors. Gonio-
metric systems manifest in the results of measurements in the
form of systematic and random components [2] whose change
over time is a non-stationary random process [3]. Procedures
for processing measurement results, as well as normalization
of systematic and random components of measurement errors,
are known, they have been practically applied for many years,
they are well substantiated, maximally formalized, they are
fundamentally different and are regulated by relevant nor-
mative documents [4, 5]. Thus, a random component of the
measurement error changes randomly in its sign and value
at repeated measurement of the same physical magnitude,
performed with the same diligence under the same conditions.
Random errors cannot be eliminated and are impossible to
avoid. Normalization of random errors is conducted applying
the theory of probability and mathematical statistics based on
the results of multiple measurements. Random errors, in con-
trast to systematic, cannot be excluded from measurement re-
sults. However, the magnitude of random errors is significantly
reduced by increasing the number of observations that can be
determined, for example, from a known procedure [6]. The
systematic component of a measurement error, as opposed to
random, remains constant or naturally changes during repea-
ted measurements of the same physical quantity. A systema-
tic error can be predicted, identified, and almost completely
eliminated by the introduction of the relevant corrections.
However, the systematic component of an error, according
to data from the scientific literature [3], is considered to be
a specific, «degenerate» random quantity, which has some of the
properties of a random magnitude, which are the subject of the
theory of probability and mathematical statistics. In this case,
procedures for the normalization and summation of systematic
and random components of errors are fundamentally different.
Specifically, according to standard [4], errors are summed up
in one of the three techniques — algebraic, geometric, taking
a correlation into consideration. Particularly, in the presence of
arandom component of measurement error, they use geometric
summation. When there is a systematic component of measure-
ment error, selecting a technique for summation is ambiguous.
This is predetermined by the lack of complete information
about the law of its distribution. In this case, the choice of
a summing technique is made based on considerations on the
likelihood of danger to the life of people, significant economic
losses, anthropogenic disasters, etc. Typically, this case implies
the application of algebraic technique, although it often leads
to overestimated assessment of the magnitude of the error.
Thus, there is an obvious need to analyze in advance mea-
surement results in order to determine which component of
the error is included in the set of measurement data. After all,
correct determination of error components in the measure-
ment results would subsequently make it possible to correct-
ly apply appropriate methods for processing measurement
data, to avoid mistakes and inaccuracies, and, consequently,

improve the accuracy and reliability of measurements in
general. That predetermines the relevance of such a research.

2. Literature review and problem statement

To determine the components of measurement errors,
the scientific literature [3, 7] describes analytical-calculation
methods based on the application of a Fisher’s dispersion cri-
terion and a Wilcoxon criterion. Fisher’s dispersion criterion
makes it possible to establish the fact of presence of a systema-
tic component of measurement error and to analyze sources
of its origin, while the Wilcoxon criterion is used to identify
a systematic component of measurement error at the un-
known distribution law of measurement results. It is believed
that the most effective is the use of the Fisher’s dispersion
criterion. At the same time, scientists [3, 7] indicate that
determining the components of measurement errors when
applying these analytical- calculation methods is a multi-
stage [3] and routine [7] and, accordingly, a rather time-con-
suming process, which requires considerable time cost.

Automation of determining the components of measure-
ment errors and improving the efficiency of operations per-
formed could be achieved by employing intelligent methods
and systems, such as artificial neural networks (ANN). ANNs
have been successfully applied for solving various problems
on the processing and analysis of data under conditions of
incompleteness, controversy, and the dynamic nature of input
information based on the methods of its parallel processing.
There are known cases of applying ANN in the algorithm for
estimating angles of bending the knees [8], in the procedure
for predicting a bending angle of the finger joint [10]. ANNs
have been used in the procedure for estimating the angle and
rotation speed of the generator’s rotor, specifically, to assess the
stability and control over transient processes in real time [11].
There is also the system for automated measurement of the
Cobb angle based on ANN, to assess scoliosis of the spine [12].
Papers argue that using ANN makes it possible to improve the
performance efficiency, reliability, and accuracy of performed
operations. Work [13] reports the algorithm of a neural net-
work for deriving aerosol properties from the ground-based
spectropolarimetric measurements and indicates that applying
ANN allows for a more accurate assessment. Paper [14] reports
a technique to determine angles in the Boler equation using
ANN for the diagnosis and treatment of bone fractures. The
results indicate high accuracy. Article [15] describes a method
for automatic measurement of rotation angle of a two-dimen-
sional object employing a single-layer neural network. Pa-
per [16] reports a method for calibrating an angle sensor based
on an artificial neural network. The authors proved that ANN
has the advantage in that it demonstrates greater performance
and higher accuracy. In addition, it is noted that ANN could be
anew method to effectively correct errors.

