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1. Introduction

The most common type of transmission mechanisms
in machines and assemblies are the toothed gears. When
transferring the torque, the engagement is exposed to
the action of a normal force (F,)) and a friction force
(Fy), which is associated with sliding (Fig. 1). Under the
influence of these forces, the tooth enters the complex
stressed state. The decisive effect on its efficiency is exert-
ed by contact stresses (o) and bending stresses (of) that
change over time in line with a certain intermittent cycle
initiated from zero. Alternating stresses are the cause for
a fatigue failure of teeth: the fracture of teeth that are ex-
posed to the bending stresses and the spalling of working
surfaces of teeth due to the contact stresses. The contact

stress and friction in the gearing are also associated with
wear, seizing, and other kinds of damage to the teeth
surfaces. Because the contact stresses are the cause of a
fatigue failure, the basic criterion of efficiency and calcu-
lation of closed transmissions is the contact strength of
teeth working surfaces (o,,,.).

However, when calculating the active surfaces of teeth
for contact strength, the influence of a lubricant is almost
ignored. Instead, a factor of the lubricant effect is introduced
to the calculation, whose value as a random variable is ac-
cepted in most cases equal to unity. Therefore, it is a relevant
and practically interesting to calculate toothed gears for
contact strength of the active surfaces of teeth considering
the effect of lubrication and a friction factor between the
conjugated surfaces of teeth.




2. Literature review and problem statement

Paper [1] has devised a procedure for calculating the
contact strength of toothed gears with respect to friction
between teeth, and derived analytic expression to estimate
the influence of a lubricant on their load capacity. However,
the authors failed to account for the effect of the maximum
shear stress on geometrical parameters of the toothed gears.

Study [2] developed a procedure for designing toothed
gears, which uses maximum surface shear stresses as the
estimation to assess the fatigue spalling processes. These
stresses, in addition to the geometrical and mechanical pa-
rameters of toothed wheels, take into consideration the tri-
bological properties of contact at the active surfaces of teeth.
However, the geometrical parameters of a toothed gear are
determined depending on the molecular effect of a friction
coefficient, while the influence of the deformation action has
not been studied.

Article [3] constructed an algorithm and developed
software for detailed study into the impact of friction on
the strength characteristics of regular toothed gears. This
creates the prerequisites for taking the friction forces and
load factors of the teeth into consideration in the form that
most closely corresponds to actual conditions. The analysis
performed shows that when taking the friction into account
the dependences of forces and moments in toothed gears are
the nonlinear functions that depend on the angular coordi-
nate of the driving wheel and the current values for friction
coefficients between teeth and in supports. In this case, the
nature of non-linearity is determined not only by the kind of
friction forces, but mainly by a change in the parameters of
engagement when moving from a two-pair contact between
teeth to the one-pair contact. However, the authors did not
consider the influence of friction forces on load capacity of
the toothed gears.

Paper [4] addressed the conditions for contact between
cylindrical toothed gears, as well as the technological meth-
ods of influence when forming the involute surface of teeth,
at which the teeth of one gear slip relative to the profile of
the conjugated wheel and the friction-slip forces. The loss of
energy for friction in the toothed gears reaches 10 % of the
total energy loss to overcome friction. It is shown that in the
force calculation of cylindrical toothed wheels it is necessary
to take into consideration, in addition to dynamic loads, the
efforts of rolling friction-slip in the toothed gears. However,
the paper lacks the mechanism of influence of lubricants on
load capacity of toothed gears; also, insufficiently studied is
the interaction between contact-hydrodynamic parameters
in terms of the friction factor.

Article [5] describes engineering methods, developed
by the authors, for the calculation of geometrical parame-
ters for a contact between smooth bodies of arbitrary shape
and curvature in the presence of elastoplastic deformation
in the contact area. The paper describes a procedure for
applying the estimation dependences in order to solve
engineering problems related to analysis, interpretation,
and prediction of contact deformation at static and impact
force interaction between machine components. However,
the authors failed to account for the maximum shear stress
associated with sliding.

Study [6] reports the necessary information about
the materials and geometry of toothed gears, technolog-
ical and operational requirements, disregarding which
makes it impossible to perform calculations in line with

modern techniques. The peculiarities in the calculation of
efficiency of toothed gears are given, with respect to the
malleability of their links. However, the author did not
examine the influence of a friction force on load capacity
of the toothed gears.

Paper [7] describes results of the finite element calcula-
tion of the contact interaction between two elastic circular
cylinders of finite length with intersecting axes as a model of
contact interaction between teeth of the involute straight-
tooth toothed gear when the axes of the toothed wheels are
skewed. It was established that the determining factor that
breaks, when skewed, the Hertz relationships between the
contact parameters, and which significantly affects its load
capacity, is the ratio of the summary vector of the assigned
load to the length of the contact area in the direction of
forming cylinders. However, the simultaneous action of
normal and tangential forces, associated with the relative
sliding of teeth, was not considered in the paper.

Study [8] dealt with issues related to ensuring the resis-
tance to the contact fatigue in the highly stressed toothed
wheels in the transmissions of auto tractor vehicles. The
influence of the microstructure of strengthened surface lay-
ers on resistance to the contact fatigue of cemented toothed
wheels is shown. There is a procedure for the calculation and
prediction of the toothed wheels’ resource with respect to
the quality of the structure of strengthened layers. The au-
thors considered methods for determining the hardenability
of cemented construction steels. They gave recommenda-
tions for choosing rational parameters for the technologi-
cal regimes in the chemical-thermal treatment of toothed
wheels in energy-intensive machines with high performance
characteristics. However, the authors failed to study the
stressed-deformed state of toothed gears when there is fric-
tion between the teeth of toothed gears.

