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B pesyavmami 3acmocysanns KiibKichozo nio-
X00Yy 00 Po3paxyHKy cmamu4noi Cmitkocmi cucme-
Mu msa206020 enexmponocmavanns 0yao eécma-
HOGJIEHO, WO 6 Npoueci pyxy noizda no peanvHiil
dinanui maromo Mmicue 30HU 6i0cymmnocmi cmii-
xocmi no nanpysi. Toune eupiwmenns 3a80anns
ouinku cmivikocmi nadzeuuaiino yckaiaonene neoo-
XIOHICMIO PO3PAXYHKY HEeNHIUHUX 3ajedcHocmell,
Kompi eusnauaiomov pexcumu poéomu cucmemu
Ms206020 €1EKMPONOCMAYAHHSL | eTLEKMPOPYXOMO-
20 cxaaoy.

B npononoeaniii po6omi euxonane xoncmpyio-
8aHHs cCUCmMeMU YOMUPLOX AGMOHOMHUX HeNIHill-
HUX OugepenuianvHux pi6HAHbL HA OCHOBI eKcne-
PUMEHMATILHUX 0AHUX, WO MO0eN0I0Mb N0BEITHKY
cmpymy i Hanpyeu 6 Konmaxmui mepesici. Taxoor
Oyau pospaxoeani obaacmi cmitxocmi pezynsi-
mopie nanpyeu ¢ msz206ii mepesici, wo cmadinizy-
10mMb HANPY2Y HA CMPYMONPUUMAMAX eTeKmpopy-
X0M020 cKadY.

Ooepoicani obracmi cmitixocmi pezyaamopie
Hanpyeu 00360JUNU OUIHUMU 3aANACU CMIUKOCMI i
ecmanosumu Haubdiww podacmui 3 nodydoeanux
pezynamopis. B pesyaomami nposedenux docnio-
JHCeHb BUABNEHO, WO HEJIHIUHUL peYasimop Mae
Kpawi pobacmui eracmueocmi, wum iniunui. Ipu
UboMYy cminKicmov JAIHIUH0Z20 pezyasamopa oyoice
sy3vka — Ak=0,000004, wo na nopadox menue, uum
o neninitinozo pezynsmopa. Ilpu sacmocysanni
HeJIHIIH020 pesyaamopa Hanpyza 6 KOHMAaKmHil
Mepeoici cmabinisyemvca 6 3 pasu weudwe Hesa-
JLeXHCHO 610 MiCUsL 1020 PO3IMAMYBAHHSL.

Bukxopucmannsa po3po6aenozo nioxooy 00360-
aumv 30ilUcHI086amu po3paxymnku odaacmei cmiii-
KOCMi B8apiaHMHUX CXEMHUX PilleHb MA2060i
Mepedici npu 6npoeadlicenti WeUOKICHOZ0 PYXY ma
36y3umu dianason Koausans nanpyeu. Pospooneni
JunamiuHa M00elb NPOUECIE eaeKMPOCROHCUBAHHS
8 MSA2061I Mepedci ma pezynsamop Hanpyeu MoXCynbo
Oymu euxopucmani npu no6y0oei inmenexmyanv-
HOl, adanmuenoi cucmemu msn208020 eieKMpPono-
cmavanns 01 WeUOKiCHO20 PYXy

Kanrouosi cnosa: cucmema msz08020 enexmpo-
nocmavanns, pezyasmop wanpyeu, o6aacme cmii-
KOCmi, HeJIHIUHWI peKYypeHmHUll ananis

u] =,

1. Introduction

Introduction of high-speed motion necessitates the mod-
ernization of the traction power supply system in order to
ensure the required voltage mode and the level of specific
power. The process of consumption of electric energy in the
traction network occurs in the presence of heterogeneous
perturbations that are nonstationary in character. These
include a change in the operation modes of electric rolling
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stock depending on patterns in the timetable of trains, the
profile of a railroad and existing restrictions, as well as the
existence of different kinds of transient processes. Given
this, the pantograph voltage and the consumed power vary
over a wide range, which could lead to a loss of stability in
the work of the traction electric supply system (TES). An
approach to the quantitative assessment of TES stability
in terms of voltage was described in paper [1]. Results of
the authors” analytical calculations proved the existence of




zones in the traction network, which lack voltage stability.
Hence, one could draw an obvious conclusion about the
necessity to control voltage in the traction network. Under
real conditions, controlling influences on the voltage level
are executed by the low-cost trivial means for strengthening
the traction network: via an increase in the wire section, the
application of parallel connection points. However, these
means are not capable of ensuring the required stability of
TES in terms of voltage and do not make it possible to adjust
voltage in the traction network.