There are several studies which solve the task on im-
proving the accuracy of measurements by the automated
determining of errors using ANN [17-20], genetic algo-
rithms [21], as well as other means [22].

In paper [17], ANN is used to estimate an error in odome-
ters of a mobile robot, in particular, to predict error behavior
over time, however, the authors did not determine the sys-
tematic and random components of the error.

In study 18], ANN is applied for the automated detection
of a systematic error during calibration of angle-measuring
geodetic instruments. It is shown that using neural network



algorithms makes it possible to reduce the time and sim-
plify the procedure. However, the task on the preliminary
determining of error components when measuring with
angle-measuring geodetic devices is not solved.

Paper [19] reports a model of the neural-network mea-
suring converter for angular measurements. An analysis and
compensation of error occurs at the level of elements and
subsystems of the converter. ANN is used to highlight the
impact of separate elements of the system on the magnitude
of a systematic error in general. The random component of
the error is not determined.

Study [20] describes results of research into an error of
the optical method to control vibration frequency of tech-
nological equipment during its work, based on the genetic
algorithm. It is shown that the application of an intelligent
method makes it possible to significantly improve perfor-
mance efficiency in measurements. However,
components of the measurement error are not
determined.

Paper [21] gives a structure of the genetic
algorithm in order to improve accuracy and

— to explore the influence of ANN parameters on the qua-
lity of determining the components of a measurement error.

4. Algorithm for the procedure of determining
the components of measurement errors using the Fisher’s
dispersion criterion

The analytical-computational procedure for determining
the components of measurement errors using the Fisher’s dis-
persion criterion, which is performed at the stage of analysis
of measurement results, implies the execution of a number of
steps and can be stated in the form of an explicit algorithm.
A generalized block diagram of the algorithm, illustra-
ting the work of this analytical-computational procedure,
is shown in Fig. 1.
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reduce disruptions in the work of an automated
technological system. No analysis of errors in the
system’s operation was performed.

Splitset X ={x, [i=1; N}
into set of group:
Sp={x;lj=LJ k=LK

27

Article [22] reports a method for the auto-

mated evaluation of a geometric measurement
error using digital processing of images acquired
from a video camera. The method allows the

X, =

Computation of 39 -
arithmetic mean

1 J
T2

I
lexecuted for measurement
iresults in each group

|

|
Lo

automated calculation of errors based on the

regression estimations, as well as a geometric
measurement error based on image processing,
but does not make it possible to identify its

- —— 41
Computation of magnitude
of random deviations inside

cach group A g =x; —X7&

values for the

Fisher's criterion (Fq) for
significance 1ev§s

¢=0,01; ¢=0,05

components.

Thus, the task on the automated determining
of components of measurement errors, including
in real time, remains unresolved. Therefore, our
work is necessitated by the lack of developments,
which would make it possible to conduct highly
efficient automated determining of components
of measuring errors for their subsequent cor-
rect processing by personnel. The result could
improve the accuracy and reliability of measure-
ments in general.

3. The aim and objectives of the study

The aim of present study is to develop an
artificial neural network to determine the compo-
nents of angle measurement errors by automated
goniometric systems in order to automate the
determining of measurement error components in
real time and to improve performance efficiency of
executed operations.