Paper [9] provides the basic concepts of the mathemat-
ical theory of elasticity, and derives complete systems of
equations, as well as proves the assumptions on these equa-
tions. In [10, 11, 14-17], there are basic data on the calcula-
tion and design of toothed gears and their components based
on the main criteria for their operation efficiency. Studies
[12, 13] report results obtained in the course of experimental
study on the evaluation of influence of various parameters on
a friction coefficient.

Paper [18] gives a comparative estimation of the service
life of cylindrical toothed gears based on the two basic crite-
ria of efficiency — the contact and flexural strength of teeth.
However, the author did not study the influence of lubrica-
tion on load capacity of the toothed gears.

In works [19-21], in order to determine a factor of in-
fluence of lubrication K; on contact endurance of the active
surfaces of teeth, a probabilistic calculation method was em-
ployed. However, only the mathematical expectation and the
variance coefficient K; were taken into consideration rather
than the estimation of the factor itself.

Thus, the issues on the influence of friction force on load
capacity of the toothed gears under the influence of various
lubricants remain to be solved.

3. The aim and objectives of the study

The aim of this work is to devise a procedure for calcu-
lating the toothed gears for contact strength with respect to
friction between the teeth and the influence of lubrication.



To accomplish the aim, the following tasks have been set:

— to reveal the mechanics of change in shapes and di-
mensions in a contact between two bodies of arbitrary shape,
close to half-planes;

— to solve a boundary problem on the pressure of a rigid
stamp on the elastic half-plane in the presence of friction;

— to derive a holomorphic relationship between a contact
stress and a friction coefficient;

— to derive an analytical expression to estimate the in-
fluence of a lubricant on the load capacity of toothed gears
for contact stresses.

4. A problem on the contact between two bodies in the
shape of half-planes given the finite friction coefficient

The existing calculation procedure for toothed gears
in terms of contact stresses is based on the Hertz formula,
derived from the solution to the contact problem from elas-
ticity theory under certain restrictive assumptions:

— the area of contact between surfaces is very small;

— the friction coefficient between the conjugated surfac-
es is zero;

— given the appropriate choice of coordinate axes, the
equations of non-deformed surfaces in the vicinity of a con-
tact place can be at sufficient approximation represented in
the form

2= Ax*+2Bxy +Cy*.

This paper examines the issue on solving the problem on
the contact of two bodies of arbitrary shape, close to half-
planes. When transferring the torque, the engagement is
exposed to the action of a normal force (F,)) and a friction
force (Fy), which is associated with sliding. Friction force
occurs when the toothed wheels’ wheel profiles slide relative
to each other. At the engagement pole, the friction forces are
zero, but at the stem and top of the teeth they are maximal.
Therefore, a slip velocity is proportional to the distance be-
tween the contact point and the pole. The sliding is accom-
panied by friction. Friction causes losses in the engagement
and leads to tooth wear.

In the drive teeth, friction forces are directed from the
initial circle, and in the driven ones — vice versa. At the
constant diameters of wheels, the distance between the
points of start and end of the engagement and the pole,
and hence the slip velocity, increases with an increase in
the height of the tooth or the engagement module. The
low-module wheels with a larger number of teeth the slid-
ing is smaller while the performance efficiency is higher
than that of the large-module wheels with a small number
of teeth.

Therefore, taking into consideration the presence of lu-
brication and friction at the conjugated teeth surfaces, the
refined solution to the problem on contact between two bod-
ies in the shape of half-planes at the finite friction coefficient
is of practical importance.

In this case, the stated problem is a two-dimensional
analog of the Hertz problem without assumptions about the
smallness of the contact area and the shape of borders [9].

It is known that the load permissible in terms of the
contact strength of teeth of the toothed wheels is defined ba-
sically by the hardness of a material. For a better joint work
of teeth, it is typically recommended to assign the hardness

of a gear that would exceed the wheel’s hardness by not less
than 10-15 Brinell units [10, 11]

HB, > HB, +(10...15). M

Fig. 1. Forces that act in the engagement of toothed wheels’
teeth

This circumstance makes it possible to consider the
conjugation of the surfaces of teeth of toothed wheels as the
two elastic bodies (5, and S,), similar in their shape to half-
planes, which are in contact along sections "ab" (Fig. 2). The
upper and bottom neighborhoods are to be distinguished by
signs (+) and (-), respectively.

It is believed that the predefined or known conditions
are the following:

— the shape of borders prior to deformation;

—the principal vector of external forces that pressed
body S, to body Sy;

— strains and rotations of .S, and S, at infinity are zero;

— coefficient of friction between the conjugated surfaces
is non-zero, and has the finite value f;

— the section of contact ab is to be determined;

—body S, takes the lower half-plane, and body S, the
upper one S”.

Assume that at the border of the elastic half-plane, be-
neath the surface of the gear’s tooth (stamp)

’t:f‘q’ (2)

where ¢ is the specific pressure; t is the shear stress; f is the
friction coefficient, considered constant.

