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PoéGoma npucesiuena 00Ci0ICeHHIO MONCAUBOCMET MEXHONO0-
2ii MUCeNbHO-AHAIMUMH020 8apiaHmy Memooy PAHUMHUX eJle-
menmis (MI'E) npu eusnauenni 6nympimnix cunosux paxmopis
i Hanpye 6 CUHYAAPHUX MOUKAX NPU GUZUHT MOHKUX I30MPONHUX
naacmun. Pozensnymo navnpocmiwuii mun cuneyaspHocmi —
MOUKU NPUKAAOAHHA 308HIUHIX 30CEPEONCEHUX CUTL | MOMEHMIE.
Basicaugicmo danoi npodiemu nonszae 6 momy, wo 6 uuUx mou-
Kax eHympiwni cunosi paxmopu npazuymo 00 HecKinueHHOCmi
i eleMeHmapHuMu Memooamu UHAMUMU U020 POIMIpU He 80a-
emovcs. Y moil gce uac, 0ami CuHYIAPHI MOUKU € SHAUHUMU KOH-
uenmpamopamu Hanpyxicenv (K 0OMuMHUX, MAK i HOPMAJIb-
HUX), i 00uUCIIEHH MedHC, 00 AKUX NPAZHYMb GHYMPIUHI CUuaU
i MoMenmu, 6Kpail 6aNCIUGO OIS AHANIZY MIYHOCMI NAACMUH-
yacmux Koncmpyxuii. /s onucy 306HiuHb020 HABAHMANCEHHS
3anpononosano euxopucmosyeamu Oenvma-pynxuito ipaxa
06ox aminnux. Ilpedcmaeneni modeni 306nimnix nasanmasicen.
Hana nponozuuis 00360756 MouHo obGuucIUMU Medici, 00 AKUX
npazuymo nonepeuni CuaU, 32UHANbHI 1 KPYmMHUL MoMeHm 6
CUHZYNAPHUX MOUKAX MOHKUX naacmut. Modemosanns euzu-
HY NAGCMUH BUKOHAHO 3A4 00NOMOZ010 6apiauiiinoz0 Memoody
Kanmoposuua-Bnacosa, sxuii noenicmio cymicHuil 3 Mooeasmu
306HIWNHB020 Hasanmadicenus. Busnavenns enympiwnix cumno-
eux (paxmopie 6 CuHYAAPHUX MOUKAX NAACMUH BUKOHAHO NPU
supiuenHi Kpaosux 3adau, AKi PoOpMYeanuUcs 3a anz0pummom
(MTIE). [Ina npoepamyseanns i po3paxyHKié npumseyeanacs
cepedosuui MATLAB. Pe3yavmamu po3paxynkie xapaxmepusy-
10MbCA 6UCOK0I0 MOuHiCMIO i 00CMOsipHicmio, 30KpeMa noxuo-
Ka 6U3HAYEHHS NMPOZUNIE NJIACMUH 6 CUHZYAAPHUX MOUKAX He
nepesuwye 2,0 %, a noxudxka 32uHaouux Momenmie — xe oivue
3,0 %. [lano pexomenoauii wo0o eupimenns pisnux euoie kpa-
H06ux 3a0au 32UHY NIAACMUH 3 CUHZYIAPHUMU MOUKAMU 3ANPO-
nonosanum nioxodom. Bcmanosneno, wo mouna mooen 306Hiut-
Hb020 HABAHMANCEHHA Y BULA0L 30CEPEOIHCEHUX CUIL | MOMEHMIE
NPUHUUNOBO 00360JI5€ BUIHAMUMU SHYMPIWHI CUNU | MOMEHMU 6
CUHZYTIAPHUX MOUKAX MOHKUX NAACMUH 3G ATI2OPUMMOM 8apia-
uitinozo memody Kanmopoeuua-Bnacosa. Ilo nacmynnuii uac
dami npo 3HAUEHH BHYMPIUHIX CUTL T MOMEHMIE 8 CUHZYNAPHUX
moukax naacmun eiocymui. Taxosxc noxasano, wo npu pospa-
XYHKAX 6HYMPIUMHIX CUJL | MOMEHMIE NAACMUH HEOOPEUHO 3ACMO-
cosyeamu 00un unen pady memoda Kanmopoeuua-Bnacosa,
noxubru 0ocseaiomo sHawnux eeaurun nopaoxa 43—44 %

Kntouoei crosa: memoo epanuunux enemenmis, 3eum izompon-
HUX MOHKUX NIACMUH, 30CePe0NHCeHT HABAHMANCEHHS, CUHZYILAD-
Hi mouKu
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1. Introduction

Solving the tasks on bending isotropic thin plates by us-
ing various methods (double and single trigonometric series,
Bubnov-Galerkin approximation, etc.) under the action of
concentrated loads (forces and moments) leads to unexpect-
ed results.