To accomplish the aim, the following tasks
have been set:

—to algorithmize the analytically-compu-
tational procedure for determining the compo-
nents of measurement errors using the Fisher’s
dispersion criterion;

— to synthesize an ANN model for the auto-
mated determining of measurement error com-
ponents based on the analytical-computational
procedure using the Fisher’s dispersion criterion;
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Fig. 1. Generalized block-diagram of the algorithm for
an analytical-computational procedure of determining the components
of a measurement error using the Fisher’s dispersion criterion



Its implementation implies the execution of 13 steps and
emphasizes considerable complexity of the process of deter-
mining the components of a measurement error. As an exam-
ple, Table 1 gives the results of determining the components
of a measurement error analytically based on the proposed al-
gorithm when deriving the flat angle of a 24-facet prism. We
determined components of the measurement error based on
the set of observation results, which was preliminary defined
in line with known procedure [6]; in this case, the required
set of observations is N=37).

Table 1

Results of analytical determination of the measurement error
components at repeated measurements of values for the flat
angle of a 24-facet prism using the Fisher’s dispersion criterion

No. of Angle measured values, ¢y
entry degrees minutes seconds
1 164 39 59.66
2 164 59 59.75
3 164 59 59.84
4 164 39 59.74
5 164 59 59.84
6 164 59 59.67
7 164 39 59.73
8 164 59 59.61
9 164 59 59.86
10 164 39 59.81
11 164 59 59.28
12 164 59 59.08
13 164 59 59.11
14 164 59 59.16
15 164 59 59.18
16 164 59 59.11
17 164 59 59.37
18 164 59 59.33
19 164 59 59.37
20 164 59 59.37
21 164 59 59.42
22 164 59 59.43
23 164 59 59.36
24 164 59 59.35
25 164 59 59.34
26 164 59 59.27
27 164 59 59.36
28 164 59 59.05
29 164 59 59.18
30 164 59 59.18
31 164 59 59.43
32 164 59 59.23
33 164 59 59.28
34 164 59 59.36
35 164 59 59.32
36 164 59 59.18
37 164 59 59.35
Fisher’s criterion value
estimated F 2.39
abular 7, FoolP=0.99 441
Fy.05P=0.95 2.88
Conclusion: the results of measuring contain a random component
of the measurement error

It was established that the results of measurement contain
arandom component of the error. Therefore, when processing
the results of measurements and normalizing the random error,
we must employ methods of mathematical statistics and pro-
bability theory; summing should be performed by a geometric
technique, which is regulated by normative documents [4, 5]:

where oy is the total magnitude of the random error based
on all results of the observation; 6; is the mean-square value
of the i-th error; Nis the number of measurement results.
When applying the analytical-computational procedure
for determining the components of measurement errors,
the operator must perform 223 mathematical operations,
including 114 operations of addition, 46 — subtraction,
46 — multiplication, and 17 — division. That points to sig-
nificant complexity of a given procedure. In addition, given
that measurements typically imply multiple observations, the
number N of whose results could be quite big (Table 1), then
there is a significant increase in time required to perform
measurements and process the results obtained. Therefore,
automating the determination of components of measure-
ment errors based on ANN would make it possible to reduce
the labor intensity of performed operations, reduce the time,
and improve performance efficiency of performed operations.

5. Model of artificial neural network for the automated
determining of a measurement error components

ANN for the automated determining of measurement
errors components is a set of mathematical and algorithmic
methods for solving a wide range of problems on processing
and analysis of data. In the context of problems being solved,
ANN makes it possible to automate the analysis of a set
of measured data in real time. In this case, high efficiency,
probability of correct processing of information under con-
ditions of its incompleteness and controversy, as well as ease
of training and retraining, allow the timely transition to new
types of problems to be solved when external factors change.

In order to determine the components of measurement
errors automatically, the ANN with direct propagation were
synthesized [24] that are called the multilayer perceptrons.
ANN has significant computing power, as well as the capabi-
lity to generalize the learning experience, which favorably dis-
tinguishes it from other ANN, for example, ANN by Hopfield,
ANN by Hamming, ANN with radial basis elements (RBF)
and others. Schematic model of ANN for the automated deter-
mining of measurement errors components is shown in Fig. 2.

The structure of the ANN model, specifically the number of
layers and input and output neurons in layers, is predetermined
by the conditions of the problem. We have chosen, as a function
for activating the ANN, a sigmoid function (or Fermi function).