Direct the Ox axis along the border of the elastic half-
plane, and the Oy axis — perpendicular to it, so that the
elastic body takes the lower half-plane y<0. It is obvious
that with this choice of axes

g=-y,; 1=X,. 3)

It is expected that the gear’s tooth (stamp) comes into
contact with a tooth of the wheel (elastic half-plane) along one
continuous section L=ab and can move only translationally.

It is considered that the assigned magnitude of the total
pressure of a gear’s tooth (stamp) at the surface of the tooth
of the wheel (half-plane)

qo=Jq(t)dt, (%)

In this case, the total tangential stress is, obviously,
ts=/-qs; the principal vector of external forces acting on



the gear’s tooth (stamp) and balanced by the reaction of the
tooth (elastic half-plane) is

(FF,)=(t6=40)-

We believe that bodies S, and §, are matched with
complex variable functions @, (z) and ®,(z). The bound-
ary conditions of our problem then take the form [1], [9]:

T(t)=fq(t) on L,
v=f(t)+const on L, 5)
1(t)=¢(¢t)=0  on OX,

where ¢ is the abscissa of the point along the Ox; v is the
projection of displacement onto the Oy; f(¢) is the as-
signed function that defines the gear’s tooth profile (stamp);
y=f(x) is the equation of the tooth’s profile.

n«B

Fig. 2. Estimation scheme to build the refined method for
calculating toothed gears in terms of contact strength

Next, the biharmonic function U(x,y) of two variables
x and y is represented by means of two functions of the com-
plex variable

z=x+iy and Z=x—1iy.

In this case, the equilibrium equation takes the form

U _9U ox 8U8y_1(8 .a)

0z ox 0z Oy oz ox Oy
a—gzi 2% (6)
dz 2\dx Jy

For x and y

a—U:(iﬂ'iJU,
dx \0dz Oz
U (0 .0
——i—|U. 7
ay (Bz 182) @

The consequence of these formulae is the expression of
second derivatives, the Laplacian and the biharmonic op-
erator

2 2 2 2 ]
J [fz a—2+2 J +a— U,
ox 0z 020z 9dz°
U 9’ 82 9’
— === —+— |U,
oy’ o azaz 0z°

2 2 2
IV (22, ®)
dxay dz° oz

, U
VU =4 ,

0z%0z
4
VU =16 82 Uﬂ.
0z°0z

With respect to displacement vectors

U

VU =4——,
020z

VAU +it = by (2), VU it =4y(2)

from these equations

1 U
—VU =2
2 020z

=y(z)+y(2)

The integration for z, that introduces the additively in-
bound function from Z, denoted as x’(z), produces

E)U —
dz =V

Another integration leads to the desired representation

2U=Ew(z)+2\|f( )+ X( )+ (2).

The function, introduced to the right side while integrat-
ing for z, is equal to % (z), because U is the real function.
Then

U=%[E\|}(z)+z@+x’(z)+m]. ©)

This formula was first given by Goursat. Hereafter, we
shall use for function U another expression, the expressions
for its partial derivatives.

It is easily calculated

aU ’ ’ ’
a So=v(2)+ 2y (2)+w(z)+ 2w (2)+x(2)+ 2 (2),
; (10)
<. [ 2+ 2w (2)+w(z)- 2w (2)+ 1 () (2)]
- au U
Instead of considering expressions for o and o it

is more convenient to consider the expression for complex
combination

oU .oU

E @ (2)+2y'(2)+9(2), (11)
here for brevity we put it as
dy,
(P(Z)_ dZ.



It should be noted that any expression of the form (9)
represents a biharmonic function if y(z) and y(z) are the
holomorphic functions of the complex variable z.

Indeed, by differentiating the first equation (10) for x
and the second one for y and summing, we obtain

AU:2[\V()+\|/( ] 4Re[ v (2)), 12)

hence it follows that AU is the harmonic function. Therefore,
AU =A(AU)=0.

Under effort (X,ds, Y,ds), acting on element ds of the
contour’s arc ab from the side of a positive normal (X,
ds, Y ds):

X, =X, cos(n,x)+Xy cos(n,y) =]
2 2
——-cos(n,x)—
oy’ () dxdy
Y, =Y, cos(n,x)+ Y, cos(n,y)=
2 2

- W cos(n,y)- 20y

cos(n,y),
(13)

cos(n, x)

One can easily see
_dy
ds’
_dx
ds’

cos(n,x)=cos(t,,y)

cos(n,y)=—cos(t,,x)=

where ¢, is the positive direction of the tangent. By intro-
ducing these values to (13), we obtain the abscissa of the
point along axis Ox;

d(oU d(oU
Y =— 14
ds( ) " ds(ax) a4
or, in the complex form
d(oU .0U d(oU .0U
X, +iY, = ——i— = — 15
! d(ay axJ ds(8x+layj {15)
or
(X, +iY,)ds=—id| — U, 90 (16)
ax dy

With respect to this expression in formula (15), we
obtain

(X, +iY,)ds = —id | w(2)+ 2w’ (2)+0(2) |

If we give the element ds, first, the direction of axis Oy,
and then the direction of axis Ox, we obtain

a7

ds=dy, dz=idy, dz=-idy, X,=X, Y,=X,

ds=dx, dz=dz=dv, X,=-X,, Y, =-Y,.
X, +iX, =y’ (2)+y'(2) - 29" (2) - ¢'(2), (18)
Y, —iY, =y’ (z)+ ' (2)+ 29" (2)+ ¢’ (2). 19)

