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The complex dynamic research of a turbo-machine blades
and bladed disks becomes very important with the increase
demands on higher power and longer life of steam and gas
turbines. The Institute of Thermomechanics ASCR works for
many years on the theoretical, numerical and experimental
research of means for reduction of undesirable vibrations of
blades The main attention has been concentrated on using
blade damping heads, connected either by friction contact or by
means of various type of inserted damping elements. Laboratory
models of rotating bladed disc, the various combinations
of blades bundle without rotation, analytical and numerical
(FEM) methods were used to solve complex dynamic problems
including non-linear stiffness and damping characteristics,
contact pressures, micro-slips, impacts, etc. [1-4].

Many of these problems were solved also in the frame
of scientific cooperation between Academy of Sciences of

Czech Republic and National Academy of Sciences Ukraine
during the last three years.

A small part of these works is presented in this paper. It is
oriented on the dynamic study of five-blades-model with the
blades heads connected by inserted special rubber damping
elements.

2. Vibrations of blades bundle — experimental model

The experimental set consists of five models of blades
with shroud heads rigidly fastened to a steel plate basement,
Fig. 1a. and are excited by electro-magnets seen in Fig. 1b.

Inserted damping elements made of special rubber
VITON known for its resistance against high temperatures
(up to T=220°C) and against many aggressive chemicals
and oils. Mechanical properties of this material depend
strongly on the temperature and frequency and therefore the




mathematical modeling of dynamic properties of systems
containing these elements need a special treatment. The
dependences of its complex Young modulus E" =E,_ +iE,
is described by the analytical formula in [4]:

E =10.49*(1+0.1i)+15.88* (1+

1
+0.061)(ifoT)™*" / (1+0.0063(iforT)"* O

where oT=10"(-20(T-4.4) / (134.5+T).

Placement of the prismatic VITON elements in the blade
shroud presumes the shear deformation. Their geometric
parameters are: base area A=0.00025 m? and height £=0.012
m. The complex shear stiffness K of such elements is
ascertained from eq. (1) at the assumption of volume
incompressibility: K (f, T)=E"(f,T)A /3h.

Fig. 1. a - Experimental model; b - Model with electro-
magnets

Stiffness k(f,T) and linear damping coefficient b(f,T)
of the viscous-elastic damping element can be derived from
complex shear stiffness K. . However both these parameters
depend on frequency and temperature. The graphical
representation of these dependences in the temperature
range Te (20, 120) °C and in frequency range fe (100, 300)
Hz are depicted in Fig. 2 and 3.

w10° STIFFNESS OF VITON RUBBER ELEMENT
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Fig. 2. Stiffness versus frequency

The properties of this viscous-elastic damping element
are very variable near to the room temperature, but they
stabilize at the highest temperature (=120 °C) on the ap-
proximately constant stiffness £ =72800 N/m and damping
coefficient b [Ns/m] variable with frequency f according to
the hyperbolic law 5*/ = const. The linear regression func-
tion of rubber element stiffness at 20 °C is

k, =102300+250f [N/m, Hz]

(22)
(2b)

and at 100°C k, =72850+0.033f [N/m, Hz].
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Fig. 3. Damping versus frequency

Experimental system in Fig. 1 can be modelled by a
system shown in Fig. 4, where the blades are replaced by 1
DOF systems, the eigenfrequencies of which corresponds
to the first bending eigenfrequencies of real blades. The
torsion eigenfrequencies of these blades are supposed to be
much higher than the bending ones and therefore the torsion
vibrations of blades are not taken into account.

The dynamic measurements physical model began at room
temperature. As the measurements at higher temperature
will be more complicated, the preliminary analytical and
numerical solution of simplified mathematical model with
temperature 100 °C has to be carried out. The first stage of
this study is in the presented paper.

Stiffness at 100 °C can be approximately described by
(2b) and damping coefficient by

by =12.972 — 0.0316/ [Ns/m,Hz]. (3)

3. Mathematical model of five blades bundle

Scheme of dynamic computational model corresponding
to the physical five blades bundle is shown in Fig. 4.
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Fig. 4. Dynamic computational model of blades bundle
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Damping of all separated steel blades is modelled
by viscous damping with low coefficients 5=0.4 Ns/m.
According to the first bending eigenfrequency of real blade
/= 120.88 Hz, the reduced mass m=0.182 kg, and stiffness
£=105000 N/m were ascertained.

