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B oaniii cmammi npodemoncmposanuil nodionuil nioxio
OUIHKU MPUBANUX 2PAHUMHUX XAPAKMEPUCMUK Ot 00HO-
BUMIPHO20 enlemenma kKoHcmpyxuyii-cmepocua. Iloxaszano,
Wo npouec 6MOMH020 PYUHYBAHHS BUIHAUAECMBLCS NpoUe-
com nowkooxcysanocmi. Ompumani ouiHKu cnpaseoausi s
00HOPIOH020 00HO0CHO020 HanpYydiceno20 cmany. [lana nadau-
Jcena popmyna 3acmocoena maxoxc i 0N OYtHKU MiyHocmi i
cmitikocmi maaux ocepedxis min, wo micmamv mikpooedex-
mu. Ompumani pesyrvmamu Moxcymv Oymu UKOPUCMAHI
npu po3pooui nanomexmnonoeii

Kniouoei cnosa: emomna miynicmos, yuxiiune Haganma-
JHCEHHS, NOWKOONHCEHHS, HANPYea, NOE3YHICMb, 6 ’I3KONPYHC-

Hi, 3aiK08Y6anus dedexmis, pyuHyeanns
[, yu

B odannoii cmamve npodemoncmpuposan nooooOHwLU
n00x00 OUeHKU OJAUMENbHBIX NPedesbHbLX Xapaxmepu-
CmuK 041 00HOMEPHO20 3J1eMeHma KOHCMPYKUUU-CMePIHC-
na. Iloxaszano, wmo npouecc ycmaaiocmiozo paspyuienus
onpedensemcs npouyeccom nospevxcoaemocmu. Ilonyuennvie
ouenxu cnpageoiusvt 011 00HOPOOH020 00HOOCH020 HANPSL-
Jcennozo cocmosanus. Jannas npubnauscennas Qopmyna
npumenuMa maxdice u ONL OUEHKU NPOUHOCMU U YCMOliu-
6OCMU MANBIX AxeeK mes, codepicauwux murxpoodedexmot.
Honyuennvie pesyavmamot mozym Gvbimv UCNOTIBIOBAHL NPU
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1. Introduction

Numerous problems of oil mechanics require for ade-
quate methods of calculating and obtaining estimates of
the endurance of structural elements in periodic loading
conditions. Examples include drill pipes and oil-and-gas
pipelines. The working conditions of their service are
close to periodic. With time and increasing of loading
cycles, the irreversible structural changes, formation and
accumulation of various defects occur in the materials of
constructions. As a consequence, the real endurance can
be less than the calculated, and this can lead to an emerge-
ncy stop of installation. To improve and reduce the overall
characteristic, the theory of fault probability appears to be
most promising.

2. Problem

In this paper, it is demonstrated the approach of evalu-
ation of long-limiting characteristics for one-dimensional
element of structure, i.e., for the rod.

The basic theory of damageability, having phenomenol-
ogical character and found its confirmation, both theoretic-
ally and experimentally, suggests the introduction of a fun-
ction that characterizes the level of damage in the material.
Usually this function is associated with the density of exis-
ting and developing defects, with their relative volume. The
existence of such functions makes it necessary to define an
equation, called the kinetic equation describing the change

of this function depending on the parameters characterizing
the stress-strain state [1 — 7].

Another, alternative variant of damages account that
excludes the need for the formulation of kinetic equations is
a variant of the hereditary theory of damageability [8 — 10].
According to this theory, along with the reversible creep in
the material, it takes place an irreversible process of damage
accumulation, which is at sufficiently high load leads to
destruction. For a uniaxial stress state, the strain equation
is [8, 11]:

o(e)=c+Lc+Mo, €))

where ¢(e) is a nonlinear function of instantaneous defo-
rmation, ¢ is stress, L' and M"are integral operators of
hereditary type, and L' is the operator responsible for the
reversible creep, and the second operator M for the accum-
ulation of damage.

Creep operator is the operator of a continuous action and
an integral operator of viscoelasticity of the following form:

Lo=[L{t-to(t)dr. ®)

The operator of damageability M" is an integral oper-
ator of discrete operation acting only at time area of active
loading. In general, if the effect of healing of defects takes
place, then this operator has the form:

Mo= if(tﬁ)]k M(t; —1)-o(t)dt+ j M(t-1)o(t)dt,(3)

k=0
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here M(t—1) is the kernel of damageability, (t;;ti) are the
time intervals of active breach, f (tj is the function of hea-
ling the defects.

Strength condition according to the hereditary theory of
damageability can be represented as:

c+M'c=0,, (4)

where o, is an instant ultimate strength, which can also be

interpreted as the ultimate strength of defect-free material.
For uniaxial stress state conditions determining the inte-

rvals of active loading can be written in the following form:

S)0; 6)0, (5)

where the dot over the stress function indicates the deriva-
tive by time.