Adding and subtracting equations (18) and (19), and
replacing in the second result ¢ with —i, we obtain

X, +Y, =2y (2)-v'(2)| = iRey’(2)=

= 4Red>(2) = 2| B(2) + @ (z) (20)
Y, - X, +2iX —2[2\,;" +¢'(2)]=

=2[(z—z)¢> (2)- ] (21)
Y, =iX, =®(2)-®(2)+(2-7) ' (2). (22)

The principal vector (resultant force) acting on the finite
arc ab, and the main moment (M) of the examined efforts
relative to the coordinate origin, take the form:

X+iY:J(Xn+iYn)ds:

|oU .oU ; —7
_l[ax’L ay]u v v (Gro@)] @3
U aU
M=|(xY -yX )ds=—|{xd —+yd—
IJ;(x n y Vl) S ab{x ax +y ay }’
hence, by integrating by parts, we find:
M=- xa—U+ya—U f dx —d =
ox T dy |, o lox dy
b
U U b
. A , 24
[x8x+yay] +| |” @9
Note
oU U aU aU
x4y = Red2| i |l
ox ay dx By
%-%:w(z)gw'(z)w(z)
and
U=Re[§\y(z)+x(z)]
then we finally obtain
M:Re[x(z)—ztp(z)—z-?w’(z)]z. (25)

In order to express the stress and displacement com-
ponents in the integrated form, we apply the following
formula

. U U, 2V +2)
2 =—| =i |+ ———"VY(2), 26
w(u+iv) (dx E)y)+ i v(z) (26)
according to formula (11)
2 (u+iv)=y @(2)-(z)-(z2-2)@'(2), (27)

where



k +3u
oA+

=3-4v,

w',A" are the first and second Lamé parameters:

o VE )
(1+v)(1-2v)’

(here: E is the Young modulus, v is the Poisson ratio).
At the above assumptions and denotations, the boundary
conditions (5) can be recorded as:

(1=if )@ (t)+(1+if ) D" (¢) =
=(1-if )@ (¢t)+(1+if )@ (¢),

LD (£)+@" (1)~ B (£) - (¢)= i’ /*(t).

(28)

The first equation in the system of equations (28) shows
that the function

(1-if)®(2)+(1+if)®(2)

is holomorphic over the entire plane and, since it must vanish
at infinity, then over the entire plane

(1-if)®(2)+(1+if)®(z)=0.

By expressing &)(z) via q)(z) and introducing (28) to
the second equation (28), we obtain the boundary condition
for @(2)

(29)

D" (t)= gD

(O)+£0),

(30)

where

x*+1+if(x‘—1)'
x*+1—if(x*—1)’

i (1+if ) f(¢)
hle)= x +1—if(x* —1)’

noting that ¥ >1 and f>0, the previous expressions can
be simplified by introducing a constant o', defined from
conditions

a*ziarctg(fx*_i), 0<o <0,5. 3D
T x +1

Then

xS (X -1)=

. * 1 +io.
S e o P )
COSTLOL

and, consequently,

g — _627[1'01‘ ,

4ip (1+if) f7(¢)e™ cosma
ol = LD cooma (32

x +1

From the accepted condition (0 < ¢ <1, where ¢ is a positive
constant) one must take the value of the logarithm for which

lng
211:1

0<Re

Hence, for condition e =g

_lng_1

33
2ni 2 33)

To solve this problem, we shall apply the Cauchy-type
integral

(34)

where F,(z) is a piecewise holomorphic function. Accord-
ing to the Liouville’s theorem, F(z)=C =const in all planes.
Then the general solution to the problem is determined in
the form F(z)=F, (z)+ C, meaning

- e o

where f(¢) denotes a surge F(z) along the line of surges
L, that is

J()=F*(t)-gF (1),

and Cis a constant.

If the pole of an arbitrary order is at infinity, the par-
ticular solution to problem X,(z) can be found from the
following equation

(36)

n

Xo(z)zz‘(z—ajyy (z—b].)H.

i=1

(37)

If we trace the evolution of argument z—a,, or z-b,,
when z originates from point ¢ of the arc, a,b, describes a
closed path consisting of the lengths of arcs of the upper and
lower half-planes

e_z"iVXg (t),}

X (2).

X (6)=

X ()= o

For the solution to the homogeneous problem, which
may have a pole at infinity, the function X (z) must satisfy
condition [9]

X5 (1)=gX, (t),

hence

By introducing this expression to boundary condition (36),
we obtain




(39)

1 - 1 .
In this formula, expression (z—a)2 " (b—z)2" could
be taken as the function X, (z)
20" (1+if )e™ cosma

(D(Z = [ T,
n(x*+1)(2—a)5m (b-z)"

o (t=a)™ (b-2)" s

t—z

(40)

1 . 1 -
where C, is a constant, and (z—a)im (b-2)2" implies a
branch, holomorphic outside segment ab and acquiring
on thg upper side of this segment the valid positive values
(t-a)2™ (b—t)2" . The specified branch is characterized by

1 1 .
lim (z—a)2™ (b-2)2"

2300 z

=—ie

The constant C, is determined from formula

_ T, +iP, _iP,(1+if)

lim zd(z) ,
250 2n 2n
hence
¢ P, (1+if )e™ .
21

Formula (40) then takes the form

20" (1+if )e™ cosma
1 - 1
n(x* + 1)(2 - a)Em (b- 2)70{

O(z)=

xi(t‘“)f:_(’:—t)za S7(¢)de+

RO o
2n(z - a)Tm~ (b- 2)70(.