The level of voltage in the traction network depends on
many factors and, by changing in time, plane, and space,
demonstrates a probabilistic character with complex in-
ter-relationships. When implementing the high-speed mo-
tion, there is the task on the development of new approaches
to control voltage in the intelligent, self-tuning power supply
system of the distributed type, built on the modern element
base [2]. This approach meets the modern trends in the de-
velopment of energy engineering, which underlies the Smart
Grid concept, which is at present the main technological
and methodological basis to improve the efficiency of energy
consumption [3]. One could formulate the following under-
standing of an intelligent TES: implementation of advanced
technologies to transport electricity, diagnosing the state
of equipment, large-scale monitoring and management of
regimes applying the new tools and technologies to ensure
reliability of electrical power transmission and the traction
network controllability.

In order to improve the reliability of TES functioning, it
is necessary to use the strengthening points for the traction
network with voltage controllers. Regulation of power sup-
plied by the strengthening points would improve the stabil-
ity of TES. Thus, there is a need to develop new approaches
to ensure the stability of TES in terms of voltage.

2. Literature review and problem statement

The effective work of the traction power systems largely
depends on its ability to ensure reliable and uninterrupted
power supply to traction, stationary and third-party custom-
ers. The failures associated with the disruption of stability
result in significant damages. It is therefore necessary to pay
attention to improving the stability of TES both at design-
ing and during their operation.

There has been a significant increase in the interest in
DC systems in relation to the evolution of electricity supply
systems towards the use of the Smart Grid-DC systems.
Researchers have focused primarily on the possibility of
creating distributed systems of direct current, designing the
architecture of systems, the maintenance of required volt-
age, network protection, and stability provision. In [4], these
studies were categorized and analyzed; the authors showed
approaches to modeling flexible hybrid AC/DC systems.

Stability analysis of TES is run based on experimental
data that simulate behavior of current and voltage in the
contact system. Studies reveal that currents and voltages
in the contact system are nonstationary in character. When
modeling, these magnitudes are conveniently represented by
time series. The most effective tool for a time series analy-
sis is the recurrent analysis. The most fruitful approach to
solving this problem has been shown by Weber and Marwan
[5-7]. Paper [5] described methods and the most successful
practice of theoretical and practical aspects of the recurrent

analysis, which is applied in a time series analysis. The paper
showed modern achievements of recurrent analysis in med-
icine, geophysics, astronomy, radio electronics, hydro- and
aerodynamics, space engineering. However, the methods of
this analysis have so far not been used to study processes in
traction networks. In principle, the measured time series are
generated by a basic dynamical system that defines some (or
all) variables in the state of this system over time in accor-
dance with a set of deterministic rules. These rules are typ-
ically represented by a set of differential equations, with (or
without) the effect of noise. We shall assume that the right
sides of autonomous differential equations represent the qua-
dratic polynomials from several variables. The unknowns in
the quadratic right sides in a system of differential equations
could be derived by a special procedure, based on the least
square method, described in papers [6, 7]. Articles [8, 9]
addressed approaches to the description of dynamic systems
based on a multivariate time series when exposed to noise.

When analyzing stability of the traction power systems,
it is also required to determine the system’s stability reserve
(level of robustness). Usually, when examining this issue,
one builds the regions of stability. A comprehensive study
that describes the method of recurrent regions for different
applications is [10]. Paper [11] reported a toolset to analyze
the stability of dynamic systems based on the Lyapunov
method. The theoretical provisions reported in a given paper
require adaptation to traction networks, to account for the
specificity of traction power supply.

