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1. Introduction

The most common type of transmission mechanisms 
in machines and assemblies are the toothed gears. When 
transferring the torque, the engagement is exposed to 
the action of a normal force (Fn)) and a friction force 
(Fs), which is associated with sliding (Fig. 1). Under the 
influence of these forces, the tooth enters the complex 
stressed state. The decisive effect on its efficiency is exert-
ed by contact stresses (σH) and bending stresses (σF) that 
change over time in line with a certain intermittent cycle 
initiated from zero. Alternating stresses are the cause for 
a fatigue failure of teeth: the fracture of teeth that are ex-
posed to the bending stresses and the spalling of working 
surfaces of teeth due to the contact stresses. The contact 

stress and friction in the gearing are also associated with 
wear, seizing, and other kinds of damage to the teeth 
surfaces. Because the contact stresses are the cause of a 
fatigue failure, the basic criterion of efficiency and calcu-
lation of closed transmissions is the contact strength of 
teeth working surfaces ( maxσ ).

However, when calculating the active surfaces of teeth 
for contact strength, the influence of a lubricant is almost 
ignored. Instead, a factor of the lubricant effect is introduced 
to the calculation, whose value as a random variable is ac-
cepted in most cases equal to unity. Therefore, it is a relevant 
and practically interesting to calculate toothed gears for 
contact strength of the active surfaces of teeth considering 
the effect of lubrication and a friction factor between the 
conjugated surfaces of teeth.
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DOI: 10.15587/1729-4061.2018.142621Основними критерiями працездатностi переважної 
бiльшостi зубчастих механiзмiв є контактна витри-
валiсть сполучених поверхонь зубiв i згинальна витри-
валiсть нiжок зубiв. При цьому розрахунок по контак-
тним напруженням є основним з точки зору визначення 
геометричних розмiрiв зубчастих механiзмiв, а розраху-
нок на вигин зубiв є перевiрочним.

Як вiдомо, для продовження довговiчностi i збiль-
шення працездатностi та несучої здатностi зубчастих 
механiзмiв використовуються рiзнi мастильнi матерiа-
ли. Однак через недостатнє вивчення питання впливу 
мастила на контактну витривалiсть активних повер-
хонь зубiв в традицiйних методах розрахунку зубчастих 
передач (наприклад, згiдно з ГОСТ 21354-87) коефiцiєнт 
впливу мастила прирiвнюється до одиницi, тобто роз-
глядається iдеальний випадок, коли тертя вiдсутнє. 
Такий пiдхiд призводить до неточної оцiнки несучої здат-
ностi зубчастих передач, що може виявитися як при-
чиною їх передчасного виходу з ладу, так i привести до 
завищення їх геометричних розмiрiв.

В роботi вирiшена контактна задача стикання двох 
тiл довiльної форми, близьких до напiвплощин при кiнце-
вому коефiцiєнтi тертя i було встановлено, що значення 
отриманої контактної напруги перевершує напругу, яка 
обчислена згiдно з вiдомим рiшенням Герца на 6 %. 

Запропонована методика розрахунку зубчастих 
колiс на контактну мiцнiсть при кiнцевому коефiцi-
єнтi тертя, без припущень про малiсть дiлянки дотику 
i форми кордонiв, дозволяє оцiнити здатнiсть наванта-
ження зубчастих передач з урахуванням впливу масти-
ла i наявностi тертя мiж сполученими поверхнями зубiв.

Отримано аналiтичний вираз для коефiцiєнта впли-
ву мастила на пiдставi рiшення контактної задачi 
тиску жорсткого штампа на пружну напiвплощину за 
критерiєм коефiцiєнта тертя мiж сполученими поверх-
нями зубчастих передач. Це дозволяє оцiнити справж-
ню навантажувальну здатнiсть зубчастих передач при 
впливi рiзних мастильних матерiалiв, що має важли-
ве теоретичне i практичне значення при проектуваннi 
машин i агрегатiв

Ключовi слова: коефiцiєнт впливу мастила, коефiцi-
єнт тертя, контактна напруга, дотичнi напруження, 
комплекснi змiннi, бiгармонiчна функцiя
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2. Literature review and problem statement

Paper [1] has devised a procedure for calculating the 
contact strength of toothed gears with respect to friction 
between teeth, and derived analytic expression to estimate 
the influence of a lubricant on their load capacity. However, 
the authors failed to account for the effect of the maximum 
shear stress on geometrical parameters of the toothed gears.

Study [2] developed a procedure for designing toothed 
gears, which uses maximum surface shear stresses as the 
estimation to assess the fatigue spalling processes. These 
stresses, in addition to the geometrical and mechanical pa-
rameters of toothed wheels, take into consideration the tri-
bological properties of contact at the active surfaces of teeth. 
However, the geometrical parameters of a toothed gear are 
determined depending on the molecular effect of a friction 
coefficient, while the influence of the deformation action has 
not been studied.

Article [3] constructed an algorithm and developed 
software for detailed study into the impact of friction on 
the strength characteristics of regular toothed gears. This 
creates the prerequisites for taking the friction forces and 
load factors of the teeth into consideration in the form that 
most closely corresponds to actual conditions. The analysis 
performed shows that when taking the friction into account 
the dependences of forces and moments in toothed gears are 
the nonlinear functions that depend on the angular coordi-
nate of the driving wheel and the current values for friction 
coefficients between teeth and in supports. In this case, the 
nature of non-linearity is determined not only by the kind of 
friction forces, but mainly by a change in the parameters of 
engagement when moving from a two-pair contact between 
teeth to the one-pair contact. However, the authors did not 
consider the influence of friction forces on load capacity of 
the toothed gears.

Paper [4] addressed the conditions for contact between 
cylindrical toothed gears, as well as the technological meth-
ods of influence when forming the involute surface of teeth, 
at which the teeth of one gear slip relative to the profile of 
the conjugated wheel and the friction-slip forces. The loss of 
energy for friction in the toothed gears reaches 10 % of the 
total energy loss to overcome friction. It is shown that in the 
force calculation of cylindrical toothed wheels it is necessary 
to take into consideration, in addition to dynamic loads, the 
efforts of rolling friction-slip in the toothed gears. However, 
the paper lacks the mechanism of influence of lubricants on 
load capacity of toothed gears; also, insufficiently studied is 
the interaction between contact-hydrodynamic parameters 
in terms of the friction factor.