Kinematic parameters of plates (deflections and rotation
angles) can be quite accurately calculated at points of applica-
tion of concentrated loads, while static parameters (forces and
moments) at these points tend to infinity and it is not possible
to determine them by using elementary methods. At the same

time, these singular points are the stress concentrators, which
is why calculating the limits to which forces and moments
tend are essential to analyze the strength of plate structures.
In this regard, it is of great scientific and practical interest to
devise reliable approaches when addressing this kind of prob-
lems. Note that plates and plate structures are widely used in
cranes, various ships and submarines, aircraft and missiles, in
nuclear and power engineering, construction and transporta-
tion. Therefore, it is a relevant task to undertake a research
aimed at the development of a numerical-analytical variant of
the boundary elements method in order to solve problems on
bending the thin isotropic plates.




2. Literature review and problem statement

Paper [1], which addresses studying the bending of
thin plates, describes different approaches to solving the
problems on bending at arbitrary external load and under
various supporting conditions [1]. In this case, examples
of calculations and tables of the stressed-strained state of
plate bending are given only under the action is relatively
simple external loads. For example, it is proposed to use,
in order to solve problems on plate bending, a series, the
Fourier integrals, Fredholm integral equations, the ma-
trix forms of a finite element method (FEM), variational
methods, a theory of functions of a complex variable,
the methods of collocation, grids, a mixed method from
the construction mechanics [2]. Paper [3] considered
the first-order equations for plates at shear deformation,
which are derived taking into consideration the kine-
matic assumptions of the Reissner-Bollé theory, but with
respect to the equations of equilibrium in the deformed
configuration of a plate. The derived system of differen-
tial equations is applicable to the calculation of stresses
in isotropic plates and it holds for thin and moderately
thick plates. Study [4] addressed solutions to the problems
on plate bending using the generalized equations from a
finite difference method (FDM).

The serious shortcoming of the considered calculation
methods is the lack of a universal approach when dealing
with specific problems. Thus, there is a large volume of com-
putational operations, large dimensionality of the resolving
system of equations, etc.

Lately, the problems on plate bending have been solved
by using professional software for a finite element method
(FEM) such as Ansys, Solid Works, Abaqus. The method
has been widely applied because of a relatively simple
logic in the algorithm, but it is characterized by a large
number of arithmetic operations [5] and the complexity
of building an exact matrix of stiffness for the flat shape
of bending the structural elements. That does not make it
possible to obtain accurate and reliable results regardless
of the extent of structure discretization. More perfect is
the application of the boundary element method algorithm
(BEM) [6]. This method employs a precise system of dif-
ferential equations for a problem, a strict mathematical
procedure for building its solution, and a rather simple,
in terms of logic, process for forming a resolving system
of linear algebraic equations within a boundary-value
problem on stability [7]. In addition, as shown in paper
[8], BEM makes it possible to obtain the exact values
for parameters of the problem (efforts, displacements,
strains, frequencies of natural oscillations, critical forces
at stability loss) both at the border and inside the region.
Papers [9, 10] showed that BEM possesses the simplest
algorithm’s logic among other numerical methods, a good
convergence of the solution, high stability of arithmetic
operations, and a rather small accumulation of rounding
errors at numerical operations [11]. In this case, BEM
demonstrates a simple logic of the algorithm, a good con-
vergence, minimal errors in the results of solution, high
stability, and could be applied when calculating the inter-
nal force factors in thin isotropic plates.