Voltage stability assessment is a major issue in the anal-
ysis of stability of energy systems. Papers [12-14] proposed
a variety of voltage stability indices (VSI). These indices
could be used to optimize the decentralized power supply
systems (DG), to identify weak areas and to take counter-
measures to improve stability. Authors of [12] examined VSI
on various aspects, such as the concept of critical values,
assumptions, and so forth. Paper [13] describes methods for
monitoring the stability of power system in terms of volt-
age under conditions of incomplete information based on
artificial neural networks. It is worth noting that issues of
stability within energy systems have been given much great-
er attention to than those in traction power systems. One of
the methods to improve stability of power supply systems
in terms of voltage is the application of voltage regulators
(VR). In [14], it is proposed to employ a genetic algorithm
to determine the number, location, and rated power of VR.
Theoretical provisions from [12-14] do not take into con-
sideration the need for the modernization of traction power
supply systems in the nearest future.

At present, there are many publications that address
promising traction systems. Thus, for example, paper [15]
proposed a segment technology for the traction network
power, according to which a section of the traction power is
divided into several segments, and a synchronous measure-
ment technology is used in order to rapidly and precisely
determine malfunctions and their location.

Modernizing the structure and circuitry of traction
power systems is needed to ensure the stability of promis-
ing modes of power consumption related to the expansion
of a high-speed motion polygon and, as a consequence, an
increase in load. The modernization should be carried out
in strict accordance with the regulations and, in the case of
European railroads, in accordance with the technical spec-
ifications for interoperability [16]. The intelligent systems
of traction power supply of the new generation will render



issues on ensuring the assigned level of reliability and
stability under all modes of operation even more relevant.

Expansion of a high-speed motion polygon and, conse-
quently, an increase in load, require modernization of the
structure of electricity supply system in order to ensure
stability for the promising modes of electricity consump-
tion. Therefore, it is necessary to devise a generalized
approach to assessing the stability of TES and to selecting
regulators that would provide it.

3. The aim and objectives of the study

The aim of this work is to devise approaches to ensure
stability of the system of traction DC supply using a regu-
lator to stabilize voltage in a traction network.

To accomplish the aim, the following tasks have been set:

— to construct a system of autonomous nonlinear differ-
ential equations based on experimental data that simulate
a change in the current and voltage in a contact network;

— to design regulators that stabilize voltage in the
pantographs of electric rolling stock;

— to assess the regions of stability for voltage regula-
tors in the system of traction direct current supply.

4. Modeling the dynamics of current and voltage in
a contact electric network

Let
x0=x(t0),x1=x(t1),...xn=x(tn), ¢))

be a finite sequence of numerical values for a certain scalar
dynamic variable, measured with a constant time step At
at moments t;=to+iAt; x;=x(t;); i=0, 1,..., n. Sequence (1) is
called a time series [5-7]. In principle, the measured time
series are generated by the basic dynamic system that defines
some (or all) variables of this system’s state over time in
accordance with a set of deterministic rules. These rules are
typically represented by a set of differential equations, with
(or without) the effect of noise. It is known that any such
set of differential equations could be transformed by using
a Cauchy method into a set of autonomous equations of first
order. Dynamic variables in all obtained first-order equa-
tions form the phase space and the number of such variables
determines the dimensionality of this phase space, which we
shall denote through n. We shall assume that it is possible
to measure voltage and direct current (two variables), as
well as, if possible, other dynamic characteristics of TES.
We assume that, among these characteristics, there could be
time-dependent derivatives from voltage and current. If the
derivatives cannot be measured, it is assumed that there are
smooth enough approximations of these derivatives [6]. We
shall assume that the right sides of autonomous differential
equations represent the quadratic polynomials from several
variables. In addition, we employ a special procedure for
determining the unknowns in the quadratic right sides of
the system of differential equations, which was proposed in
[5, 6]. This procedure is based on the method of least squares
and the fact that it is possible to calculate quite accurately
components x1(t;), x3(t;),..., X,(t;) of vector x(¢) from a time
series [5]) and its derivative dx/dt.

The result of experimental study is the constructed
temporal dependences for current and voltage in a contact
network at the electrified section NDY-P. To this end, we
performed 12,470 measurements at a 1-second interval.
Charts for the derived dependences are shown in Fig. 1, 2.
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Fig. 1. Voltage at pantograph U(t)
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Fig. 2. Current consumption by electric rolling stock I(t)
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Fig. 3. Volt-ampere (U-/) characteristic of a contact
network (experimental data)

Preliminary analysis of the acquired data reveals that
they are nonstationary in character. Note that non-sta-
tionarity may manifest itself through the emergence of a
deterministic or stochastic trend, changing over time with
variance and covariance. There are two main objectives in
a time series analysis: identification of the character of a
time series and forecasting (prediction of the future val-
ues for a time series based on the current and past values).
Both objectives require that a time series model should be
identified and described more or less formally [5-8].