Article [5] describes engineering methods, developed 
by the authors, for the calculation of geometrical parame-
ters for a contact between smooth bodies of arbitrary shape 
and curvature in the presence of elastoplastic deformation 
in the contact area. The paper describes a procedure for 
applying the estimation dependences in order to solve 
engineering problems related to analysis, interpretation, 
and prediction of contact deformation at static and impact 
force interaction between machine components. However, 
the authors failed to account for the maximum shear stress 
associated with sliding.

Study [6] reports the necessary information about 
the materials and geometry of toothed gears, technolog-
ical and operational requirements, disregarding which 
makes it impossible to perform calculations in line with 

modern techniques. The peculiarities in the calculation of 
efficiency of toothed gears are given, with respect to the 
malleability of their links. However, the author did not 
examine the influence of a friction force on load capacity 
of the toothed gears.

Paper [7] describes results of the finite element calcula-
tion of the contact interaction between two elastic circular 
cylinders of finite length with intersecting axes as a model of 
contact interaction between teeth of the involute straight-
tooth toothed gear when the axes of the toothed wheels are 
skewed. It was established that the determining factor that 
breaks, when skewed, the Hertz relationships between the 
contact parameters, and which significantly affects its load 
capacity, is the ratio of the summary vector of the assigned 
load to the length of the contact area in the direction of 
forming cylinders. However, the simultaneous action of 
normal and tangential forces, associated with the relative 
sliding of teeth, was not considered in the paper.

Study [8] dealt with issues related to ensuring the resis-
tance to the contact fatigue in the highly stressed toothed 
wheels in the transmissions of auto tractor vehicles. The 
influence of the microstructure of strengthened surface lay-
ers on resistance to the contact fatigue of cemented toothed 
wheels is shown. There is a procedure for the calculation and 
prediction of the toothed wheels’ resource with respect to 
the quality of the structure of strengthened layers. The au-
thors considered methods for determining the hardenability 
of cemented construction steels. They gave recommenda-
tions for choosing rational parameters for the technologi-
cal regimes in the chemical-thermal treatment of toothed 
wheels in energy-intensive machines with high performance 
characteristics. However, the authors failed to study the 
stressed-deformed state of toothed gears when there is fric-
tion between the teeth of toothed gears.

Paper [9] provides the basic concepts of the mathemat-
ical theory of elasticity, and derives complete systems of 
equations, as well as proves the assumptions on these equa-
tions. In [10, 11, 14–17], there are basic data on the calcula-
tion and design of toothed gears and their components based 
on the main criteria for their operation efficiency. Studies 
[12, 13] report results obtained in the course of experimental 
study on the evaluation of influence of various parameters on 
a friction coefficient.

Paper [18] gives a comparative estimation of the service 
life of cylindrical toothed gears based on the two basic crite-
ria of efficiency ‒ the contact and flexural strength of teeth. 
However, the author did not study the influence of lubrica-
tion on load capacity of the toothed gears. 

In works [19–21], in order to determine a factor of in-
fluence of lubrication KL on contact endurance of the active 
surfaces of teeth, a probabilistic calculation method was em-
ployed. However, only the mathematical expectation and the 
variance coefficient KL were taken into consideration rather 
than the estimation of the factor itself. 

Thus, the issues on the influence of friction force on load 
capacity of the toothed gears under the influence of various 
lubricants remain to be solved.

3. The aim and objectives of the study

The aim of this work is to devise a procedure for calcu-
lating the toothed gears for contact strength with respect to 
friction between the teeth and the influence of lubrication.
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To accomplish the aim, the following tasks have been set:
– to reveal the mechanics of change in shapes and di-

mensions in a contact between two bodies of arbitrary shape, 
close to half-planes;

– to solve a boundary problem on the pressure of a rigid 
stamp on the elastic half-plane in the presence of friction;

– to derive a holomorphic relationship between a contact 
stress and a friction coefficient;

– to derive an analytical expression to estimate the in-
fluence of a lubricant on the load capacity of toothed gears 
for contact stresses.

4. A problem on the contact between two bodies in the 
shape of half-planes given the finite friction coefficient

The existing calculation procedure for toothed gears 
in terms of contact stresses is based on the Hertz formula, 
derived from the solution to the contact problem from elas-
ticity theory under certain restrictive assumptions:

– the area of contact between surfaces is very small;
– the friction coefficient between the conjugated surfac-

es is zero;
– given the appropriate choice of coordinate axes, the 

equations of non-deformed surfaces in the vicinity of a con-
tact place can be at sufficient approximation represented in 
the form

2 2.2z Ax Bxy Cy= + +

This paper examines the issue on solving the problem on 
the contact of two bodies of arbitrary shape, close to half-
planes. When transferring the torque, the engagement is 
exposed to the action of a normal force (Fn)) and a friction 
force (Fs), which is associated with sliding. Friction force 
occurs when the toothed wheels’ wheel profiles slide relative 
to each other. At the engagement pole, the friction forces are 
zero, but at the stem and top of the teeth they are maximal. 
Therefore, a slip velocity is proportional to the distance be-
tween the contact point and the pole. The sliding is accom-
panied by friction. Friction causes losses in the engagement 
and leads to tooth wear.

In the drive teeth, friction forces are directed from the 
initial circle, and in the driven ones ‒ vice versa. At the 
constant diameters of wheels, the distance between the 
points of start and end of the engagement and the pole, 
and hence the slip velocity, increases with an increase in 
the height of the tooth or the engagement module. The 
low-module wheels with a larger number of teeth the slid-
ing is smaller while the performance efficiency is higher 
than that of the large-module wheels with a small number 
of teeth. 

Therefore, taking into consideration the presence of lu-
brication and friction at the conjugated teeth surfaces, the 
refined solution to the problem on contact between two bod-
ies in the shape of half-planes at the finite friction coefficient 
is of practical importance.

In this case, the stated problem is a two-dimensional 
analog of the Hertz problem without assumptions about the 
smallness of the contact area and the shape of borders [9]. 

It is known that the load permissible in terms of the 
contact strength of teeth of the toothed wheels is defined ba-
sically by the hardness of a material. For a better joint work 
of teeth, it is typically recommended to assign the hardness 

of a gear that would exceed the wheel’s hardness by not less 
than 10‒15 Brinell units [10, 11]

( )1 2 10 15 .HB HB≥ + …  	 (1)

Fig. 1. Forces that act in the engagement of toothed wheels’ 
teeth

This circumstance makes it possible to consider the 
conjugation of the surfaces of teeth of toothed wheels as the 
two elastic bodies ( 1S  and 2S ), similar in their shape to half-
planes, which are in contact along sections " "ab  (Fig. 2). The 
upper and bottom neighborhoods are to be distinguished by 
signs ( )+  and ( )− , respectively.