Pressure q(t) at points ¢, of the gear’s tooth (stamp) is
determined based on formula (22)
q(ty)+it(t,)=q(t,)(1+if ) =@ (¢,) - P (). (42)

By computing the last difference based on the Sa-
chotsky-Plemel formulae, we obtain the refined expression
to determine the contact stress:

4 sin(n(x*)cos (n(x‘)

I'(t)+
4 cos’ (noc*)

Lo L B ¥ L 1y
n(t,—a)2"” (b-t,) n(x +1)(t(,—a)2 (b-t,)2

q(to)zc;-lmax (tO): X*+1

P, cos(noc*)

+

It is obvious that when f=0 (then o’ =0) we obtain
a solution for the perfect case where there is no friction be-
tween the surfaces conjugated.

To determine distance ab, we apply the following for-
mula [9]

j ¢f (¢t)de _xp

e-aG "

where P, is the magnitude of the principal vector of external
forces that press a gear to the wheel.

If function f(¢) is even, that is f(~¢)=f(¢), then, for
reasons of symmetry, we can take a=-I/ and b=+/, in ad-
vance, where [ is determined from the following ratio

Lefr(e)de 1.
Jff ) —=-K'B, (45)
oNIE—t? 2
where
:x1+1+x2+1
o 4u,

is the all-side compression module.
For

X*1 =X*2=X* and H*1 =H*2=M*
K*=X+1=2(1_V) 2(1-v)

2 u E
2(1+v)

4(1-v?) 2(1-V*)(E,+E,)
T 2EE, E|E, )

E +E,
Then
1 ’
J’tf (t)d‘t=(1_v2)E1+E2 R)’ (46)
0 12 —¢? E1E2

If the body of the teeth is limited by circles of radii R, and
R, larger in comparison with the contact areas, then, believing

| t?
(0= =+—|=—, “47)
2\R"R,) 2,
we obtain solution (43) in the form
. cosz(noc*)
c ty)=——=—X
Hmax( 0) TCk l
b o cos(mo’
xij\/ﬁ _7 (”—t) dt+PU¥, (48)
P, [-t nl
where
e 2(1-v?) "
s “9)
The integral in this formula is not expressed by a
combination of elementary functions and, therefore, we
(43) represent it in the form of a Taylor series
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Then

‘ t+1\ o? 20 4((x*+2oc*3)

NP -t — | de=nl?|—+—+"F"+—L| (51

'([ (I—t) [4+ 8 " 3n " 45T 1)

By introducing the latter to (48) to determine the greatest
value of the contact stress, we obtain the following formula:

~ cos’ (noc*) 1

G;Imax(to - Tck*l ERIQX

1 o 20 4(OL*+206 ) cos(noc)
x| =+—+ + +P, =

4 8 3m 457 nl
_cos (n(x) 11 o? 2 4(cx +20c*3)
o ol s Tt |
P cos(noc ) 2)

il
In equation (45)
t

rO-(0) -+ @)

With respect to equation (45) and (47) in equation (44),
we obtain

t’dt P
)L 54
R N &

By substituting in this equation
t=Isinx and dt = lcosxdx,

we obtain

.t
V=t =lcosx, x= arcsm?

t=0=x=0; t:l:>x=g.

Then

1 ¢ e P
— =(1- 2707
pr-!‘ 112_t2 ( v )E’

hence, we determine

_y [=V)Rp,
nE,

r

(55)

Employing formulae (49), (55) in (52), we come to the
following value:

hf

on= 2n(1—v2)p,

is the known Hertz solution [11, 14—17].

It should be noted that at o' =0 (f=0) or £,=0, the
refined solution to the problem exceeds the known Hertz
solution by 6 %, that is
32

G;Imax (IO) TGH - 1 OGGH

5. Quantitative evaluation of the influence of a lubricant
on load capacity of toothed gears

To quantify the effect of a lubricant on load capacity of
the toothed gears, we compare values for the largest contact
stress with its permissible value

cos? (noc* ) +
o, <

*2 4o +207
ol Lo, 200 Ao +207)
4 8 3n 451

1 .
+$cos(noc )

< GHIime

~ ZRZUZLZXZIN (57)

Hmin

where 6, is the limit of contact resistance of the teeth
surfaces corresponding to the basis number of stress cycles;
Simn 1S the minimum factor of safety; Z, is a durability
factor; Z, is a coefficient that takes into consideration the
influence of the initial roughness of the conjugated teeth
surfaces; Z, is a coefficient that takes into consideration
the influence of circumferential speed; Z, is a coefficient
that takes into consideration the influence of a lubricant;
Z, is a coefficient that takes account the size of the toothed
wheel; Z, is a coefficient that takes into consideration the
influence of difference in the hardness of materials of the
conjugated surfaces of teeth.