The first so-called «input» layer of ANN is formed by in-
put neurons and is designed to accept input information in
the form of input vector X={x;/k=1; N}, where N is the
amount of measured data. Dimensionality of the input layer
is defined by the dimensionality of input information and,
accordingly, of the input vector. This is predetermined by the
fact that the generally accepted means for submitting input
signals is such at which all the neurons of the first (input)
layer receive a single input signal. The dimensionality of in-
put vector X in this case will be predetermined by the set of
measurement results. For example, when measuring the angle
of a 24-facet prism, the required number of N measurements,
according to known procedure [6], is 37. In this case, the
input vector will take the form X={xyk=1;37}. The struc-
ture and components of the input vector for this example are
given in Table 2.
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Fig. 2. Schematic model of ANN for the automated determining of measurement errors components [24]

Table 2 There are no computational procedures in the input layer
Vector representation of results of measuring the flat and information is transmitted from the input to the output
angle of a 24-facet prism according to the requirements of neurons by changing the activation of neurons.
of ANN technology At the output of ANN there forms the input vector Y of the
values for the presence of a systematic and random components
No. of Measured angle values, @ Vector .
entry dearees P seconds | alphabet of measurement errors. A decision on ‘Fhe presence of the type
1 164 59 59.66 Y of a component of measurement error is taken by the so-called
2 164 59 5975 x interpreter of the network response. In a given case, we use
3 164 59 59.84 X3 the interpreter «the winner takes it all», in which the number
4 164 59 59.74 X of output signals matches the number of variants of response,
5 164 59 59.84 X5 and the number of the response corresponds to the number of
6 164 59 59.67 Xg the neuron that issued the maximum signal at the output. That
7 164 59 59.73 X7 is, when determining the components of a measurement error,
8 164 59 59.61 Xy there may be two variants of response: «measurement results
9 164 29 2986 X9 i i f the measurement error»
10 64 59 59,81 i contain a systematic componeqt ¢
T 164 =9 =998 o and «measurement results contain a random component of the
D 164 59 59 03 i measurement errors. Accordingly, the structure of the output
13 164 59 5911 13 vector can be represented as follows: Y={y,,[m = 1;2} (Table 3).
14 164 59 59.16 Xi4
15 164 59 59.18 xis Table 3
16 164 59 5911 Y16 Characteristic of ANN output vector
17 164 59 59.37 X7 Information about Vector alphabet
18 164 59 59.33 X18 Component of | . presence ofan | maximal | components
19 164 59 59.37 X19 measurement | . component in | value of of output
20 164 59 59.37 90 error measurement results signal vector
21 164 59 59.42 X921 . present 1
22 164 59 59.43 29 Systematic absent 0 Y1
23 164 59 59.36 o3 oresent 1
24 164 59 59.35 X4 Random abeent 0 Z
;g 122 gg gggg XZ General structure of output vector Y={y,|m =1;2}: Y={y1; y»}
27 164 59 59.36 X7
28 164 59 59.05 Xog The structure of the output vector defines dimensionality
29 164 59 59.18 %29 of the output layer of ANN for the automated determining of
30 164 59 59.18 X530 measurement errors components.
g; 122 gg ggég 2; The. «hi.dden» layer executes information intermediate
3 6 =9 =998 = processing in .such a way that the output l.ayer Qf neurons
34 164 59 59.36 Yt receives the linearly-separated sets. The dimensionality of
35 164 59 5932 a5 the hidden layer was determined empirically in two stages
36 164 59 59.18 Y36 and varied during the experimental study into ANN. Spe-
37 164 59 59.35 X7 cifically, at the first stage of the ANN synthesis, the number
General structure of input vector X={x k=1 37}: of a hidden layer’s neurons was accepted to be equal to the
X={ac1; 209; X3; X4; X33 X5 073 X5 X9 X105 X113 X123 X13; X143 X155 number of neurons at the input. At the second stage, when
X16; X17; X18; X195 X205 X2t X22; X23; Xa4; X255 Xag; X27; X2g; X295 X305 X315 training the ANN, the number of a hidden layer’s neurons
3} X33; X34; X35 X6 X7} was adjusted depending on the success of its learning. In this




case, the boundary numbers of a hidden layer’s neurons were
calculated from known heuristic formulae (1) and (2).