It is believed that the predefined or known conditions 
are the following:

– the shape of borders prior to deformation;
– the principal vector of external forces that pressed 

body 1S  to body S2;
– strains and rotations of 1S  and 2S  at infinity are zero;
– coefficient of friction between the conjugated surfaces 

is non-zero, and has the finite value f; 
– the section of contact ab is to be determined; 
– body 1S  takes the lower half-plane, and body 2S  the 

upper one S+.
Assume that at the border of the elastic half-plane, be-

neath the surface of the gear’s tooth (stamp)

,f qτ = ⋅  	 (2)

where q is the specific pressure; τ is the shear stress; f is the 
friction coefficient, considered constant. 

Direct the Ox  axis along the border of the elastic half-
plane, and the Oy  axis ‒ perpendicular to it, so that the 
elastic body takes the lower half-plane 0.y <  It is obvious 
that with this choice of axes

;yq y−= −  .yX −τ = 	  (3)

It is expected that the gear’s tooth (stamp) comes into 
contact with a tooth of the wheel (elastic half-plane) along one 
continuous section L ab=  and can move only translationally. 

It is considered that the assigned magnitude of the total 
pressure of a gear’s tooth (stamp) at the surface of the tooth 
of the wheel (half-plane)

( )Ó d ,
L

q q t t= ∫ 	  (4)

In this case, the total tangential stress is, obviously, 
τΣ=f·qΣ; the principal vector of external forces acting on 
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the gear’s tooth (stamp) and balanced by the reaction of the 
tooth (elastic half-plane) is 

( ) ( )Ó Ó, .x yF F q= τ −

We believe that bodies 1S  and 2S  are matched with 
complex variable functions ( )1Ф z  and ( )2Ф .z  The bound-
ary conditions of our problem then take the form [1], [9]:

( ) ( )
( )

( ) ( )

on ,

‒ const on ,

0 on ,

t fq t L

v f t L

t q t OX

τ =


= + 
τ = = 

	  	 (5)

where t  is the abscissa of the point along the ;Ox  ν is the 
projection of displacement onto the ;Oy  ( )f t  is the as-
signed function that defines the gear’s tooth profile (stamp); 

( )y f x=  is the equation of the tooth’s profile.

Fig. 2. Estimation scheme to build the refined method for 
calculating toothed gears in terms of contact strength

Next, the biharmonic function ( ),U x y  of two variables 
x and y is represented by means of two functions of the com-
plex variable

z x iy= +  and .z x iy= −

In this case, the equilibrium equation takes the form

1
‒ ,

2
U U x U y

i U
z x z y z x y

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

1
.

2
U

i U
z x y

 ∂ ∂ ∂
= + ∂ ∂ ∂ 

	 (6)

For x  and y

,
U

i U
x z z

∂ ∂ ∂ = +  ∂ ∂ ∂
 

.
U

i U
y z z

∂ ∂ ∂ = −  ∂ ∂ ∂
	  (7)

The consequence of these formulae is the expression of 
second derivatives, the Laplacian and the biharmonic op-
erator

2 2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2

2 2

2
2

2

4
2

2 2

2 ,

2 ,

,

4 ,

16 .

U
U

x z z z z

U
U

y z z z z

U
i U

x y z z

U
U

z z
U

U
z z

 ∂ ∂ ∂ ∂
= + +  ∂ ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂ = − − + ∂ ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ = −  ∂ ∂ ∂ ∂  
∂ ∇ =

∂ ∂ 
∂ ∇ =

∂ ∂ 


 	 (8)

With respect to displacement vectors

2
2 4 ,

U
U

z z
∂

∇ =
∂ ∂

 

( )2‒ 4 ,U it z∇ + = ψ  ( )2 4 ‒U it z∇ − = ψ

from these equations

( ) ( )
2

2 2
2

.
1 U

U z z
z z

∂
∇ = = ψ + ψ

∂ ∂

The integration for ,z  that introduces the additively in-
bound function from ,z  denoted as ( ),z¢χ  produces

( ) ( ) ( )‒ .2
U

z z z
dz
∂

= ψ + ¢ψ + χ

Another integration leads to the desired representation 

( ) ( ) ( ) ( )2 .U z z z z z z= ψ + ψ χ + ¢χ¢+

The function, introduced to the right side while integrat-
ing for z , is equal to ( )* ,zχ  because U is the real function. 

Then

( ) ( ) ( ) ( )1
‒ .

2
U z z z z z z¢ = ψ + + χ¢ψ χ +  	  (9)

This formula was first given by Goursat. Hereafter, we 
shall use for function U  another expression, the expressions 
for its partial derivatives. 

It is easily calculated

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 ,

2 .

U
z z z z

x
U

i z z z

z z z z

z z z zz
y

∂ = ψ + ψ + + +¢ ¢ ¢ ∂ 
∂   = −ψ + ψ + − +¢ ¢ ¢  ∂

ψ ψ χ + χ¢

ψ ψ χ − χ


¢
 (10)

Instead of considering expressions for 
U
x

∂
∂

 and 
U
y

∂
∂

, it  
 
is more convenient to consider the expression for complex 
combination

( ) ( ) ( ),U U
i z z z z

x y
∂ ∂

+ = ψ ¢+ ψ + ϕ
∂ ∂

 	 (11)

here for brevity we put it as 

( ) .
d

z
dz

χ
ϕ =
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It should be noted that any expression of the form (9) 
represents a biharmonic function if ( )zψ  and ( )zχ  are the 
holomorphic functions of the complex variable z. 

Indeed, by differentiating the first equation (10) for x 
and the second one for y and summing, we obtain

( ) ( ) ( )2 ‒ 4 ,U z z Re z ¢ ¢ ¢ D = ψ + ψ = ψ    	 (12)

hence it follows that ΔU is the harmonic function. Therefore,

( )2 0.U U= D D =D

Under effort ( nX ,ds  nY ds), acting on element ds of the 
contour’s arc ab  from the side of a positive normal ( nX

,ds  nY ds): 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2

2 2

2

cos , cos ,

cos , cos , ,

cos , cos ,

cos , cos , .

n x y

n x y

X X n x X n y

U U
n x n y

y x y

Y Y n x Y n y

U U
n y n x

y x y

= + =


∂ ∂ − − ∂ ∂ ∂ 


= + = 
∂ ∂ = −
∂ ∂ ∂ 

 	 (13)

One can easily see

( ) ( )0cos , cos , ,
dy

n x t y
ds

= =

( ) ( )0cos , cos , ‒,
dx

n y t x
ds

= − = −

where 0t  is the positive direction of the tangent. By intro-
ducing these values to (13), we obtain the abscissa of the 
point along axis ;Ox