By comparing the left and right sides of this expression,
rejecting the terms of the second order of smallness, we ob-
tain an expression to determine the coefficient of influence

of a lubricant
X
. (58)

Based on an analysis of expression (31), it was estab-
lished that o' = . Taking this fact into consideration, after
the expansion of cos(noc* into a Taylor power series, with
some simplifications, we obtain the following analytical ex-
pression for the coefficient of influence of a lubricant

(0,5+0,480" +0,250. +0,110*)
Z —

b \/Elx cos? (na

*)+cos(7toc*)

Z, =
) cos’(me’) 7 (1 o 200 A4(of+2a7) » cos(mal’) =12,575(f —0,732645)( £ —0,467789)x
o = 4 —+— + =
im0 o p,l4 8 3m 45m Coml x(0,24607+0,940553 f + f2). (59)
o *2 * 4o +207 .
=| /2 cos® (noc )(1+a+2a+()}+1cos(na ) 6, <[s],, Based on the experimental study, carried
4 8 3m 45m V2 out at the authors’ highly sensitive roller in-



stallation that makes it possible to evaluate impact of the
contact parameters on a friction coefficient, we obtained an
empirical expression for the coefficient of friction. In this
case, we used lubricants of the oil brands MS-20, MC-22,
Tp-46, TP-30, Tp-22, 1-40A, I-30A, and I-20A [12]:

(1-0,065V,)R,

0,223,,0,3770,334
GH v ‘/s pr

£=0,5215-10" , (60)

where o, is the contact stress, MPa; v is the kinematic
viscosity of oil, m?/s; V; is the total rolling speed, m/s; V,
is the slip velocity, m/s; R, is the arithmetic mean deviation
of the profile within the basic length, m; p, is the reduced
radius of the surfaces’ curvature, m.

It is obvious that the less f, the larger Z, as well as
the related load-bearing capacity. An argument in favor
of this conclusion is that the coefficient Z; is directly
included in the formula for calculating the contact endur-
ance of the active surfaces of teeth — dependences (57),
(63), (64), (67) — that affects load capacity of the toothed
gears for a contact endurance criterion. For clarity, Fig. 3
shows a graph of dependence of a lubricant influence
coefficient on the friction coefficient, calculated from for-
mula (60).
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Fig. 3. Dependence graph of a lubricant influence coefficient
on friction coefficient

After substituting (60) in (59) and some transforms, we
obtain the analytical dependence of a lubricant influence
coefficient on contact parameters

1-0,065V,)R
ZL:1’0605+0’177'104WX
o, VIV,

(1-0,065V;)R, J

0,223,,0,3770,334 :
0-H v ‘/s pr

x(1—10,45-102 (61)

Thus, the lubricant influence coefficient Z, is linked in
the general case to the contact stress, kinematic viscosity of
oil, the roughness of surfaces, the total rolling speed, sliding
speed and the reduced radius of curvature.

Study results show that the influence of a friction co-
efficient on the lubricant influence coefficient and related
load bearing capacity of the toothed gear is significant
[13]. The proposed procedure makes it possible to solve
the inverse problem: knowing the kinematical and energy
parameters of toothed gears, one may choose, based on a
lubricant influence coefficient (Z,), a more efficient lubri-
cating material.

6. Estimation of contact endurance of the toothed
mechanisms under the influence of tangential stresses
existing in the contact zone between active surfaces of
teeth, with respect to a lubricant influence coefficient

Because a value of tangential stresses also depends on a
friction force (Fy), associated with sliding, it is expedient to
consider this field of research.

It is known that the design calculation of closed toothed
gears is performed in terms of endurance based on the per-
missible contact stresses, in order to avoid fatigue spalling of
the teeth working surfaces. According to acting standards,
the magnitude of the maximum contact stress between the
teeth of toothed gears is calculated according to the Hertz
formula [11, 14—16]:

+ X
6, =2,2,7, Wy utl SMZRZUZLZXZW (62)
dy, u Sy
where
E
7 = |—=r _
Py

is a coefficient that takes account of the mechanical proper-
ties of material of the conjugated toothed wheels (for steel
toothed wheels, Z,, =275 MPa"?);

2cosPp
sin2o.,,

7 =

H

i

is a coefficient that takes into consideration the shape of the
conjugated surfaces of teeth in the engagement pole;

7 (4-¢,)
3

is a coefficient that takes account of the total length of con-
tact lines; d,,, is the diameter of the initial wheel circumfer-
ence, which is accepted when calculating as

d,,=d,=2%",
uxl

w2 2

d, is the diameter of the pitch circle of the wheel; u is the
gear ratio;

_ FtKHa 'KHBKHV
" b?f‘
is the normal load per unit length of the contact line of the
tooth;

is the circumferential force; b, =vy,, -a, is the working
width of the toothed gear’s crown; K,,, is a coefficient that
takes into consideration the distribution of load between the
teeth; K up 15 @ coefficient that takes account of the uneven
distribution of load along the length of contact lines; K,
is a coefficient that takes into consideration the internal
dynamic load;



— 2E1E2
" E+E,

is the reduced modulus of elasticity of materials of toothed
gears; EE, is the modulus of elasticity of a material of the
gear and the wheel, respectively.

Considering these parameters in expression (62), we
obtain the following formula

3
LK ;1o KKy (“i1) <
2a 'y, 2,

Oy = ZUZMZE\/

<[o,] ="f’ﬁ;ﬂz,ezvzxzw.

H

(63)

The study conducted demonstrate that normal contact
stresses only indirectly affect the main types of toothed
gears fracture. Therefore, the responsibility for the emer-
gence and development of damage should lay with the tan-
gential stresses, which act in the contact zone between active
surfaces of the teeth. When a contact zone moves away from
the pole line of a tooth, stresses 1, increase in magnitude
and approach the surface layers, thereby intensifying the
processes of destruction in them. Given this, the greatest
surface tangential stresses T, ,, grow, the magnitude of
which may exceed the magnitude of 1, . The direction of
interaction between these stresses also creates real condi-
tions for the occurrence and development of fatigue cracks.
As was mentioned, the value of these stresses depends on a
friction force (Fy), associated with sliding, and the friction
force depends on the coefficient of friction.