The required number of synaptic weights L,, was derived
from expression (1).

mN Sm-(ﬁ+1)-(n+m+1)+m, (1)

1+log,N m

where L, is the number of synaptic weights; 7 is the dimen-
sionality of the input layer; m is the dimensionality of the
output layer; N is the number of elements in the training set
in the learning database [23, 25, 26].

The numbers of a hidden layer’s neurons in ANN were
computed depending on the number of synaptic weights from
expression (2).

L — Lﬂ“
n+m

(2)

where L is the number of a hidden layer’s neurons.

In order to practically implement ANN, one can use spe-
cialized software tools — neuro-simulators, specifically, for
a given case, we employed the neuro-simulator Neural An-
alyzer, which is part of the analytical software Professional
Deductor made by BaseGroupLabs.

We trained the ANN using the method of «learning with
a trainer» based on the algorithm of error back propagation.
We compiled a training database (DB) as a set of pairs of vec-
tors (Xj; Yi), where i is the number of elements in the training
database, {X;}={x!, .., 2} is the condition of the problem in
a vector form; {Yi}={y!, .., y*} is the desired value of ANN
outputs for a given condition. For example, for the case of de-
termining the error components in measuring the flat angle of
a 24-facet prism, the size of the training database was 60 exam-
ples. The training database was compiled based on the results
of actual multiple observations when measuring the plane
angle of a 24-facet prism and the results of simulation on
a personal computer. A condition for establishing the size of
the training database was a known argument on that the num-
ber of pairs of vectors {Xj; ¥;) in the training database should
be such that running the algorithm could generate such
a set of ANN parameters, which would produce the desired
representation of transforming the signals of input vector X
into output vector Y. A fragment of the screen copy of soft-
ware with the training set for ANN learning aimed at deter-
mining the error components of measuring the plane angle of
a 24-facet prism, chosen as an example, is shown in Fig. 3.

Training ANN implies a reduction of the mean square
error E between the actual values of output signals Y’ =
={yj,...,y,} and the desired values Y={yi, ..., yn} for ANN
outputs.

6. Examining the influence of parameters
of the artificial neural network on the
quality of determining the components of
a measurement error

Experimental study into influence of the ANN param-
eters, specifically the dimensionality of its hidden layer, in
terms of correct determination of measurement errors com-
ponents was conducted using the neuro-simulator Neural
Analyzer, analytical software Deductor Professional de-
veloped by BaseGroupLabs. To this end, we generated
a training set (Fig.3) in advance. The criterion for opti-
mizing the learning algorithm was the magnitude of the
mean square error E at 5%, that is, E=0.05. The step
magnitude is 0.1; momentum is 0.9; steepness of activation
function is 1.

The number of a hidden layer’s neurons changed in the
range that was preliminary calculated from expression (2).

The results of experimental study into a change in the
error during ANN operation depending on the number of
a hidden layer’s neurons are given in tabular (Table 4) and
graphical (Fig. 4) form.

To solve the set problem, we examined the work of
ANN for the automated determining of measurement errors
components with a different dimensionality of the hidden
layer (Table 3). ANNs with a different dimensionality of the
hidden layer was conditionally named ANN 1 — ANN 7. The
results of experimental study in accordance with Table 4 and
Fig. 4 revealed the following:

—at an insufficient quantity of neurons in the hidden
layer ANN is poor at learning with the error during operation
remaining quite large (ANN 6, ANN 7);

— an excessive increase in the number of a hidden layer’s
neurons leads to that the well-trained ANN does not
demonstrate generalizing properties with the error in ope-
ration becoming too great (ANN 3, ANN 4, ANN 5). In
addition, the excessive increase in the number of a hid-
den layer’s neurons worsens the work of ANN, which
manifests itself in a decrease in its high-speed performance
(ANN 4, ANN 5).