,n

d U
X

ds y

 ∂
=  ∂ 

 ,n

d U
Y

ds x
∂ = −   ∂

 	 (14)

or, in the complex form

n n

d U U d U U
X iY i i i

ds y x ds x y

   ∂ ∂ ∂ ∂
+ = − = − +   ∂ ∂ ∂ ∂   

 	 (15)

or

( ) .n n

U U
X iY ds id i

x y

 ∂ ∂
+ = − + ∂ ∂ 

 	 (16)

With respect to this expression in formula (15), we 
obtain

( ) ( ) ( ) ( ) .n nX iY ds id z z z z + = − ψ + ψ + ϕ ¢  	 (17)

If we give the element ,ds  first, the direction of axis ,Oy  
and then the direction of axis ,Ox  we obtain 

,ds dy=  ,‒dz idy=  ,‒dz idy= −  ,‒nX X=  ,n yY X=

,ds dx=  ,‒dz dz dx= =  ,‒n yX X= −  .n yY Y= −
 

( ) ( ) ( ) ( ),‒ x yX iX z z z z z+ = ψ + ψ − ψ −¢¢ ¢ϕ¢ ¢  	 (18)

( ) ( ) ( ) ( ).y yY iY z z z z z− = ψ + ψ + ψ +¢¢ ¢ϕ¢ ¢  	 (19)

Adding and subtracting equations (18) and (19), and 
replacing in the second result i with –i, we obtain

( ) ( ) ( )

( ) ( ) ( )

2 4

4 2 ,

x yX Y z z Re z

Re z z z

¢ ¢ ¢ + = ψ − ψ = ψ = 
 = Φ = Φ + Φ  	 (20)

( ) ( )
( ) ( ) ( ) ( )

2 2

2 ,

y x yY X iX z z z

z z z z z

 − + = ψ + ϕ = 
 = − Φ − Φ − Φ

¢ ¢

¢ 

¢

	  (21)

 ( ) ( ) ( ) ( )‒Ф .Ф Фy yY iX z z z z z− = − ¢+ −  	 (22)

The principal vector (resultant force) acting on the finite 
arc ab, and the main moment ( )M  of the examined efforts 
relative to the coordinate origin, take the form:

( )

( ) ( ) ( )

d

,

n n
AB

b
b

a
a

X iY X iY s

U U
i i i z z z z

x y

+ = + =

 ∂ ∂  = − + = − ψ + ψ + ϕ ∂
¢ ∂ 

∫

	 (23)

( )d ,n n
ab ab

U U
M xY yX s xd yd

x y

 ∂ ∂
= − = − + ∂ ∂ 

∫ ∫

hence, by integrating by parts, we find: 

‒

d d

.

b

aba

b
b

a
a

U U U U
M x y x y

x y x y

U U
x y U

x y

   ∂ ∂ ∂ ∂
= − + + + =  ∂ ∂ ∂ ∂   

 ∂ ∂
= − + + ∂ ∂ 

∫

 	 (24)

Note

,
U U U U

x y Re z i
x y dx y

  ∂ ∂ ∂ ∂ + = −  ∂ ∂ ∂   

( ) ( ) ( )U U
i z z z z

dx y
∂ ∂

− = + ¢ψ ψ + ϕ
∂

and 

( ) ( )U Re z z z = ψ + χ   

then we finally obtain 

( ) ( ) ( ) .
b

a
M Re z z z z z z = χ − ϕ − ⋅ ψ ¢  	 (25)

In order to express the stress and displacement com-
ponents in the integrated form, we apply the following 
formula

( ) ( ) ( )
* *

*
* *

2 2
2 ,

U U
u iv i z

dx y

λ + µ ∂ ∂
µ + = − − + ψ ∂ λ + µ 

 	 (26)

according to formula (11)

( ) ( ) ( ) ( ) ( )* * ,2 ‒u iv z z z z zµ + = χ Φ − Φ − − Φ¢  	 (27)

where 
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* *
*

* *

3
3 4 ,‒

λ + µ
χ = = − ν

λ + µ
 

* *,‒µ λ  are the first and second Lamé parameters:

( )( ) ;
1 1 2

E∗ ν
λ =

+ ν − ν

( )2 1
E∗µ =
+ ν  

(here: E is the Young modulus, ν is the Poisson ratio).
At the above assumptions and denotations, the boundary 

conditions (5) can be recorded as:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )* * *

1 1

1 1 ,

4 .

if t if t

if t if t

t t t t i f t

+ +

− −

− + + −

− Φ + + =

= − Φ + +

χ Φ +

Φ
Φ 
Φ ΦΦ − ¢χ = µ − 

 	 (28)

The first equation in the system of equations (28) shows 
that the function

( ) ( ) ( ) ( )1 1if z if z− Φ + + Φ

is holomorphic over the entire plane and, since it must vanish 
at infinity, then over the entire plane

( ) ( ) ( ) ( )1 1 0.if z if z− Φ + + Φ =  	 (29)

By expressing ( )Ф z  via ( )Ф z  and introducing (28) to 
the second equation (28), we obtain the boundary condition 
for ( )Ф z

( ) ( ) ( )0Ф Ф ,t g t f t+ −= + 	  (30)

where 

( )
( )

* *

* *

1 1
;

1 1

if
g

if

χ + + χ −
= −

χ + − χ −

( ) ( ) ( )
( )

*

0 * *

4 1
,

1 1

i if f t
f t

if

µ +
=

χ + − χ −
¢

noting that * 1χ >  and 0,f >  the previous expressions can 
be simplified by introducing a constant *,α  defined from 
conditions

*
*

*

1 1
arctg ,

1
f

 χ −
α =  p χ + 

 *0 0,5.≤ α ≤  	 (31)

Then

( )

( ) ( ) ( ) *

*

* *

*
2 2* 2 *

*

1 1

1
1 1 ,

cos‒

i

i

if

e
f e

±p α
±p α

χ + ± χ − =

χ +
= χ + + χ − =

pα

and, consequently,

*2 ,ig e p α= −  

( ) ( ) ( ) ( )
**

0 *

4 1 cos‒
‒ .