The VITON rubber element properties at 100 °C are
given by Voigt—Kelvin model with parameters (2b) and (3).
Masses m are loaded by the synchronized harmonic forces

Fi(t) = Fpicos(wt), i =1,..5

where the amplitudes Fy; can be of various values. The
excitation frequency w varies linear with time through



the whole eigenfrequency spectrum of system. Differential
equations of motion by given vector of force amplitudes
F = [Fo1, Foa, Fo3, Fos, Fos]" are:

MY +BY +KY =Fcos(ot) 4)
where
m 0 0 0 0
0m 0 0 0
M=[0 0 m 0 0],
000 0 m 0
00 0 0 m
k+k, k, 0 0 0
-k, k+2k, -k, 0 0
K=l 0 -k, k+2k, -k, 0 (4a)
0 0 -k, k+2k, -k,
0 0 0 -k, k+k,

The matrix B has the same structure as K with the
exchange k.,k < b,b.

Due to the frequency and temperature dependent
coefficients k(T,f), bi«(T,f), also both matrices K(T,f),
B(T,f) are non-constant quantities. Neglecting external and
damping forces, the equations for free vibrations are in the
matrix description

MY +K(T,f)Y=0. 5)

Because the stiffness & of inserted elements is at 100 °C
moderately variable with frequency, the five blades system
eigenfrequencies must be determined by means of modified
programme eig in Matlab with consideration to (2b) that gives

[91’92’93794’95]:
[120.88, 135.96, 169.19, 202.88, 226.48] Hz.  (6)

Corresponding modes of these eigenfrequencies are
plotted in Fig. 5. From the forms of these modes can
be estimated without any calculation that the higher is
the eigenfrequency, the higher is also the damping of the
corresponding mode.
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Fig. 5. Modes of free vibrations

4. Distortion of response curve at external sweep
excitation

The simplest way how to gain the response curves of
multi-degrees dynamical system is to calculate the response
of mathematical model on the sweeping excitations.
However obtained response curves are a little distorted
against the stationary ones, but the quickness of solution
and mainly the possibility of solution of the strongly
non-linear systems is very often decisive. Analysis of
influence of sweep velocity on the response’s distortion has
shown that sweep acceleration 0.2 [rad/s?] causes only 3%
decrease of resonance peak and 0.03% change of relative
resonance frequency AQ /Q and can be therefore applied
in the further solution.

5. Forced vibrations — stiffness and damping is frequency
dependent

Experience with modes vibration of bladed disk in
steam turbine show that the length of waves (both
standing or running waves) of bladed system always
include several blades and therefore the most important
modes are those belonging to the low eigenfrequencies
Q,9,.Q, in Fig. 5.
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Fig. 6. Responses on one excitation force

The response curves of 5-blades bundle depend however
also on the form of excitation force vector F=[Fyy, Fyo, Fp3, Fos,
Fy5]. If the force vector consists of only one force Fy; = 10 N,
(i.e. F=110,0,0,0,0] N), then the response curves calculated
at sweep passing through the first three resonance zones are
plotted in Fig. 6. The first mode belongs to the umbrella type
of disk and has been rarely excited. The inserted damping
elements are not deformed and therefore this resonance is
very low damped. The second and third resonance peaks are
due to the strong damping of inserted elements and inappro-
priate excitation very put dawn. For detail analysis of these
resonances, the force vector F with appropriate components
has to be used.

Two harmonic forces acting in opposite sense on the
side masses 1, 5 excite second resonance (Fig. 7) with the
one node in the point 3. Three external forces acting on
mass 1 (10N), mass 3 (-20N) and on mass 5 (10N) excite



third resonance (Fig. 8) with two nodes mode. Although
the number of external forces increases, the maximal am-
plitudes decrease.
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Fig. 7. Responses on two excitation forces
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Fig. 8. Responses on three forces

6. Conclusion

Analysis of dynamic behaviour of numerical models
of five blades bundle with inserted VITON-rubber-
damping elements having frequency dependent properties
is presented. The main attention was given to the response
curves in the second and third resonance. It was shown that
the level of resonance peaks depends on the type of vector
of exciting force amplitudes and that application of viscous-
elastic damping elements is advantageous for suppressing of
higher resonance. Comparison with the damping properties
of dry friction contacts in the same five blades bundle will be
shown at presentation.

Elaborated method of solution and obtained results
create basic theoretical background for evaluation of
measurement on laboratory experimental bladed disk set
and for evaluation of effectiveness of the friction element on
suppression of forced vibration of blades.
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