The study performed [10] shows that should a friction
force act between two contacting surfaces, in addition to
normal pressure, then the magnitude of the maximum tan-
gential stress is determined from [10]:

T, =0,3470, =
T,K o K oKy (u£1)°
=0,347~ZHZMZSJ o é Lepg @
w Wba L
where [1,] is the permissible tangential stress [2]
GlllimeN
[t.]=05¢,[0, )= == 2,2,2,Z,c, (65)

H

where ¢, is the coefficient of reliability, adopted based on
the probability of non-failure operation of a toothed gear.
If the probability of a non-failure operation of the toothed
gear is

P(£)=0,9 = ¢, =10,

)
)

P(t

(0)

0,95 = ¢,=0,897,

e

0,96 = ¢, =0,865,

)

(£)=0,97 = c¢,=0,827,
P(£)=0,99 = ¢,=0,702.
In the case of complex stressed state, the estimation

stress then is a certain reduced (equivalent) stress obtained
based on one of the theories of strength, the most acceptable

for the examined stressed state of a material. For ductile
materials

i ) 2 _
Ou =VOn +4Tmax -

3
T,K i Ky Ky (1 £1)
2a,u'y,,Z,

= 1,217~ZHZMZE\/ <[oy,]- (66)

In the design calculation, one typically determines the
inter-axis spacing or a pitch diameter of the toothed wheel.
The inter-axis spacing

T,K
a, =K, (uii)x 2272%2,
[Gu] Zuy,,

where K, is an auxiliary coefficient, for spur gears

(67)

K, =3(1,217-2,2,,2,) 0,5K ; Ky =

={(1,217-275-1,76-0,9)’ -0,5-1,0-1,25 ~ 56 MPa"".

Here
Z,,=2715MPa"?; Z, =1,76;

Z,=0,9; K,,=10; K,, =125.

For helical gears

K,= i/(1,217-ZHZMZ€)2 0,5K ;1 Ky =

:i/(1,217~275~1,71~0,8)2 0,5-1,1 =49 MPa'?,
here

Z,,=2715MPa"? Z, =1,76cosp~1,71;

Z = /i ~0,8.
8(1

The helical gears operate more smoothly than the spur
ones, which is why factor K, is less. Given this observa-
tion, we accept the product K, K, =11.

7. Discussion of results of devising a calculation
procedure for toothed gears with respect to the influence
of a lubricant

The proposed procedure for the calculation of toothed
gears in terms of contact strength at the finite friction
coefficient, without the assumptions about the smallness
of the contact area and shape of borders, makes it possible
to estimate the load capacity of toothed gears considering
the influence of lubrication and the existence of friction
between the conjugated surfaces of teeth, which is almost
disregarded in traditional calculation methods by equating
the lubricant influence coefficient K; to unity. In this case,
the value of the resulting stress exceeds the stress, calcu-
lated according to the known Hertz solution, by 6 %, which
would accordingly improve load capacity of the toothed
mechanisms.



The study conducted demonstrates that normal contact
stresses only indirectly affect the main types of fracture of
toothed gears. Therefore, responsibility for the emergence
and development of damage should lay with the tangen-
tial stresses, which act in the contact zone between active
surfaces of the teeth. However, in the design calculation of
toothed gears, the influence of the tangential stress and the
effect of a lubricant are almost ignored. The proposed pro-
cedure makes it possible to more accurately assess the effect
of a lubricating oil on load capacity of the toothed gears and
to solve the inverse problem: knowing the kinematical and
energy parameters of toothed gears, it is required to choose,
based on a lubricant influence coefficient Z; a more effective
lubricating material. Practical literature on the estimation
and design of gear mechanisms should pay more attention to
the influence of lubrication on their load capacity, to recom-
mendations on the choice of lubricants for gear mechanisms,
to determining the precise value for a lubricant influence
coefficient.

When estimating the coefficient of lubricant influence
on load capacity of toothed gears, the range of input values
for contact parameters is valid at the following ranges in
the change in parameters and dimensionality of the input
magnitudes:

6, <550MPa; 0<V;<9,0 m/s;
20<V,<12,0 m/s;
15-10°<v<165-10° m?/s;

0,16-10°<R,<0,32:-10°m; p<0,1 m.

If one is to consider the problem outside these ranges,
there is a need to conduct additional experiments using dif-
ferent lubricants.

The shortcoming of this study is in that each lubricant
requires experiments to calculate a lubricant influence coef-
ficient K;. The statistical data that would be acquired must
be added to existing reference books and tutorials on the
calculation and design of toothed gear mechanisms.

7. Conclusions

1. We have solved the problem on the contact between
two bodies of arbitrary shape, close to half-planes, at the
finite friction coefficient, without assumptions about the
smallness of the contact area and the shape of borders; the
result revealed that the value of the stress, derived from the
refined solution to the contact problem, exceeds the stress,
calculated according to the known Hertz solution, by 6 %.

2. The proposed calculation procedure makes it possi-
ble to more accurately assess the load-carrying capacity of
toothed gears, taking into consideration the influence of
lubricants, which is of practical importance when designing
machines and assemblies.