The function of defects healing f Stﬁ) characterizes the
part of stored volume of accumulated damage during unl-
oading.

It depends on level of damage accumulated in the prev-
ious range of active loading. Currently, there is no reliable
experimental data on determination of this function. Acco-
rding to the physical nature of this function, it varies from
zero, with the full healing of defects, up to the one at the
absence of effect of healing the defects. Therefore, during the
initial approach, it is natural to specify this function as the
discrete-continuous:

-(6)

. 1 atabsence of defects healing effect
f(tk)zf(tk)z{

0 at complete healing of defects

In paper [2], it is made an attempt to evaluate the fatigue
damage under cyclic loading:

o(t)=0,+0,sinot, @)

where o, is an average stress of loading cycle, o, is its am-
plitude, ® is the frequency of cyclic loading.

In this work, it was assumed that the damage accumulat-
ion process is continuous, as both for the active and the pass-
ive loadings. Below the process of fatigue failure is analyzed
with taking into account the specifics of damageability op-
erator (3), i.e., with taking into account the discrete nature
of the process of damage accumulation, and at the presence
of defects healing phenomenon as well.

In the strength condition (4), the operator of damage is
the same as in the deformation ratio (1), i.e., has the form (3).
Suppose that in one-dimensional body under cyclic loading,
it is realized one-dimensional stress characterized by the
stress of the form (7).

First, let us define the time intervals of active loading.
Subjecting function (4) to the condition (5), we obtain the
following values:

2n(k -1 0,5m+2n(k -1

where k is an arbitrary natural number.

To determine the damage time, we substitute represen-
tation for stress (7) in the strength condition. Then, taking
into account the principle of linear superposition (4), we
get:

t
0, +0, sinwt+ GmJ.M(‘C)d‘C +
0

t

t t (9)
+0, {ka _[ M(tﬁ - ‘C)Sin wtdt+ j M(t—1)sin wrd‘c} =0,
k=1 - e

T

For simplicity and to identify the qualitative picture of
the considered process, we assume that the kernel of dama-
geability is constant, i.e., M(t—1)=B=const . Then (9) has
the form:

o, +B<5mt+csaB[Hifk]ﬂsa 1+(E) sin(ot—0)=0,, (10)
ol & \/ ®

where tgd=Po .

To obtain an approximate estimation of the number
of loading cycles up to failure, we assume t = 2nnw ™", and
f, =1, which corresponds to the absence of the defects
healing phenomenon. Then:

= . 11
Mo Bo™(2no,, +0,) (n

The obtained formula determines the dependence of
cycles number up to failure n, from the average stress o, ,
amplitude o, , frequency ®, and the parameter of damage-
ability B .

Simple analysis shows that these dependences are inver-
sely proportional, besides dependence from frequency, which
has the character of direct proportionality. They qualitat-
ively conform to the experimental ones, in particular, with
well-known curves of Wohler.

It should be noted that the rejection of the principle of
forces linear superposition in the denominator of the formula
(11), 27 must be replaced by 0.5 7.

Limited endurance limit from (11) is given by expres-
sion
G0

= (12)
+1_1%[B+ 1+(E) ]
1+R| ® [0)

where R=(o, -o0,)(o, +(5a)71 is the cycle asymmetry coe-
fficient.

In the absence of damageability, from (11), it follows the
classical failure criterion by maximum stress

o=

1+E(2n+ﬂ)n
[O) 1+R

6,+6,=0,.

m a

(13)

This shows that the process of fatigue failure is directly
determined by the process of damageability, with the non-
monotonic and complex dependence character mostly depe-
nding on stress variability by time.

The obtained estimates are valid for a homogeneous
uniaxial stress state. If we refuse from this limitation, then
we first solve the corresponding boundary problem for the
one-dimensional body.

As a part of the rod theory, the one-dimensional equation
of motion has the form:

do _ du

do _ o' 14
x Po’ b



where u is movement associated with the deformation € by
Cauchy relation

_du

S—fo.

(15)

Let us take strain ratio (1) in simplified form, assuming
that percentage of strain associated with creep is negligible
small. In addition, assume that the function of instantaneo-
us deformation is linear ¢(e)=Ew, where E is the Young’s
modulus of elasticity.

Substituting (1) with subject to accepted simplifications
and formula (15) in (14), we obtain the following integrodif-
ferential equation for displacement function u(x, t):

cou”(x,t)=1i(x,t)+

Wt . (16)
+ ka.M(tﬁ —r)ii(x,r)dr+ J. M(t-1)i(x,7)d,

=t .

n+l

where ¢ _E where pis the density. Prime denotes differ-
P

entiation with respect to spatial coordinates x, and the dot
above the function is differentiation with respect to time.