1

ii if f t e
f t f t

p αµ + p
=

+
¢

α
χ

¢
	 (32)

From the accepted condition (0 1,c≤ ≤  where с is a positive 
constant) one must take the value of the logarithm for which

0 1.
2
lng

Re
i

≤ <
p

Hence, for condition 2 ie gp γ =  

*1
.

ln
2 2

g
i

γ = = + α
p

	  (33)

To solve this problem, we shall apply the Cauchy-type 
integral

( ) ( )
0

d1
,

2

b

a

f t t
F z

i t z
=

p −∫  	 (34)

where ( )0‒F z  is a piecewise holomorphic function. Accord-
ing to the Liouville’s theorem, ( ) const.F z C= =  in all planes. 
Then the general solution to the problem is determined in 
the form ( ) ( )0 ,F z F z C= +  meaning

( ) ( )d1
,

2

b

a

f t t
F z C

i t z
= +

p −∫  	 (35)

where ( )f t  denotes a surge ( )F z  along the line of surges 
L, that is

( ) ( ) ( ),f t F t gF t+ −= − 	 (36)

and C is a constant.
If the pole of an arbitrary order is at infinity, the par-

ticular solution to problem ( )0X z  can be found from the 
following equation

( ) ( ) ( ) 1

0
1

.
n

j j
i

X z z a z b
−γ γ −

=

= − −∑  	 (37)

If we trace the evolution of argument ,nz a−  or ,nz b−  
when z  originates from point t  of the arc, n na b  describes a 
closed path consisting of the lengths of arcs of the upper and 
lower half-planes

( ) ( )
( ) ( )

2
0 0

2
0 0

,
‒

.

i

i

X t e X t

X t e X t

− − p γ +

+ p γ −

= 
= 

	  (38)

For the solution to the homogeneous problem, which 
may have a pole at infinity, the function ( )0X z  must satisfy 
condition [9]

( ) ( )0 0 ,X t gX t+ −=

hence

( )
( )

0

0

.
X t

g
X t

+

−=

By introducing this expression to boundary condition (36), 
we obtain

( )
( )

( )
( )

( )
( )0 0 0

.
F t F t f t

X t X t X t

+ −

+ − +− =

Then
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( ) ( ) ( )
( )( ) ( )0

0 0
0

d
.

2

b

a

X z f t t
F z C X z

i X t t z+= +
p −∫ 	  (39)

In this formula, expression ( ) ( )
* *1 1

2 2z a b z
− −α − +α− −  could 

be taken as the function ( )0X z

( ) ( )
( )( ) ( )

( ) ( ) ( )

( ) ( )

*

* *

* *

* *

*

1 1
* 2 2

1 1
2 2

0
1 1
2 2

2 1 cos‒

1

,

i

b

a

if e
Ф z

z a b z

t a b t
f t dt

t z

C

z a b z

p α

+α −α

+α −α

+α −α

µ + pα
= ×

p χ + − −

− −
×

−

¢ +
−

+
−

∫

	 (40)

where 0C  is a constant, and ( ) ( )
* *1 1

2 2z a b z
+α −α− −

 
implies a 

branch, holomorphic outside segment ab  and acquiring 
on the upper side of this segment the valid positive values 
( ) ( )

* *1 1
2 2 .t a b t

+α −α− −  The specified branch is characterized by

( ) ( )
* *

*

1 1
2 2

m .li i

z

z a b z
ie

z

+α −α
p α

→∞

− −
= −

The constant 0C  is determined from formula

( ) ( )00 0 1
lim ,

2 2z

iP ifT iP
z z

→∞

+− +
Φ = =

p p

hence

( ) *

0
0

1
.

2

iP if e
C

p α+
=

p

Formula (40) then takes the form

( ) ( )
( )( ) ( )

( ) ( ) ( )

( )
( ) ( )

*

* *

* *

*

* *

*

1 1
* 2 2

1 1
2 2

0
1 1
2 2

2 1 cos‒

1

d

1
.

2

i

b

a

i

if e
z

z a b z

t a b t
f t t

t z

P if e

z a b z

p α

+α −α

+α −α

p α

+α −α

µ + pα
Φ = ×

p χ + − −

− −
× +

−

+
+

p − −

¢∫

	  (41)

Pressure ( )q t  at points 0t  of the gear’s tooth (stamp) is 
determined based on formula (22)

( ) ( ) ( )( ) ( ) ( )0 0 0 0 01 .q t i t q t if t t+ −+ τ = + = Φ − Φ 	 (42)

By computing the last difference based on the Sa- 
chotsky-Plemel formulae, we obtain the refined expression 
to determine the contact stress:

It is obvious that when 0f =  (then * 0α = ) we obtain 
a solution for the perfect case where there is no friction be-
tween the surfaces conjugated. 

To determine distance ab, we apply the following for-
mula [9]

( )
( )( )

'

0

d
,

b

a

tf t t
KP

t a b t
=

− −∫ 	  (44)

where 0P  is the magnitude of the principal vector of external 
forces that press a gear to the wheel. 

If function ( )f t  is even, that is ( ) ( ),f t f t− =  then, for 
reasons of symmetry, we can take a l= −  and ,b l= +  in ad-
vance, where l  is determined from the following ratio

( ) *
02 2

0

1
,

d

2

l tf t t
K P

l t
=

−

¢
∫ 	  (45)

where 

* 1 2

1 2

1 1
4 4

K
χ + χ +

= +
µ µ

 

is the all-side compression module. 
For 

* * *
1 2χ = χ = χ  and * * *

1 2µ = µ = µ  

( ) ( )

( )
( ) ( )( )

*

2 2
1 2

1 2 1 2

1 2

2 1 2 11
2

2 1

4 1 2 1
.

2

K
E

E E

E E E E
E E

− ν − νχ +
= = = =

µ µ
+ ν

− ν − ν +
= =

+

Then

( ) ( )2 1 2
02 2

1 20

1 .
l tf t dt E E

P
E El t

+
= − ν

−

¢
∫  	 (46)

If the body of the teeth is limited by circles of radii 1R  and 

2R , larger in comparison with the contact areas, then, believing

( )
2 2

1 2

1 1
,

2 2 r

t t
f t

R R

 
= + =  ρ 

 	 (47)

we obtain solution (43) in the form

( ) ( )

( )*

2 *
*

max 0 **

*
2 2

0

cos

cos1
,

H

b

r a

t
k l

l t
l t dt P

l t l

α

pα
σ = ×

p
pα+ × − +  ρ − p∫  	  (48)

where 

( )2
**

2 1
.

r

k
E

− ν
=  	  (49)

The integral in this formula is not expressed by a 
combination of elementary functions and, therefore, we 
represent it in the form of a Taylor series

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )( ) ( )

( ) ( ) ( )

* * * *

* *

* * *
*

0 max 0 0*

* * 2 *
0

1 1 1 1
*2 2 2 2

0 0 0 0

1 1
2 2

0

4 sin cos

1

cos 4 cos

1

d . (43)

H

b

a

q t t f t

P

t a b t t a b t

t a b t
f t t

t t

+α −α +α −α

+α −α

µ pα pα
= σ == − +

χ +

pα µ pα
+ = ×

p − − p χ + − −

−
¢

−
−

¢

×∫
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( )* *3 ** *2
2 3

2 3

22 2 2
1

3
l t

t t t
l t l l l

α α + α+ α α  = + + + …  −
 	 (50)

Then

( )* * *3*2 *
2 2 2

0

4 21 2
d .