Component of
measurement error
No. of Measurement result/ No. of measurement
example of Syste- | Random
the training matic
set Input vector Qutput vector
X1 [ X2 (X3 X4 | X5|X6| X7]| X8| X9 |X10 X35 | X36 | X37 | X38 | X39 | X40 Y1 Y2
1 60 60 | 60,5 | 60 60 | 60,5 | 60 60 | 60,5 | 60 0 0 0 0 0 0 1 0
2 60 60 | 60,5| 60 60 | 60,5 | 60 60 | 60,5| 60 60,5 | 60 60 | 60,5 | 60 60 0 1
3 60 60 | 60,5 | 60 60 [ 60,5 | 60 60 | 60,5 | 60 0 0 0 0 0 0 1 0
4 60 60 | 60,5 | 60 60 | 60,5 | 60 60 | 60,5 | 60 60,5 | 60 60 | 60,5 | 60 60 0 1
5 60 60 |60,5]| 60 | 60 |60)5| 60 60 | 60,5| 60 60,5 | 60 60 [60,5] 60 | 60 1 0
6 1,04 | 1,16 | 2,98 | 1,26 | 0,06 | 2,59 | 2,71 | 2,34 | 59,9 | 0,83 0,62 (2,68 1,9 [2,86 | 1,34 2,79 0 1
7 1,04 | 1,16 | 2,98 | 1,26 | 0,06 | 2,59 | 2,71 | 2,34 | 59,9 | 0,83 0,06 [ 2,59 | 2,71 | 2,34 | 59.9 | 0,83 0 1
3 1,04 | 1,16 | 2,98 | 1,26 | 0,06 | 2,59 | 2,71 | 2,34 | 59,9 | 0,83 0,06 | 2,54 | 2,7 | 2,31 | 0,83 | 2,42 0 1
9 1,03 11,03 | 1,04 | 1,04 | 1,03 | 1,03 | 1,03 | 1,04 | 1,04 | 1,04 [[ 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 |0,01]0,01]0,01]0,01 1,03 | 1,03 | 1,03 | 1,04 | 1,04 | 1,04 1 0
11 0 0 0 0 0 0 |0,01]0,01]0,01]0,01 | | | 1,03 | 1,03 | 1,03 | 1,04 | 1,04 | 1,04 1 0

Fig. 3. Screen copy of software with a fragment of the training set for ANN learning in order to automatically determine
components of measurement errors



Parameters of the examined ANN for the automated determining
of measurement errors components with a different dimensionality of the

hidden layer and the time of their training

Table 4 automate the analytical-computational pro-
cedure using the Fisher’s dispersion criterion,
and as a consequence, reduce labor intensity
and improve performance efficiency of exe-

cuted operations. This statement is justified

by the fact that for the examined example, the
case concerning the determining of an error’s

components when measuring the plane angle
of a 24-facet prism, the application of ANN
made it possible to determine the measure-
ment error components over 2 seconds. In this
case, employing the analytical-computational
procedure requires that an operator should
perform 223 mathematical operations (inclu-
ding 114 operations to add, 46 to subtract,
46 to multiply, 17 to divide). It is obvious that
the time that would be taken is significantly
larger than the time required by ANN.

High performance efficiency of the proposed
method is ensured by the possibility of ANN to
perform parallel processing of measuring infor-
mation in real time. In this case, high efficiency,
probability of correct processing of informa-
tion under conditions of its incompleteness and
controversy, as well as ease of training and
retraining of ANN, allow the timely transition

Conditional P Number Opera- Dimen-
arameters .. . . .
name f examined ANN Qf training | tion dura- 510'na_11ty of
for ANN 0 iterations tion, s training set
Input layer — 37 neurons,
ANN 1 output layer — 2 neurons, 52 1s
hidden layer — 37 neurons
Input layer — 37 neurons,
ANN 2 output layer — 2 neurons, 72 2s
hidden layer — 40 neurons
Input layer — 37 neurons,
ANN 3 output layer — 2 neurons, 284 4s
hidden layer — 57 neurons
Input layer — 37 neurons,
ANN 4 output layer — 2 neurons, 310 17 s 60 examples
hidden layer — 67 neurons
Input layer — 37 neurons,
ANN 5 output layer — 2 neurons, 350 21s
hidden layer — 100 neurons
Input layer — 37 neurons,
ANN 6 output layer — 2 neurons, 43 1s
hidden layer — 20 neurons
Input layer — 37 neurons,
ANN 7 output layer — 2 neurons, 40 1s
hidden layer — 1 neuron
Range of change in the magmtqde of a hid- from 1 to 67 neurons
den layer based on expression (1)

to new types of problems that are being solved.