An analysis of publications [1-8] revealed that none of
the known approaches considers determining the internal
forces and moments at the points of application of concen-

trated loads. Given this, there are no values for the shear
forces, bending and torsional moments at these singular
points. In practical calculations, concentrated forces and
moments are distributed over a certain finite area, which
eliminates discontinuities in internal efforts and improves
the convergence of series [11]. The reason for the singularity
of these points is in the model of the force concentrated at a
point. If we cut around the point of force application a square
element with sides Ax, Ay and direct Ax—0, Ay—0, then,
in order to balance the concentrated force F, the intensity
of shear forces and moments Q., Q,, M, M, should grow to
infinity. This follows from the equations of equilibrium. For
example, for lateral forces

F
ZQ=F—2QxAx—2QyAy=0—>Qx=Qy=m,

when
Ax—0,Q,=Q, — e and so on.

The accuracy of the model for the concentrated force,
distributed over a finite area, is insufficient, and it is obvious
that it is necessary to use more effective models for concen-
trated loads.

In this regard, the development of a more precise and
efficient approach for determining the internal forces of
plates using a numerical-analytical variant of the method of
boundary elements is a practically required task.

3. The aim and objectives of the study

The aim of this work is to construct rigorous mathemat-
ical models for transverse concentrated forces and moments
acting on thin plates, and to practically apply the proposed
models in the variational Kantorovich-Vlasov method when
solving problems on plate bending using an algorithm of the
numeral-analytical variant of BEM.

To accomplish the aim, the following tasks have been set:

— to represent an external concentrated load on a plate
as a continuous, differentiable and integrable function con-
taining the Dirac delta-function and its derivatives from two
variables;

— to construct a one-dimensional model of plate bending
using the variational Kantorovich-Vlasov method;

— to solve analytically a one-dimensional model of plate
bending (construction of solution to the Cauchy problem)
using mathematically rigorous functions of external concen-
trated forces and moments;

—to calculate deflections and bending moments at the
singular points of plates using the programming and simula-
tion environment MATLAB.

4. Development of a mathematical apparatus for
calculating the plates

4. 1. Models of concentrated loads

Let us start with models for concentrated loads. The
most accurate and mathematically strict are the models
of forces and moments with the generalized functions-del-
ta-Dirac functions and its derivatives (Fig. 1).
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Fig. 1. Concentrated forces and moments on a plate

Load on the plate under the action of concentrated forces
and moments can be represented by the following analytical
expression

q(x,y)=Fd(x—c;)d(y—d, )+
+M16'(x—cM)S(y—dM)+My8(x—cM)8’(y—dM), )]

where F, M, M, are the concentrated loads (Fig. 1); 8(x—cp)
3(y—dy) is the Dirac delta function of two variables;
& (x—cp) & (y—dyy) are the first derivatives of delta-func-
tions of one variable.
Expressions (1) follow at executing a limit transition for

the concentrated force and moment (Fig. 2).
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Fig. 2. Models of concentrated force and moment

Thus, for the concentrated force, we obtain

a(x)= lim - H(v—a)-H(x-a-Ax)]-
=F8(x-a), 2)

where H(x—a); H(x—a—Ax) are the single Heaviside func-
tions.

For plates, such a limiting transition must be performed
for two directions. In this case, the Dirac delta function of two
variables will be represented as a product of two delta functions
of asingle variable [12]. Limiting transitions for the concentrat-
ed bending moments are performed in a similar fashion.

Expression (1) is a continuous, differentiable and inte-
grable function throughout the entire region occupied by the
plate. According to theory, the Dirac delta function and its
derivatives are determined as the limits of the corresponding
pulse functions [13]. This provision will make it possible to
accurately calculate limits sought, for example, by the trans-
verse forces, bending and torsional moments in plates. How-
ever, such a possibility comes only if the plate bending model
contains a procedure for double integration. In this regard,
the variational method by Kantorovich-Vlasov fully satisfies

this requirement. Equation for a bending of isotropic plates
is reduced to the form

0'w(x,y)

Ly d'w(x,y) . d'w(x,y)
oy’ ox’oy’ ox*

=q(x,y)/ D, 3)

where w(x, y) is the deflection of the midplane of a plate; g(x, v)
is the transverse load from expression (1); D=Eh3/12(1—u?)
is the cylindrical rigidity; E is the elasticity modulus of first
kind; % is the plate thickness; p is the Poisson’s ratio.