4 8 3 45

l t l
l t t l

l t

α  α + α+ α α − = p + + +     − p p 
∫ (51)

By introducing the latter to (48) to determine the greatest 
value of the contact stress, we obtain the following formula:

( ) ( )

( ) ( )

( ) ( )

( )

2 2

2 * * *3*2 *

2
2

ma

0

0

x

*

0

3

*

cos 1

4 2 co

cos 4 21 2
4 8 3

s1 2
4 8 3 45

45

cos
.

r

H
r

l
k

P

t l
k l

P
l

l

∗
∗

∗

∗ ∗ ∗∗ ∗

pα
σ = p ×

p ρ

 α + α pαα α
× + + + + =

 pα α + αα α
= + + + + 

  p p

ρ p p 

pα

p

+
p



	 (52)

In equation (45)

( ) ( )( )'
.

r

t
f t f t¢ = =

ρ
 	 (53)

With respect to equation (45) and (47) in equation (44), 
we obtain

 ( )
2

2 0

2 2
0

‒1
1 .

l

r r

Pt dt
El t

= − ν
ρ −∫  	 (54)

By substituting in this equation 

‒sint l x=  and cos ,dt l xdx=  

we obtain 

2 2 cos ,l t l x− =  arcsin ,
t

x
l

=  

0‒‒ 0;t x= ⇒ =  ‒‒ .
2

t l x
p

= ⇒ =

Then

( )
2

2 0

2 2
0

‒1
1 ,

l

r r

Pt dt
El t

= − ν
ρ −∫

hence, we determine 

( )2
01

2 .r

r

P
l

E

− ν ρ
=

p
	  (55)

Employing formulae (49), (55) in (52), we come to the 
following value:

( ) ( ) ( ) ( )

( ) ( ) ( ) [ ]

2 * * *3 **2 *
*

max 0 0*

* *3*2 *
2 * *

cos 4 2 cos1 2
4 8 3 45

4 21 2 1
2 cos cos

4 5 2
,

8 3 4

H
пр

H H

l
t P

k l

 pα α + α pαα α
σ = + + + + =  ρ p p p 

  α + αα α = pα + + + + pα σ ≤ σ  p p   

where 

( )
0пр

2

Е

2 1H

r

P
σ =

p − ν ρ

 

is the known Hertz solution [11, 14–17].
It should be noted that at * 0α =  ( 0f = ) or 0 0,t =  the 

refined solution to the problem exceeds the known Hertz 
solution by 6 %, that is

( )*
max 0

3 2
1,06

4
.H H Htσ = σ ≈ σ

5. Quantitative evaluation of the influence of a lubricant 
on load capacity of toothed gears

To quantify the effect of a lubricant on load capacity of 
the toothed gears, we compare values for the largest contact 
stress with its permissible value

( ) ( )

( )

* *3*2 *
2 *

*

lim

min

4 21 2
2 cos

4 8 3 45

1
co

,

s
2

H

H b N
R v L X w

H

Z
Z Z Z Z Z

S

  α + αα α + + + pα +  p p   σ ≤ 
 + pα  

σ
≤  	 (57)

where Hlimbσ  is the limit of contact resistance of the teeth 
surfaces corresponding to the basis number of stress cycles; 

HminS  is the minimum factor of safety; ‒ NZ  is a durability 
factor; RZ  is a coefficient that takes into consideration the 
influence of the initial roughness of the conjugated teeth 
surfaces; vZ  is a coefficient that takes into consideration 
the influence of circumferential speed; LZ  is a coefficient 
that takes into consideration the influence of a lubricant; 

XZ  is a coefficient that takes account the size of the toothed 
wheel; wZ  is a coefficient that takes into consideration the 
influence of difference in the hardness of materials of the 
conjugated surfaces of teeth.

By comparing the left and right sides of this expression, 
rejecting the terms of the second order of smallness, we ob-
tain an expression to determine the coefficient of influence 
of a lubricant

( )
( ) ( )

* *2 *3

2 * *

0,5 0,48 0,25 0,111
.

2 cos cos
LZ

 + α + α + α ×
 =
 × pα + pα 

 	 (58)

Based on an analysis of expression (31), it was estab-
lished that * .fα ≈  Taking this fact into consideration, after 
the expansion of ( )*cos pα  into a Taylor power series, with 
some simplifications, we obtain the following analytical ex-
pression for the coefficient of influence of a lubricant

( )( )
( )2

12,575 0,732645 0,467789

0,24607 0,940553 .

LZ

f f

f f

=

= − − ×

× + + (59)

Based on the experimental study, carried 
out at the authors’ highly sensitive roller in-
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stallation that makes it possible to evaluate impact of the 
contact parameters on a friction coefficient, we obtained an 
empirical expression for the coefficient of friction. In this 
case, we used lubricants of the oil brands MS-20, MC-22, 
Tp-46, TP-30, Tp-22, I-40A, I-30A, and I-20A [12]:

 
( )Ó4

0,223 0,3 0,334

1 0,065
0,5215 10 ,a

H s r

V R
f

V

−
= ⋅

σ ν ρ
	  (60)

where Нσ  is the contact stress, MPa; ν  is the kinematic 
viscosity of oil, m2/s ; VΣ  is the total rolling speed, m/s; sV  
is the slip velocity, m/s; aR  is the arithmetic mean deviation 
of the profile within the basic length, m; rρ  is the reduced 
radius of the surfaces’ curvature, m.

It is obvious that the less f, the larger LZ  as well as 
the related load-bearing capacity. An argument in favor 
of this conclusion is that the coefficient ZL is directly 
included in the formula for calculating the contact endur-
ance of the active surfaces of teeth ‒ dependences (57), 
(63), (64), (67) ‒ that affects load capacity of the toothed 
gears for a contact endurance criterion. For clarity, Fig. 3  
shows a graph of dependence of a lubricant influence 
coefficient on the friction coefficient, calculated from for- 
mula (60).