Mean squared
error (MSE), %

The possibility to quickly and correctly
determine measurement errors components at
the stage of analysis of measuring information

EEEEE E N would make‘it possible to subseq}lently define
100‘00% E '\ In.ethods for its furthe.r processing in accordance
g 0: 00% /7 L ANN T with regula‘Fory requirements. In the long t(?r.m,
80 00% 1 /= —{ann 6 that would improve the accuracy and rehabﬂlt';y
70.00% 3 A of measurement results as it could help avoid
60.00% 1 ANN 5 incorrect and inaccurate calculations when nor-
£0.00% 3 /7]l malizing measurement errors.
40‘00% 3 A ANN 3 A ANN 4 At present, there are several studies into
30200% E \ automated determining of measurement errors
20.00% __ \ \ _—|ANN1 ysing ANN. However, there is no research into
10.00% 3§ \ ! automated deterrqmmg of measurement errors
0,00% "ANN 2 components applying ANN that could take place

1 2 3 4 5 6 7 i 9 10

Examples of the training set

Fig. 4. A chart of change in the magnitude of the mean square error of ANN
for the automated determining of measurement errors components with
a different dimensionality of the hidden layer based on Table 3

The above-specified indicates the possibility of using
ANN 2 with the following parameters: the number of inputs is
37 neurons, the number of outputs is 2 neurons, the number of
a hidden layer’s neurons is 40 neurons, the number of hidden
layers is 1 (Table 3). The indicated ANN made it possible to
determine the random component of the measurement error
when deriving the flat angle of a 24-facet prism based on the
results of multiple measurements (N=37) over 2 s (Table 3).

7. Discussion of results of applying the artificial neural
network for the automated determining of measurement
errors components

The proposed neural-network method for determining
the measurement errors components makes it possible to

1 at the stage of analysis of measuring information.
It should be noted that the basic require-
ment when using ANN for the automated de-
termining of measurement errors components
is the high qualification of personnel, which, ac-
cordingly, could require additional training or
even partially restrict the application of ANN.

8. Conclusions

1. We have algorithmized the analytical-computational
procedure for determining the measurement errors com-
ponents using the Fisher’s dispersion criterion. That made
it possible to establish that when processing the results of
measuring, for example, a 24-facet prism, the operator is
required to perform 223 mathematical operations (including
114 operations to add, 46 to subtract, 46 to multiply, and 17
to divide).

2. The ANN model has been synthesized intended for the
automated determining of measurement errors components,
which enables the high-speed (2 seconds for the example



considered in this paper) determination of measurement
errors components under automated mode. The time that
could be taken by ANN to process information is obviously
much smaller in comparison with the time required during
application of the analytical-computational procedure using
the Fisher’s dispersion criterion. That significantly reduces
labor-intensity of performed operations while processing
measuring information.

3. We have studied influence of ANN parameters on the
quality of determining the components of a measurement
error. It was established that at the insufficient number of
a hidden layer’s neurons (Table 3), ANN is poor at learning