In the Kantorovich-Vlasov method, the kinematic and
static parameters of the plate are represented by a functional
series [14, 15]. For example, deflection and a bending mo-
ment take the form

w(x,y)=W,(y) X, (x)+
+W2(y)X2(x)+...=iwi(x,y); %)
Ay ==(1-n) 40, /2; (5)

where X;(x), i=1, o is the assigned system of functions from
variable x; Wi(y), i=1, « is the desired system of functions
from variable y.

It is convenient to consider, as the assigned system of func-
tions X;(x), the shapes of natural oscillations of a beam with
supports, similar to the conditions for supporting the edges,
parallel to the Oy axis (Fig. 1). The essence of mathematical
transformation of equation (3) in the Kantorovich-Vlasov
method is the substitution of a series (4) into equation (3), the
multiplication of both sides by the system of functions X;(x) and
the integration within the width of the plate from 0 to /;. We
receive a system of linear differential equations for the desired
functions Wi(y). At a pivot of longitudinal edges of the plate

Xi(x)zsiniﬂ, (6)

and the joint system of linear differential equations is split
into separate ordinary differential equations

W (y) =20 W(w)+ S W, (v)=a,(y)/ D;

W, (y) -2, W, w)+ S3W, (y) =4, (v) / D; (7

’EZZ_Bz‘/Ai; S?:Ci/Ai;

Iy
Qi(y)z_[Q(xVy)Xi(x)dX/Ai; ®)
y
A :_[Xf(x)dx,

B[ (o), )

Iy
C, :J-XiWXi (o) dux.
0



The system of functions Wi(y), Wa(y), ... is found as a
solution to equations (7) taking into consideration sup-
porting conditions at the edges of the plate, parallel to the
Ox axis (Fig. 1). Under condition for support of the plate,
different from a pivot, one can apply solutions to equations
(7). As shown in paper [1], the maximum error in the calcula-
tion results does not exceed 3.0 %. The complete solution to
equations (7) can be represented in a matrix form as follows
(here and below the indices of the terms in a series (4) are
omitted).

DW(y) A11 A12 _A13 _AM DW(O)
De(y) A21 A22 _A23 _A13 0)
M(y) Ay Ay Ay A, . (0)
Q(y) —Ay Ay Ay Ay Q(O)

where W(y), 0(y), M(y), Q(y) are the deflection, rotation
angle, bending moment, and transverse force of a condi-
tional beam that replaces the plate in the direction of the oy
axis. Two values for the initial parameters are known from
the conditions for supporting the edges of the plate, and
the other two initial parameters can be determined from a
boundary-value problem using the algorithm of BEM. In a
general form, function W(y) is determined from expression

DW (y)=A,(y)-DW(0)+A,(y)-D6(0)-

A, (5)QO)+ [ A, (- E)atde (10)

The function of a plate deflection w(x, y) is determined in
full, and other parameters of the bending are calculated via the
appropriate differentiation. Thus, at first integration (8) one
computes the limit of the function for variable x; at second inte-
gration (10) one calculates the limit of functions for variable y.
In general, it makes it possible to calculate the limit of functions
of two variables (transverse forces, bending and torsion mo-
ments) at singular points of the concentrated loads application.
Let us consider examples that confirm our conclusion.

4.2. A square plate with a hinged support along a
contour, loaded with concentrated force Fin the center

In this case, function X;(x) is defined by expression (6),
and the coefficients of differential equations (7)

an

r.=S.:

i i’

, = I,
where i is the number of a series (4) term; w; are the frequen-
cy of natural oscillations.

The fundamental orthonormalized functions of solu-

tion (9) and components of the load in Fig. 1 after all in-
tegration and transformation operations will take the form

&, = ychry; 0, =chry;
b, = shry; ¢, = yshry;
Ay =0, ~(1-p)ro, /2

Ay =(1-1)0, / 2+(1+1)d, / (2r);

(&)d(8), (9)

Ay =(ro,—0,)/(2r°A);
Ay =r(l+p)d, /2-(1-p)r’e, /2
Ay =0, +(1-1)70, /2;
Ay =0,/(24)+0, /(21A);
Ay =—(1-p)' A0, /2;