Fig. 3. Dependence graph of a lubricant influence coefficient 
on friction coefficient

After substituting (60) in (59) and some transforms, we 
obtain the analytical dependence of a lubricant influence 
coefficient on contact parameters

( )

( )

Ó

Ó

4
0,223 0,3 0,334

2
0,223 0,3 0,334

1 0,065
1,0605 0,177 10

1 0,065
1 10,45 10 .

a
L

H s r

a

H s r

V R
Z

V

V R

V

−
= + ⋅ ×

σ ν ρ

 −
× − ⋅ σ ν ρ 

 	  (61)

Thus, the lubricant influence coefficient LZ  is linked in 
the general case to the contact stress, kinematic viscosity of 
oil, the roughness of surfaces, the total rolling speed, sliding 
speed and the reduced radius of curvature. 

Study results show that the influence of a friction co-
efficient on the lubricant influence coefficient and related 
load bearing capacity of the toothed gear is significant 
[13]. The proposed procedure makes it possible to solve 
the inverse problem: knowing the kinematical and energy 
parameters of toothed gears, one may choose, based on a 
lubricant influence coefficient (� LZ ), a more efficient lubri-
cating material.

6. Estimation of contact endurance of the toothed 
mechanisms under the influence of tangential stresses 
existing in the contact zone between active surfaces of 
teeth, with respect to a lubricant influence coefficient

Because a value of tangential stresses also depends on a 
friction force (Fs), associated with sliding, it is expedient to 
consider this field of research. 

It is known that the design calculation of closed toothed 
gears is performed in terms of endurance based on the per-
missible contact stresses, in order to avoid fatigue spalling of 
the teeth working surfaces. According to acting standards, 
the magnitude of the maximum contact stress between the 
teeth of toothed gears is calculated according to the Hertz 
formula [11, 14–16]:

1

,
1 Hlimb NH

H H M R v L X w
W H

ZW u
Z Z Z Z Z Z Z Z

d u Sε
σ±

σ = ≤  	 (62)

where 

( )21
r

M

E
Z =

π − ν
 

is a coefficient that takes account of the mechanical proper-
ties of material of the conjugated toothed wheels (for steel 
toothed wheels, 1/2275 MPaMZ = ); 

2
2H

w

cos
Z

sin
β

=
α

 

is a coefficient that takes into consideration the shape of the 
conjugated surfaces of teeth in the engagement pole;

( )4

3
Z α

ε

− ε
=  

is a coefficient that takes account of the total length of con-
tact lines; 2Wd  is the diameter of the initial wheel circumfer-
ence, which is accepted when calculating as

2 2

2
;

1
w

w

a u
d d

u
≈ =

±
 

2d  is the diameter of the pitch circle of the wheel; u  is the 
gear ratio; 

� t H H HV
H

w

F K K K
W

b
α β⋅

=  

is the normal load per unit length of the contact line of the 
tooth; 

2

2

2
t

T
F

d
=  

is the circumferential force; w ba wb a= ψ ⋅  is the working 
width of the toothed gear’s crown; HK α  is a coefficient that 
takes into consideration the distribution of load between the 
teeth; HK β  is a coefficient that takes account of the uneven 
distribution of load along the length of contact lines; HVK  
is a coefficient that takes into consideration the internal 
dynamic load; 
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2
пр

1

1 2

2E E
E

E E
=

+
 

is the reduced modulus of elasticity of materials of toothed 
gears; 1 2‒E E  is the modulus of elasticity of a material of the 
gear and the wheel, respectively.

Considering these parameters in expression (62), we 
obtain the following formula

( )

[ ]

3

2
3 2 2

1

2

.

H H HV
H H M

w ba L

Hlimb N
H R v X w

H

T K K K u
Z Z Z

a u Z

Z
Z Z Z Z

S

α β
ε

±
σ = ≤

ψ

σ
≤ σ =  	 (63)

The study conducted demonstrate that normal contact 
stresses only indirectly affect the main types of toothed 
gears fracture. Therefore, the responsibility for the emer-
gence and development of damage should lay with the tan-
gential stresses, which act in the contact zone between active 
surfaces of the teeth. When a contact zone moves away from 
the pole line of a tooth, stresses maxτ  increase in magnitude 
and approach the surface layers, thereby intensifying the 
processes of destruction in them. Given this, the greatest 
surface tangential stresses max, ,nτ  grow, the magnitude of 
which may exceed the magnitude of max .τ  The direction of 
interaction between these stresses also creates real condi-
tions for the occurrence and development of fatigue cracks. 
As was mentioned, the value of these stresses depends on a 
friction force (Fs), associated with sliding, and the friction 
force depends on the coefficient of friction.

The study performed [10] shows that should a friction 
force act between two contacting surfaces, in addition to 
normal pressure, then the magnitude of the maximum tan-
gential stress is determined from [10]:
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where [ ]sτ
 
is the permissible tangential stress [ ]2
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where 2c  is the coefficient of reliability, adopted based on 
the probability of non-failure operation of a toothed gear. 
If the probability of a non-failure operation of the toothed 
gear is

( ) 0,9P t = ⇒ 2 1,0,c =  

( ) 0,95P t = ⇒ 2 0,897,c =

( )‒ 0,96P t = ⇒ 2 0,865,c =  

( ) 0,97P t = ⇒ 2 0,827,c =  

( ) 0,99P t = ⇒ 2 0,702.c =

In the case of complex stressed state, the estimation 
stress then is a certain reduced (equivalent) stress obtained 
based on one of the theories of strength, the most acceptable 

for the examined stressed state of a material. For ductile 
materials
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In the design calculation, one typically determines the 
inter-axis spacing or a pitch diameter of the toothed wheel. 
The inter-axis spacing
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where aK  is an auxiliary coefficient, for spur gears

( )
( )

23

2 1/33

1,217 0,5

1,217 275 1,76 0,9 0,5 1,0 1,25 56 MPa .

a H M H HVK Z Z Z K Kε α= ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≈
 

Here 

1/2275 MPa ;MZ =  1,76;HZ =  

0,9;Zε ≈  1,0;HK α =  1,25.HVK =

For helical gears
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The helical gears operate more smoothly than the spur 
ones, which is why factor HVK  is less. Given this observa-
tion, we accept the product 1,1.H HVK Kα =