with error during operation remaining quite large (Fig. 4).
An excessive increase in the number of a hidden layer’s neu-
rons leads to that the well-trained ANN does not demon-
strate generalizing properties with an error of its operation
being too great, while its performance would be compro-
mised. We have experimentally determined the structure of
ANN for the automated determining of measurement errors
components. ANN is a three-layer perceptron with a dimen-
sionality of the input layer of 37 neurons, the hidden layer —
40 neurons, the output layer — 2 neurons. The ANN neurons
activation function is a sigmoid function. The ANN learning
algorithm is an error back propagation algorithm [23, 25, 26].
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3anpononosano cucmemy pannvoi 8ibpauiiinoi diaznocmu-
KU 2a30nepexauyéanvHux azpesamis, a came NiOWMUNHUKOBGUX
8Y371i6 3 NOKPAUWEHUMU MEMPOTOZIMHUMU XAPAKMEPUCMUKA-
Mmu. Cnocio dozeonse eupimyeamu 3adauy pannvozo 0iazHoc-
MYBAHHA NIOWUNHUKIE KOUEHHS NPU HECNPUAMAUSUX YMOBAX
sacmocyeanns. Jlocniodncenna noxasanu, wo ye 00CA2HYMO
3a60AKU BUKOPUCMAHHIO CALOKYIOUUX DPelceKmOopHUx Qinvm-
pie na 6a3i N-xananvhux cmpyxmyp 3 6uKopucmamuam ime-
pauiiinux-inmezpyouux nepemeoproéauis. Pesyaromamu mooe-
oeanns 4-ox Kamaavrnozo Qinbmpa, npu peanvHux 6XiOHUX
cuzHanax NioWUNHUKOBUX NOWKO00XCeHb, NoKa3aiu 1ozo oie-
30amuicmyo. Ha uiii ocnoei 0yna cmeopena nidcymroea mooens
suxionozo cuznany Qinempa. Illpedcmaenena Pynxyionanvna
cxema demexmopa cepeonboKeaopaAMuMHUX 3HAUEHb 3 MOOel-
10 6UXI0H020 CUuZHANY CAIOKYIOU020 peceKkmoprozo Qinvmpa
npu peanvnux éxionux cuenanax. J[na cmeopenns mooeui cue-
Hany Ha 6x00i demexmopa cepeoHbOKE8AOPAMUMHUX 3HAYEHD
Oynu susnaueni peaxyii Qinompa na Koxchy wacmomy aKa 6io-
nogioae 3a neene nowrxooxcenns. Yac ananizy eudbpano max,
w00 6in Oye pienuil nepiody MminimanvHoi wacmomu Gumms,
moomo T,=164 mc (0 nidwmunnuxa muny 222).

Hocnioxceno edpexmugnicmo npucmporo wasxom mooesio-
8aHHA NOWKOONCEHb PeANbHO20 NIOWUNHUKA 2a30MYpOiHHO-
20 Osueyna. 3anpononosana memoouxa amanizy ma y3azaiv-
Henuil 6iopodiaznocmuunull Kpumepii, AKUNL 0A€ MONCIUBICHDL
eépaxyeamu cmeninv Hasanmaxcenua oeuzyna. Ile nideuwye
mounicmo ma 00CmMosipHicms nonepeonbo20 ananiy npu diaz-
HOCmMYyeanHi nidwunnuka KoueHHs HA cmaodii 3apooiceHHs
nOWKO00HCEHHSL.

Haegedeno xapaxmepucmuxu enexmpomempuunozo 6uMmi-
P106aAIbH020 nidcuntosaua 0ns podomu 3 n’e3oeseKxmpurtnumu
damuuxamu ma 3anponoHo8anH0z0 3apsio6020 GUMIPIOEATb-
H020 nidcuniosana 0 pobomu 3 n’ezoesexmpurnumu oamuu-
xamu. Ilpu ymosi pozbanrancy 6xionoi namxu, wo 3ymoeaeHo
He 10eHMuMHICIMI0 NApaA3UmMHUX €MHOCMEl 6Xi0H020 Kabeo.
Ioxasano, wo nponuxnenns mepexcesoi 3a6adu nHa euxio saps-
006020 6uMipI0BANLHO20 nidcualoéaua, 3adesneuye na 08a
nopsaoku kpauwe cnigeioHOMEeHHA CULHAL/WYM HINC Y eneKxmpo-
MempuuH020 6UMIPI0BANBLHOZ20 NIOCUNI0BAUA

Kntouosi cnosa: giopauiiina diaznocmuxa, azomypoinnuil
dsueyn, ouepenyianrvrnuil 3apsadoeuii niocunrosau, niowuniu-
Ko8uil Y307, COKYIOMUU peceKxmopHui pinbmp

u] =,

1. Introduction

At present, there is a pressing issue related to the im-
provement of reliability of the gas transportation system of
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Ukraine (GTU), which is one of the major national achieve-
ments. Gas-turbine engines (GTE) are the most responsible
functional nodes in GTU. Requirements aimed at improving
the reliability and durability of structural elements and units