To successfully complete the modelling of processes
shown in Fig. 1-3, it is required to apply the methods of
a nonlinear recurrence analysis [5, 10]. The first step of
modelling implies determining the dimensionality of the
nesting phase space that hosts the process. Determining a
given dimensionality is shown in Fig. 4.
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Fig. 4. Search for the dimensionality of nesting space
using a method of false nearest neighbors [1-3]

Next, we shall use the method of least squares [8, 9].
First, based on data from Fig. 1, 2, we calculate dimen-
sionality of the phase space that hosts the process [10].
This dimensionality is equal to n=4. Next, the application
of the method of least squares leads to the following sys-
tem of differential equations:

[£()=4(0),

() =0.0193-0.0072x(t)+0.0218y ()~ €, 2(¢)+
+0.0057u(t)—€, x(t)y(¢)+0.000422.x%(¢),

2(¢)=u(t), 2)
11(£) = 0.0294 — 00145 (¢) - 0.8506 (£) ~ 0.00192(¢) -
—0.00952(£) +0.2380x (£) y (£) + 0.0017x% ().

Where x(t)=U(t), z(t)=I(t), and €1, €5 are control
parameters; voltage U(¢) and current I(¢) is measured in
kilovolts (kV) and kiloamperes (kA). The behavior of the
solutions of system (2) is shown in Fig. 5-8.
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Fig. 8. Behavior of U—/characteristic when €, =0.0039 and
€1=0.00088 (chaotic behavior)

It is obvious that dynamics of system (2) could be
changed using the controlling parameters el and €2. These
changes could be demonstrated more effectively by using the
Lyapunov exponents (Fig. 9, 10) [5-7, 10].



Dynamics of Lyapunov exponents

0,11
0,08
0,05
0,04
0,02

0

-0,02

-0,04 |

-0,05

-0,08

-0,1

Lyapunov exponents

—1,=-0.0028257
_ 12=70.000834l 1

,=0.0090912
———1,=-0.0083238

0 200 400 t 600 800

Fig. 9. Lyapunov exponents for system (4) when €; =0.00088,
€,=0.0039

T ———

1000

Dynamics of Lyapunov exponents

22}
=
Q
=
)
=9
x
[
>
9
=]
3
g
=-0.0013006
= -0,05 1 _1;=0.0037082
———1,=-0.0025169
,=0.00060568
-0,1 tx n . . . g
0 200 400 600 800 1000

t

Fig. 10. Lyapunov exponents for system (4) when
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In Fig. 5, a, one of the Lyapunov exponents is positive.
This indicates the existence of chaotic processes in system
(2). In Fig. 5, b, all four Lyapunov exponents are negative.
It testifies to the stabilization of all processes in system (2).

4. 1. Voltage stabilization in system (2)
Consider the following generalization of system (2):

5 (t)=y(¢),

y(t)=a, +a,x(t)+a,y(t)+a,z(t)+
+a,u(6)+byx()y(6)+b,x° (¢),

:(t)=u(t), (©))
u(t) =yt a21x(t) + a22y(t) + a232(t) +

»+a24u(t) +b,x(0)y(t)+by,x*(t),

where ayy,..., b11, as,..., bas are valid parameters.

At certain values of parameters, this system describes
the dynamics of changes in voltage and current in a contact
network (refer to equation (2)). Note that voltage U(t)=x(t)
and current I(¢)=z(¢) are measured using a mobile laboratory
that moves at constant velocity v along a contact network.
Note that in order to study processes in the contact net-
work, it is more convenient to employ a dynamic model in

which voltage U(f)=x(¢) and current I(£)=z(t) are represented
as functions U(s)=x(s), I(s)=z(s) of distance s from some start-
ing point. Such a representation is very convenient when the
stabilization of voltage in a contact network is implemented
from some fixed points along the route of the train, for example,
at traction substations or gain points. Furthermore, we shall
assume that control over voltage is executed using the regu-
lator Uinput(s)=f(U(s), U'(s), 1(s), I'(s)), where f(...) is the real
function of its arguments. Thus, the transition from model (3),
where x(t) and z(¢) are represented as a function of time 7, has
been achieved through the replacement of independent variable
¢t with independent variable s, according to formula s=ot. In
this case, y(£)—>vy(s), u(t)>ou(s), and system (3) moves to the
following system:

5 (s)=y(s).

y(s)=(ay +a,x(s)+a,oy(s)+a,z(s)+
+a,ou(s)+box(s)y(s)+bx’ (s)+ Ui (s))/ 2%
z(s)=u(s), 4)
U(5) = (as +ay2 () + oy (s)+ ayz(s)+

L+a24vu(s)+b21vx(s)y(s)+ byyx*(s)+1,,,(s) /%

where velocity v=const is measured in m/s and U(s)=x(s),
I(s)=z(s) are some functions of distance. (For simplicity, we
kept the former designatiors for dependent variables x and z in
the newly derived system. Variables x(¢) and z(?) are replaced
with variables x(s) and z(s) .

We introduce a control law to system (4) according to
formula:

U,y (8) = (=0.00088 + piecewise(s <10000,0,k, ) (s)+
+(0.0057 + piecewise(s <10000,0,k, )0l (s)+(~0.0039 +
+piecewise(s <10000,0, 4, ))vU(s)U(s) =

=(—0.00088 + piecewise(s <10000,0,k))z(s)+

+(0.0057 + piecewise(s <10000,0,k, ))ou(s)+

+piecewise(s <10000,0,k, ))ou(s)+(—0.0039 +
+piecewise(s <10000,0,k, ))ox (s)y(s), 5)

where the value for valid function f=piecewise(s<Dist; b; c)
equals b if s<a and ¢ in the opposite case; 0<Dist<120,000
meters.

The proposed control law indicates that control over volt-
age will be implemented using the feedback that is introduced
to the system at a distance Dist meters from the starting point.
Note that in Fig. 6 we measure current from some zero. This is
a common practice of measurements when a contact network
employs DC sources. Here, this zero level corresponds to a
value of 1.5 kA.

It should also be specified that in accordance with acting
regulations the minimum voltage level at the pantograph of
TES should be 2.9 kV. However, paper [17] showed that for
high-speed motion the voltage at a pantograph should be at
a level of 3.5-3.6 kV over a range of change +360 V. Simi-
lar results were obtained in paper [18]; it was proposed to
raise the level of useful average voltage to 2.8 kV. In a given
paper, the task on stabilizing was solved under the assigned
constraints.

Consider the impact on the dynamics of system (4) ex-
erted by control law (5) for velocity v=15 m/s, Dist=1000



(or 6000) meters, and different values for coefficients &y, ko,
ks (Fig. 11-20).
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Fig. 11. Behavior of a distance function {/(s) for system
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k1=0.00018, k, =k3=0, €, =0.00088; €, =0.0039,
Dist=10,000 meters (quasi-periodic behavior).
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Fig. 18. Behavior of a distance function /s) for system
(4) when k1=0.00018, k,=0, k&3=—0.0015, €,=0.00088,
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stabilized). Non-linear control law
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Fig. 19. Behavior of a distance function {/s) for system (4)
when k;=0.00018, k&, =—0.0003, k&3 =—0.0015, €, =0.00088,
€, =0.0039, Dist=60,000 meters (voltage and current are
stabilized). Non-linear control law

An analysis of Fig. 13-20 reveals that the linear regu-
lator that uses only the proportional gain Usnu:(s)=k11(s)

(Fig. 13, 14) or the aperiodic link Ujypu(s)=k11(s)+kovI(s)
(Fig. 15, 16) is less effective than the non-linear regulators
(Fig. 17-20).
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Fig. 20. Behavior of a distance function As) for system (4)
when k1 =0.00018, k&, =—0.0003, A3 =—0.0015, €, =0.00088,
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4. 2. Stability regions

An important issue that has not yet been considered in
the present work is the problem of robustness (insensitivity
to small perturbations) for the built regulator. A problem of
robustness is rather difficult. Therefore, we shall consider
only one aspect of this problem.

Hereinafter the robustness of system (4) shall be un-
derstood as the stability resource of this system with the
constructed regulator (the system is closed via feedback).
This stability resource could be determined based on the
construction of stability regions.