7. Discussion of results of devising a calculation 
procedure for toothed gears with respect to the influence 

of a lubricant

The proposed procedure for the calculation of toothed 
gears in terms of contact strength at the finite friction 
coefficient, without the assumptions about the smallness 
of the contact area and shape of borders, makes it possible 
to estimate the load capacity of toothed gears considering 
the influence of lubrication and the existence of friction 
between the conjugated surfaces of teeth, which is almost 
disregarded in traditional calculation methods by equating 
the lubricant influence coefficient KL to unity. In this case, 
the value of the resulting stress exceeds the stress, calcu-
lated according to the known Hertz solution, by 6 %, which 
would accordingly improve load capacity of the toothed 
mechanisms.
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The study conducted demonstrates that normal contact 
stresses only indirectly affect the main types of fracture of 
toothed gears. Therefore, responsibility for the emergence 
and development of damage should lay with the tangen-
tial stresses, which act in the contact zone between active 
surfaces of the teeth. However, in the design calculation of 
toothed gears, the influence of the tangential stress and the 
effect of a lubricant are almost ignored. The proposed pro-
cedure makes it possible to more accurately assess the effect 
of a lubricating oil on load capacity of the toothed gears and 
to solve the inverse problem: knowing the kinematical and 
energy parameters of toothed gears, it is required to choose, 
based on a lubricant influence coefficient ZL, a more effective 
lubricating material. Practical literature on the estimation 
and design of gear mechanisms should pay more attention to 
the influence of lubrication on their load capacity, to recom-
mendations on the choice of lubricants for gear mechanisms, 
to determining the precise value for a lubricant influence 
coefficient.

When estimating the coefficient of lubricant influence 
on load capacity of toothed gears, the range of input values 
for contact parameters is valid at the following ranges in 
the change in parameters and dimensionality of the input 
magnitudes: 

550 MPa;Hσ ≤  0 9,0 m/s;VΣ≤ ≤  

2,0 12,0SV≤ ≤ m/s;  
6 615 10 165 10− −⋅ ≤ ν ≤ ⋅ 2m /s;

6 60,16 10 0,32 10 m;aR− −⋅ ≤ ≤ ⋅  0,1 m.ρ ≤  

If one is to consider the problem outside these ranges, 
there is a need to conduct additional experiments using dif-
ferent lubricants. 

The shortcoming of this study is in that each lubricant 
requires experiments to calculate a lubricant influence coef-
ficient KL. The statistical data that would be acquired must 
be added to existing reference books and tutorials on the 
calculation and design of toothed gear mechanisms.

7. Conclusions

1. We have solved the problem on the contact between 
two bodies of arbitrary shape, close to half-planes, at the 
finite friction coefficient, without assumptions about the 
smallness of the contact area and the shape of borders; the 
result revealed that the value of the stress, derived from the 
refined solution to the contact problem, exceeds the stress, 
calculated according to the known Hertz solution, by 6 %.

2. The proposed calculation procedure makes it possi-
ble to more accurately assess the load-carrying capacity of 
toothed gears, taking into consideration the influence of 
lubricants, which is of practical importance when designing 
machines and assemblies.

3. The result of the refined calculation of toothed wheels 
in terms of contact strength is the derived analytical expres-
sion for a lubricant influence coefficient based on the crite-
rion of a friction coefficient between the conjugated surfaces 
of friction nodes.

4. Based on the study performed, we propose to take into 
consideration a lubricant influence coefficient directly to 
determine the geometrical parameters.
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1. Introduction

Lever mechanisms with a linear motion of moving parts 
are used in devices and equipment of various areas of me-
chanical engineering, including robotics, lifting machinery, 
machine tools, and mechatronics. Despite the complexity 
of the structure, multifaceted lever mechanisms of linear 
relocation in some devices have replaced guides with sliding 
carriages, telescopic mechanisms, and carriages on linear 
bearings. This is due to various factors: the requirements 
of layout and minimization of the dimensions, the need to 
protect open surfaces from friction, the tendency to jam car-
riages with translational pairs, etc.

The choice of the scheme and structure of these non-stan-
dard mechanisms can significantly affect the performance of 
the devices in general, their layout, dimensions, cost, etc.

Hinged lever mechanisms with translational or 
near-translational finite-element coupling provide for the 
implementation of compact structures in a folded state in the 
absence or minimum number of translational kinematic pairs 
[1, 2]. This avoids the drawbacks of translational pairs and 
uses standard camshafts with protected local friction sur-
faces in the design of rotary kinematics pairs. An increase in 
the course of the final link is achieved in these mechanisms 
by using levers.

Flat guide lever mechanisms with rotational pairs are 
found in devices for a steady movement of the working body 
of machine tools or platforms of lifts and manipulators of 
robots. In the designs of lifts and manipulators, flat lever 
pantograph mechanisms are widely used [3–5], which, how-
ever, are not devoid of translational pairs. In woodworking 
format-cutting machines, combined circuits are employed, 
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Розглянутi питання геометричного синтезу просторових шар-

нiрно-важiльних шестиланкових механiзмiв з лiнiйним перемiщен-
ням кiнцевої ланки, що виконують функцiю напрямної. Виявлено 
варiанти компонування механiзмiв та конструктивнi особливос-
тi, що забезпечують максимальний хiд кiнцевої ланки при мiнi-
мальних довжинах важелiв. Встановлено геометричнi параметри 
механiзму в його узагальненому виглядi, якi визначають кiнема-
тику та компонувальнi схеми. Дослiджено вплив геометричних 
параметрiв i варiантiв компонування на кiнематичнi параметри 
механiзмiв. Отримано залежностi, якi дозволяють визначити 
геометричнi параметри базового механiзму за заданим ходом кiн-
цевої ланки та допустимими кутами передачi у шарнiрах повiдцiв. 
Подано параметричнi залежностi, якi дозволяють провести точ-
ний розрахунок оптимальної геометрiї механiзму за критерiєм 
мiнiмiзацiї довжин повiдцiв при допустимих кутах передачi i необ-
хiдному дiапазонi перемiщень. Запропонована схема розрахунку 
просторових розмiрних ланцюгiв для визначення форми деталей. 
3D моделюванням виявлена варiативнiсть геометричних пара-
метрiв, що дозволило сформулювати компонувальнi варiанти 
механiзму. Розроблено методику геометричного синтезу та змо-
дельовано у вiдповiдностi до цiєї методики варiанти просторових 
шарнiрно–важiльних шестиланкових механiзмiв в динамiцi, що 
дозволило показати особливостi руху ланок.

Проведенi дослiдження виявили можливi шляхи розробок нових 
варiантiв просторових шарнiрно-важiльних шестиланкових 
механiзмiв та розкрили новi можливостi при їхньому застосуваннi 
у якостi напрямного механiзму. Результати дослiджень можуть 
бути використанi при розробленнi платформ пiдйомникiв, манiпу-
ляторах роботiв, верстатобудуваннi та мехатронiцi

Ключовi слова: механiзм Саррюса, шестиланковий просторо-
вий механiзм, напрямний механiзм, лiнiйне перемiщення, геоме-
тричний синтез