Suppose that one face of the rod of length 1 subjected to
periodic displacement of the given amplitude a and frequen-
cy o, and the other face is free from effort. These boundary
conditions are written as:

{u(O;t)zacosu)t,. (17)

u(Lt)=0

We are interested in steady-state oscillations, and there-
fore there is no need for the initial conditions.

As before, for simplicity, and visibility of the results,
we accept the kernel of damageability operator as constant
M(t—1)=B=const .

Conditions determining the intervals of active loading
times are taken in the

form:

u(x;t))O; t'l(x;t))O . (18)

Solution of equation (16) will be found by Fourier varia-
ble separation method:

u(x;t)=v(x)cosot . 19)
Determining regarding to this expression by conditions

(18) the times t, and t,, and then substituting them into
equation (16) and integrating, we obtain:

cgv”(x)coscot+|:w2 coswt+[3(1+sin u)t+§:fk )]v(x): 0.(20)

k=1

Due to the mathematical complexity of this equation
and to obtain visual engineering estimates, we preliminary
multiply equation (20) by coswt and average the obtained

2n+1.5
by last interval of active loading from M u

2n(n+1)

p to

then we find

V"(x)+(%) v(x)=0, (1)
where
AB(1
x_1+w(2+;fk) (22)

The solution of equation (21) can be represented as:

(23)
C

v(x)= bcos(%x—oc) )

Constants b and o are determined by the boundary
conditions (17), which with taking into account the represe-
ntation (19) have the form:

v(0)=a; v'(0)=0. (24)

Substituting (23) in (24), we get:

L L (25)
¢, coso.

Considering (23) into (19), we obtain the following rep-
resentation for displacement:

COS%(I —X)
u(x;t)= acoiwlcos ot . (26)
cos—
Co
Strain ratio, recorded here in the form of
Eu'(x;t)zc(x;t)+MG(x;t), 27

together with the criterion of strength, (4) gives the follow-
ing representation for the strength criterion by means of the
displacement function:

Eu'(x;t)=0,. (28)

We strengthen this requirement by demanding its im-
plementation for the maximum values of the left hand side
of (28):

E-Inaxu'(x;t):co. (29)

This allows with taking into account representation for
displacement (26) to obtain relatively simple expressions for
the strength criterion:

Eayw tg ayl _
Co Co

G, . (30)

oxl

For real values of parameters, the quantity is small.

Co
We use this to further simplification of (30). We replace the
tangent of the angle by the value of the last one. Then we
find:



2
Eal[xw] =c,. (31)
o
Enter the nominal stress o, as follows:
Eaw’l
WS (32)
C()
12
Bl1 & c
=4+ 3 f =] 2 , 33
m)(2 g;k] (GHJ (33)

where n, is the number of cycles faults before failure.

At the absence of the phenomenon of damage accumul-
ation, when =0, from (33), it follows the classic criterion
of strength:

6y =0,. (34)

In the presence of damages from (33), we obtain the foll-
owing strengthening of this classic criterion of strength.

For complete healing of defects,#0; f, =0, from (33),

we obtain the following representation for the strength cri-
terion:

2
GH(1+12£;] =0,.

At the absence of the effect of defects healing, when
f, =1, from (33), we find the following formula for the
critical number of loading cycles up to failure:

(35)

1/2
To|( o, 1
== -1|-=. 36
Ny m (GH] D) (36)

This approximate formula for the number of loading
gives an estimate of long-term strength for the inhomogen-
eous one-dimensional stress state, determining the fatigue
resistance.

Equation (36) is also applied for estimation of the stren-
gth and stability of small cell bodies containing microdefe-
cts. The obtained results can be used in the development of
nanotechnology, to accommodate both existing and possibly
created micropores.

3. Conclusions

The given approximate formula for the number of loading
gives the estimation of prolonged strength for one-dimensio-
nal stress state and defines the fatigue strength.

On the base of hereditary theory of damageability a way
for defining the working life of a cyclically loaded bar was
worked out. Quality analysis of the situation with regard to
deficiencies healing process was given.

It was shown that this process may make a valuable co-
ntribution to the estimation of fatigue strength. Within the
frames of the approximate engineering approach, a formula
of dependence of ultimate number of cycles before failure on
nominal stress is was obtained.

The obtained formula is applicable also for strength and
stability estimation of small cells of bodies containing mic-
ro-deficiencies. The obtained results may be used by develo-
ping nanotechnologies in order to take into account both the
existing and possibly the created micropores.
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