As shown in Fig. 11-20, the problem of voltage stabili-
zation in a contact network does not depend on the place of
introducing generation capacities. Therefore, we shall use
system (2) to search for the regions of stability [11, 19].

Let €,=0.00088, €,=0.0039 and v=1. (In this case, sys-
tem (4) becomes system (2)). We introduce to system (4)
the control law Ujppue=k1U®t) _U@t)=kix@)y) and liypue=
=koU(t)_U(t)=kox()y(t), where ky, ks are valid parameters.
We obtain then the following closed system:

£(0)=y(0)
9(¢)=0.0193-0.0072x(¢)+0.0218y(¢) - 0.00088z(¢ ) +
+0.0057u(t)—(0.0039+ &, ) x(¢) y () +0.000422.x° (¢),
2(t)=u(¢),
(t)=0.0294-0.0145x(¢) - 0.8506y (¢)—0.0019z(¢) -
|—0.0095u(¢)+(0.2380 + &, ) x(¢) y () + 0.0017x° (¢).

(6)

The equilibrium point of system (6) at ki=ky=0 is
the point with coordinates x*=3.336576430, y*=0, z*=
=-0.02878756292, u*=0. We shall search for the region of
stability in system (4) in the neighborhood of the equilibri-
um position x*, y*, z*, u*). Calculate Jacobian A=(a;) [11] of
system (4) at point (x*, y*, z* u*). Here, the Jacobian matrix
elements acquire the following values:

ay1=ai3=ai;=az1=az=a33=0,



ap=az;=1,

a»1=—0.004383929493,
az3=—0.00088,
a9»=0.00878735192+3.336576430k1,
a;1=—0.00315564014,
a49=-0.0564948097+3.336576430k,,
as3=-0.0019,

a44=-0.0095.

Let E be the identity matrix of order 4. The characteristic
polynomial of matrix A will take the form

det(AE, — A)=A"+cA* +c,A* +ch+¢, =

=" +(0.00071264808 - 3.336576430k, ) A" +
+(0.006522470065 —0.03169747608k, —
-0.002936187258k,)A* +(—0.00000677692221—
-0.006339495217k, +0.002936187258k, )\ +
+0.000005552502714.

Hurwitz polynomials [15] for matrix A are as follows:

A, (k, k) = ¢, =0.00071264808 - 3.336576430k,

A, (k,k,)=c,c, —c, =(0.00071264808 — 3.336576430k,) x
x(0.006522470065—0.03169747608k, —
~0.01901848565k, ) —(~0.00000677692221 —
-0.006339495217k, +0.002936187258k,),

A, (ky,ky) = cicoe, — 5 —cie, = (0.00071264808 —
-3.336576430k,)(0.006522470065 —0.03169747608k, —
—-0.01901848565%,)(—0.00000677692221 —
—-0.006339495217k, +0.002936187258k,) —
—(=0.00000677692221-0.006339495217k, +
+0.002936187258k,)* —(0.00071264808 —
-3.336576430k,)*0.0000055525027 14,

A, (ky,k, ) =, =0.000005552502714.

Stability region is defined by conditions

Ay (ky, ky)>0,

Ag(ky, k2)>0,

Az (ky, k9)>0,

A4 (k1 k2)>0.

Now, we introduce to system (4) the control law

Uinput=kll(t) =k1Z(t)

and
[inpul:kQI(t) :kZZ(t)v

where kq, ky are the valid parameters. In this case, we also
build the Hurwitz polynomials

Ai(ki, k2)>0,
Ao(ky, k2)>0,
As(ky, k2)>0,
As(k1, k2)>0.

In the plane of parameters ky, ky, stability region for a
nonlinear law

Uinpue=k1 U@ U'(O=k12(0)y(©)
and
Iinput:k2 U(t) U)(t) :kzx(t)l/(t)

is shown in Fig. 21.
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Fig. 21. Stability region for system (6) for a nonlinear control
law Uinput=k1U(t) U’(t)=k 1x(t)y(t) and linput=k2U(t)
U’(t)=k2x(t)y(t))