Ay = A[(1-1) 0, +(1-p)(3+1)ro, | /2

Ay =A[(1-) r'o,~(1-n)(3+1)r'e, |/2,12)

= FY ()0, (y=d;), 0. (y—d,), | /(2°4)+
yymy( o)+o,(y- ) /(2rA) +
M.y, (0)[r0,(y-d,), -0, (y-d,), ]/ (2rA);

_dF)++(1+M)¢3(y_dF)+:|/(2r)+
(@) ), +(1-n)0,(y~d,)]/ @r)+
+M.,,, ()] (1-1)ro, (y - d) +(1+1)o,(y-d,,), ]/ (2r);

B31:FYF(Q))|:(1_ )r¢1(
+Myymy co 2r¢Z Y- d

FYF((O)[q)z(y d ) ( —].1)7’(])4(y—d17)+/2]+
+MyYW © [(1"'“ 7¢3 y—d ) (1—H)72¢1(y—dm)+]/2+
MY, (0)[ 0, (v - -w)ro,(y-d,), /2};

Yp(o)=sin(inc, /1); v,, =sin(inc, /1).

In these expressions, the “+” symbol at the bottom of the
parentheses denotes a spline function of the following type

~ Oy(y_dF)S
0,(y-d;),. = {(y_dp)ch[r(y—dp)]r(y—df)> 0.

When programming, spline-functions are represented in
the following form:

(13)

¢1(y_dF)+=¢(y_dF)'H(y_dF)’ (14)
where H(y—df) is the single Heaviside function with a shift
to point dp.

The unknown initial parameters of function W(y) (10)
can be determined while solving the boundary value prob-
lem for a conditional beam using BEM [1, 16]. The system of
linear algebraic equations at initial data u=0,3, F=1, dr=1/2,
cr=l1/2, [{=I=1 will take the following form

A, —A, | [Pe)| |-B. (1)

-1 A, _A13 . DG(O) _ _321(1)
Ay AT B0 -
-4 -1 Ay Q(O) B“(l)

By determining, based on the solution to a systems of equa-
tions (15), the unknown initial parameters D0(0), Q(0), we



construct a series for deflection w(x, y) (4). Other parameters
are computed using the formulae form a plate bending theory.
Table 1 gives the results of calculating five terms of series (4),
(5), where there are no even terms since they are equal to zero.

Table 1
Values for deflections and moments in the hinge-supported
system
Number | Frequency of Deflection in the 1n§1‘1si1 iift‘}%lén c(;_n—
of aseries | natural oscil- | center of the plate ter of the plate
term lations w(l,/21/2) M, (I,/21/2)
1 0, =7 107,665-10" FI'D | 21,756-107F
3 0, =31 5,962-10~ FI’D 6,901-102F
5 ®, =5m 1,290-10“FI’D | 4,138-10°F
7 0, =71 0,470-10*FI'D 2,956-107%F
9 ®, =97 0,221-10FI’D | 2,299-102F
Y 115,609-10FI2D | 38,049-10F

The error (precise data are taken from reference books)
for deflections

A, =M.1oo%=0,34 %.
116,0

(16)

Values for the bending moments at a singular point are
missing in the scientific literature. Note that the error of
using a single term in a series from the Kantorovich-Vlasov
method [1] for a singular point is

38,049 21,759
A, =220 0 400 % =42,82%.
2 38,049

an
4. 3. A square plate, rigidly fixed along a perimeter,
loaded with concentrated force Fin the center
Under these conditions, |S|>|r|; the frequencies of nat-
ural oscillations of a beam with rigidly fixed supports are
given in Table 2.

Table 2

Dimensionless frequencies of natural oscillations

| Conditions for supporting the beams

w4
| Do
11 I-1 -1

o, =4,730040745 =3,926602312

w, =10,99560784 | ,=10,21017613 ®, =31

o, =23,56194490 | o, =16,49336143 o, =57

o, =23,56194490 | w, =22,77654673 o, =7n

o, =29,84513021 | o, =29,05973204 w, =971

The assigned system of functions for a beam with rigidly
fixed supports is described by the following expression [1]

X (x)=sin(wx /1,) sh(ox /1,)-

-a, [cos(mx/ll)—ch(oax/h)], 18)

where coefficient a,=(sinow—shw)/(coso—chw).