3. The result of the refined calculation of toothed wheels
in terms of contact strength is the derived analytical expres-
sion for a lubricant influence coefficient based on the crite-
rion of a friction coefficient between the conjugated surfaces
of friction nodes.

4. Based on the study performed, we propose to take into
consideration a lubricant influence coefficient directly to
determine the geometrical parameters.
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Po3zensnymi numanns zeomempuunoz20 Cunme3y npocmoposux wap-
HIPHO-BANHCINLHUX WECUNIAHKOBUX MEXAHIZMIG 3 JITHIIHUM nepeMiujeH-
HAM KiHUe6ol JIanHKu, wo 6uKonyomo Qynxuito nanpsammoi. Buseneno
sapianmu KOMNROHYEAHHS MEXAHIZMI6 MA KOHCMPYKMUBHI 0CO0AUBOC-
mi, wo 3abe3neuyiomv MaKcumManvHuil Xi0 Kinyeeoi nanku npu mini-
Manvrux 006xcunax easicenie. Bcmanosneno zeomempununi napamempu
Mexaizmy 6 1020 Y3azanroHeHoMY GU2AA0L, AKI 6UHAUAIOMD KiHeMa-
MUKy ma KoMnonyeanvhi cxemu. J{oCaionceHo 6naue 2e0MempuuHux
napamempie i 6apianmise KOMNOHYE6AHHS HA KIHEMAMUMHI napamempu
Mexanizmie. Ompumano 3anencHocmi, saKi 003607510Mb GUIHAMUMU
2eomempuuni napamempu 6a306020 MeXAHIZMY 3a 3A0AHUM XOOOM KiH-
Ue6oi IAHKU Ma OONYCMUMUMU KYMAMU nepeoadi y mapHipax noeiouis.
Iooano napamempuuni 3anexcnocmi, ki 00360110Mb NPOGECMU MOU-
HUl PO3PAXYHOK ONMUMATLHOI 2e0Mempii MeXaHizMy 3a Kpumepiem
MIHIMI3aUET 006U N0GIOUIE NPU DoNnYCMUMUX Kymax nepeoati i Heoo-
xioHomy Odianasoni nepemiujenvb. 3anpononosana cxema po3paxyHky
NPOCMOPOBUX POIMIPHUX JIAHUI02IE Ol BU3HAUEHHS (hopMmu demaneil.
3D modentosanuam euseneHa 6apiaMuUGHICMb 260MEMPUMHUX NAPA-
Mempie, w0 00360AUNO CPHOPMYNI06AMU KOMNOHYEANLHI Bapianmu
Mmexanizmy. Po3pooaeno memoouxy zeomempunnozo cunmesy ma 3mo-
0enb08ano y 6i0n06ioHocmi 00 yici MemoouKu eapianmu npPocmoposuUx
WAPHIPHO —BANCINLHUX WECMULAHKOBUX MEXAHIZMIB 8 OUHAMIUL, WO
0036011710 NOKA3AMU 0COOIUBOCMI PYXY JIAHOK.

IIpoeedeni docniorcensn 6UABUNU MOHCTUBT WIAXU PO3POOOK HOBUX
8apianmié NPoCMoOPoOSUX UWAPHIPHO-BANCINLHUX UWECMUNAHKOBUX
MeXAHI3MI6 Ma PO3KPUTIU HOBL MONCAUBOCHIE NPU IXHLOMY 3ACMOCYEAHHI
Y Axocmi nanpamnozo mexanizmy. Pesynsmamu docnioxcenv moscymo
Oymu euxopucmani npu po3pooienni naam@opm niokomMnuxie, maniny-
Jamopax poéomis, eepcmamotyoyeanti ma mexampomii

Kmouogi crosa: mexanizm Capproca, wecmuianko8ui npocmopo-
BULL MEXAHI3M, HANPAMHUI MeXAHI3M, JIHIlHe nepemileHHs, 2eome-
mpuunul cunmes

u] =,
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Hinged lever mechanisms with translational or

Lever mechanisms with a linear motion of moving parts
are used in devices and equipment of various areas of me-
chanical engineering, including robotics, lifting machinery,
machine tools, and mechatronics. Despite the complexity
of the structure, multifaceted lever mechanisms of linear
relocation in some devices have replaced guides with sliding
carriages, telescopic mechanisms, and carriages on linear
bearings. This is due to various factors: the requirements
of layout and minimization of the dimensions, the need to
protect open surfaces from friction, the tendency to jam car-
riages with translational pairs, etc.

The choice of the scheme and structure of these non-stan-
dard mechanisms can significantly affect the performance of
the devices in general, their layout, dimensions, cost, etc.

near-translational finite-element coupling provide for the
implementation of compact structures in a folded state in the
absence or minimum number of translational kinematic pairs
[1, 2]. This avoids the drawbacks of translational pairs and
uses standard camshafts with protected local friction sur-
faces in the design of rotary kinematics pairs. An increase in
the course of the final link is achieved in these mechanisms
by using levers.

Flat guide lever mechanisms with rotational pairs are
found in devices for a steady movement of the working body
of machine tools or platforms of lifts and manipulators of
robots. In the designs of lifts and manipulators, flat lever
pantograph mechanisms are widely used [3—5], which, how-
ever, are not devoid of translational pairs. In woodworking
format-cutting machines, combined circuits are employed,