In the plane of parameters ky, ko, stability region for
control law Ujpu=kiI(€)=kz(t) and Lipu=koIl()=koz(t) is
shown in Fig. 22.
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Fig. 22. Stability region for system (6) for linear control law
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Fig. 23. Behavior of function x(#) (voltage in a contact
network) for system (6) at a linear control law Uj,,,/~k12(1),
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Fig. 24. Behavior of function x() (voltage in a contact
network) for system (6) at a non-linear control law
Uinpur=k1x(t)y(t)r /input=k2~r(f)y(f)

Thus, as it follows from Fig. 21-23, the non-linear reg-
ulator possesses better robust properties than the linear
regulator. In addition, the region of stability for the linear
regulator is rather small. This fact does not make it possible
to apply such regulators to solve the task of voltage stabili-
zation in a contact network. One should also note that the
stability regions were built for the linearized system (6).
Hence, it follows that stability regions for the non-linear
system (6) could happen to be wider than the regions shown
in Fig. 21, 22.

5. Discussion of results of studying the approaches
to ensuring the stability of the traction direct current
system

The proposed dynamic model of the power consump-
tion processes in a traction network and the structure of a
non-linear voltage regulator could be used when building
an intelligent, adaptive system of traction electric supply for
high-speed motion. At the same time, one should indicate
the necessity to conduct further research aimed to adapt the
proposed procedure for the circuits of traction network of

the distributed type, especially at the unsymmetrical loca-
tion of generating points. That will necessitate the improve-
ment of the algorithm for the functioning of a non-linear
voltage regulator for high speed motion.

The received stability regions are quite narrow, because
in a first approximation we investigated the linearized
model. When building stability regions, we applied simpler
control laws than the law (5). Formulae for control laws are
indicated below the above figures. Stability regions were
constructed only for the linearized control systems. This
is explained by that the Hurwitz criterion applies only to
linear systems. Using a given criterion for the linearized
nonlinear systems either produces a much narrower stability
region or yields nothing at all for determining the stability
regions of the original nonlinear system. Application of this
criterion could be seen as the first step in building the re-
gions of stability for nonlinear systems.

More precise results could be achieved in the case of em-
ploying a non-linear model, when using Lyapunov functions
and a synergistic regulator. We must specify that the model,
devised for such an application, quite accurately represents
energy-exchange processes in a traction network. The meth-
odology of our study implied that the considered non-linear
regulator is very sensitive to external perturbations caused
by the hyperchaotic character of change in the examined
parameters.

The control law was assigned by formula (5) using a dis-
continuous function. Control is not enabled until the value s=
=10,000 m (s=60,000 m), it is enabled after covering this dis-
tance. A simpler notation is U (in)=k1-1+k2-I'+£3-U-U’
Here, k1 is the gain factor for current; k2 is the gain factor
for the derivative from current; £3 is the gain factor for the
function that is the product of voltage and the derivative
from voltage. This nonlinearity is introduced in such a fash-
ion that it has made it possible to stabilize voltage as quickly
as possible, in contrast to other models examined in the syn-
thesis of non-linear models. If k3=0, the control law is linear.

Conjugation of discontinuous models of TES between
points of generation could lead to the need to change gain
coefficients and to a decrease in the robustness of regulators.
That is why, given such a complex system, it is not expedient
to use regulators with the predefined parameters, but rather
the synergistic regulators, adjusted to a change in parameters.

6. Conclusions

1. Based on experimental data, we have proposed a math-
ematical model of change in the current and voltage in a trac-
tion network, which makes it possible to estimate the quality
of power consumption processes, as well as the regions of
stable operation of a traction power system. The structure of
the model was developed using a nonlinear recurrent analy-
sis, which allowed us to reveal the hidden components of the
process. For example, in addition to the measured current
and voltage, we calculated their derivatives.

2. A comparative analysis of the structures of regulators
with a linear and nonlinear control law was performed. The
result of our study shows that the stability region for a non-
linear control law, due to the hyperchaotic properties of the
system, is very narrow, of the order of Ak=0.00005, and for
the linear Ak=0.000004, that is still an order of magnitude
less. This phenomenon could be explained by the high dy-
namic sensitivity of the system to changes in external factors.



3.1t is shown that the regulator with a nonlinear control  stabilization mode after £=12. In this case, the voltage stabiliza-

law possesses a better robustness, since voltage in a contact  tion zone in a traction network when using a non-linear regula-
network stabilizes even at =4, and at linear control it enters the  tor is 3-4 times wider in comparison with the linear regulator.
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