Fundamental functions and expressions from the exter-
nal load in a given case take the form

($?+7%)/2; B=/($*-7")/2;

o, = choysinBy; ¢, = choy cosBy;

¢, =shoycosBy; ¢, =shaysinPy;

Ay =0,~(1-p)r*0, /(20B);

—pr’)o, /(2BS?)+(S* +ur*)o, /(205%);
Ay =0,/(20BA); A, = (00, -Bo,) /(2085 A);
Ay = (52 )0, / (20)=(S" ), / (2B);

Ay =0,+(1-p)r’e, (20B);

Ay, = (00, +PB0,) / (20BA);

Ay = A[ur4(2_u)_54]¢4 /(20‘[3);

(19)

Ay :(52

Ay, =A[-S"+2(1
+A[ S +2(1-p) S —pr

—)S7 +p’rt o, /(28S”)+
10, /(208%);

A, =A[-S"+2(1-
—A[ ST +2(1-p) %

WS +urt o, /(28)-
i ]¢3 /(2(1);

+), —Boy (y—d,), |/ (2085°A)+
/(20BA)+

d,). —Bo;(y—d,). | /(2085 4);

B, =Fy; (“’)[0“1)1( -d
MY, (0)0,(y-d,),
+Mx’me( )[a¢1(

=Fy,(0)o,(y- ) /(2084)+
+My'ymy co)[oc ), +Bos (v —d )] (20BA)+
+M.Y,. ( )¢4( ) (20([514);

_ © (52*'“72)0‘4)1( - F) +
B, =Fy,( )[ (5% )0y d)] /(20B5%)+
20([3(1)2(]/—(1,")
I (y_dm)+]/(zas>+
. (SQ—urz)(x¢1( -d,) +

B41 = FYF ((D)[q)z (y _dF)+ _(1_1/[)724)4 (y_d)r)+ /(ZOLB)]"'
($*+ur’)o,(y—d,), /(20)- N

Mo ){—(52—ur2)¢1(y—dm)+/(2ﬁ)]

+M.,, (0)[0,(y-d,), ~(1-w)r*0,(y—d,), / (2aB) ;

¥Yr(®)=sin(oc, /1)-sh(oc, /1,)-
—a.[ cos(wc, /1,)-ch(owc, /1)];



Y,y (®)=sin(wc, /1)-sh(wc, /1)-
—oc*[cos(cocm /1)-ch(ac, /ll)];

—cos(ac,, /1)+ch(wc, /1)

o) m{—(x*[sin(wcm /1) +sh(wc, /11)]} '

o. =(sino - sho) / (cos ® — chw).

The boundary-value problem for determining the un-
known initial parameters of the rigidly fixed beam, accord-
ing to the BEM algorithm, will take the form (u=0,3, F=1,
dF:l/2, CF:I1/2, 1121:1).

a, | M@ B0

_A23 _A13 ) Q(Z) _ _321(1) ' (20)
-1 A22 A12 M(O) Bg1 (l)
-1 A, A Q(O) B41(l)

Similar to the first example, we calculate values for the
deflection and bending moments in a rigidly fixed plate for five
terms from a series (4). Table 3 gives the results of computations
derived using the MATLAB programming environment.

Values for deflections and bending moments in a rigidly fixed plate

Consequently, the application of a single term in a
series of Kantorovich-Vlasov is acceptable (an error of
5.35 %) if the plate’s points are not singular. At singular
points, the error of using a single term from a series is high
(44 %); therefore, here it is necessary to keep at least five
terms of a series.

5. Discussion of results of studying the stressed state of
plates at singular points

The research reported in this paper demonstrates that
a precise, mathematically rigorous model of concentrated
loads makes it possible to determine, at high accuracy, the
stressed state at the singular points of plates, which cannot
be performed using the existing methods. This is the great
advantage of the proposed approach. It has become pos-
sible to obtain the qualitative and quantitative estimates
of the stressed state of different plate structures, which
directly affects characteristics such as strength, durability,
reliability, maintainability, and reliability. From this point
of view, our work is useful in the design, manufacture, and
operation of machine-building and other structures. The
proposed approach could be developed with respect to
shells and shell structures.

Construction of precise models of the
concentrated external loads using the
Dirac delta function and its derivatives in
the variational Kantorovich-Vlasov meth-

Table 3

Bendi . ) od makes it possible to calculate the limits

. . endmg moment in Bendmg moment . A
Number | Frequency | Deflectioninthe | supporting cross|  in the center sought by the internal force factors of thin
of aseries| of natural | center of the plate section of the plate plates at singular points. The calculations

illati 1 /21/2 i i i
term oscillations w(l, /2,1/2) M, (1, /2,0) M, (1, /2.0/2) perforr.ne.d have confirmed this conclusion.
Existing elementary models for calcu-
1 o, 51,52-10"FIt /D | -11,897-107F 19,212-10°F lating the stressed-deformed state of plates
3 o, 380510 A’ / D 0.314-10F 6.148-10° F do not provide for the pqssibility to compute
— - - the stressed state at points where the con-
5 @5 0,999-107F /D | —0,0096-10"F 3,877-10°F centrated loads are applied. Therefore, the
7 o, 0,391-10"FI> /D | —-0,000266-102F 2,819-102F proposed solutions are substantially more
019110 F2 /D S S accurate to reveal those concentrations of
9 ® o / —6,208-10"F 2215107 F stresses that occur at singular points.
> 56,966-10"FI’ /D | -12,221-10°F 34,272-10*F It is worth noting that in this paper in
the analysis of the stressed state of thin
plates there are almost no constraints for
The error for deflections the design of machines and mechanisms, their geometry and
materials. This is explained by the great versatility of the
56,996 — 56,0 i i i

= 100%=1,78%. 1) proposed solutions to the problems on bendlng thin pla?es.

: 56,0 The paper presents the analytical solutions to the differ-

For the bending moment in the supporting cross section

A = -12,221+12,57

100%=2,78%.
4 12,57

(22)

The error of applying the first term from the Kantor-
ovich-Vlasov method is, for a non-singular point,

A, = ZIBITHIZST 4000 5 350, (23)
12,57
for a singular point
Asz&OO%:@,%%- (24)

34,272

ential equation of a thin plate bending for special cases of the
external load. For this reason, they are among the most effec-
tive representations of the considered problems. The disad-
vantages of these solutions come down to large cumbersome
resolving equations compared to existing solutions to the
problems on plate bending. Therefore, programming these
models requires special care and careful adjustment of ready
programs. We note that these difficulties can be overcome.

A given technology could be applied for the calculation
of various shells with respect to the effect of concentrated
loads. In this case, significant mathematical difficulties
emerge when building the appropriate solutions compared to
plates. However, the theory of shells has gained much experi-
ence in building analytical models, which allows us to argue
on the possibility to overcome these difficulties.



6. Conclusions

1. We have constructed strict mathematical models of
concentrated forces and moments as an external transverse
load on plates using the Dirac delta function and its deriva-
tives from two variables. This makes it possible to take into
consideration, qualitatively and quantitatively, the concen-
trated loads when calculating the stressed state of plates at
singular points.

2. A one-dimensional plate bending model has been
built based on the variational Kantorovich-Vlasov method.
The derived model allows the simplification of the proce-
dure for obtaining an analytical solution to the Cauchy
problems for plates.

3. We present an analytical solution to the one-dimen-
sional model of plate bending (a solution to the Cauchy
problem) in a matrix form. That opens up the prospect for
applying the algorithm of a numerical-analytical variant of

the boundary elements method in order to solve the bound-
ary value problems on plate bending.

4. Calculations of deflections and bending moments at the
singular points of plates have been performed when solving
the boundary value problems applying the BEM algorithm in
the MATLAB programming environment. It has been shown
that a combination of the one-dimensional model of plate
bending and a mathematically rigorous model of external
loads in the variational Kantorovich-Vlasov method makes it
possible to qualitatively and quantitatively estimate the mag-
nitudes of stresses at the singular points of plates.

5.1t is shown that the accuracy of the calculations is
high enough, in particular the accuracy of determining the
deflections at the singular points of plates does not exceed
2.0 %, and for bending moments — 3.0 %; one cannot be lim-
ited to using only the first term in a series of the variational
Kantorovich-Vlasov method; the error reaches 43—-44 %. It is
required to keep at least five terms of the series.
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