-0 0

Проведено аналіз впливу відцентрових сил на особливості деформацій монокристалічних охолоджуємих та компресорних лопаток ГТД та коливань компресорних лопаток. Розглянуто дію локальних ударних навантажень на елементи корпуса ГТД. Використано тривимірні скінчено-елементні моделі.

Ключові слова: відцентрові сили, лопатки, монокристалічний матеріал, локальний удар, коливання, статика

Проведен анализ влияния центробежных сил на особенности деформаций монокристаллических охлаждаемых и компрессорных лопаток ГТД и колебаний компрессорных лопаток. Рассмотрено воздействие локальных ударных нагрузок на элементы корпуса ГТД. Использованы трехмерные конечно-элементные модели

Ключевые слова: центробежные силы, лопатки, монокристаллический материал, локальный удар, колебания, статика

УДК 539.3

ВЛИЯНИЕ ЦЕНТРОБЕЖНЫХ СИЛ НА СТАТИКУ И ДИНАМИКУ ЭЛЕМЕНТОВ ГТД

Ю. С. Воробьев

Доктор технических наук, профессор, заведующий отделом* E-mail: vorobiev@ipmach.kharkov.ua

> Н. Ю. Овчарова Инженер I категории* E-mail: vorobiev@ipmach.kharkov.ua К. Д. Тыртышников

Аспирант

Кафедра газогидромеханики и тепломассообмена Национальный технический университет «Харьковский политехнический институт»

ул. Фрунзе, 21, г. Харьков, Украина, 61002

E-mail: vorobiev@ipmach.kharkov.ua

*Отдел нестационарных механических процессов

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

ул. Дм. Пожарского, 2/10, г. Харьков, Украина, 61046

1. Введение и постановка задачи

В современных ГТД лопатки являются одними из наиболее ответственных и напряженных элементов. Центробежные силы оказывают существенное влияние на их статику и динамику. В работах [1-7] рассматривались колебания охлаждаемых и неохлаждаемых лопаток турбин и рабочих колес. При этом учитывались свойства монокристаллических сплавов [2-5]. Колебания компрессорных лопаток также представляют большой интерес. Во всех случаях следует учитывать воздействие центробежных сил, которые вызывают повышение собственных частот лопаток, а также их удлинение и раскрутку. Следует учесть, что колебания лопаток происходит относительно их статически деформированного состояния. Поэтому рассматриваются статические деформации лопаток, а затем колебания компрессорных лопаток.

Представляет интерес также задача об ударе фрагментов лопаток и посторонних предметов на элементы корпуса ГТД под действием центробежных сил.

Во всех случаях для анализа напряженно-деформированного состояния объектов используются трехмерные конечно-элементные модели, учитывающие сложную геометрическую форму и свойства материалов. Используются конечные элементы, функции формы которых обеспечивают непрерывное изменение напряжений даже при больших градиентах их изменения.

2. Анализ численных результатов

Рассматривались статическая деформация и колебания лопаток 4-х венцов ГТД. Лопатки первой ступени компрессора являются наименее жесткими и имеют наибольшие статические деформации. На рис. 1а приведены результаты расчета перемещений лопатки под действием центробежных сил, которые показывают раскрутку лопатки. Наибольшие перемещения достигают 0,03 – 0,04 м. На рис. 16 показаны распределения интенсивности напряжений при действии центробежных сил, наибольшие у которых не превышают 600 МПа. Видно, что в компрессорных лопатках наибольшие напряжения достигаются не только вблизи корневого сечения.

Величины перемещений и максимальных напряжений в лопатках последующих ступеней последовательно убывают в связи с ростом их жесткостей. Далее рассматриваются колебания компрессорных лопаток относительно их статически деформированного состояния. Только первые три формы колебаний лопатки первой ступени компрессора можно рассматривать как изгибно-крутильные. Четвертая форма колебаний имеет более сложный вид и две узловые линии вдоль радиуса (рис. 2a).

Последующие формы колебаний усложняются. В лопатках второй ступени компрессора появление двух и более продольных узловых линий начинается с VI формы, а третей и четвертой – с VIII и IX форм. Мак-

симальные напряжения при этом перемещаются в периферийную часть лопатки (рис. 26)

За счет центробежных сил существенно повышается собственные частоты лопаток, особенно низших форм (табл. 1). А собственные формы и распределения относительных напряжений практически не меняются.

Рис. 1. Перемещения (а) и распределения интенсивности напряжений (б) в лопатке первой ступени под действием центробежных сил

Рис. 2. Четвертая форма колебаний (а) и распределение интенсивностей относительных напряжений (б) лопатки первой ступени

Охлаждаемые монокристаллические лопатки со сложной системой внутренних каналов обладает значительной жесткостью, и центробежные силы оказывают слабое влияние на их частоты [5]. Радиальные перемещения на периферии лопаток следует учитывать, так как при этом уменьшается зазоры в лабиринтных уплотнениях (рис. 3а). Наибольшие значения интенсивностей относительных напряжений наблюдаются в ножке лопатки (рис. 36), а также в охлаждаемых каналах вблизи корневого сечения (рис. 3в).

Под действием центробежных сил отделившиеся фрагменты лопаток и другие предметы могут развивать значительные радиальные скорости. В результате происходит локальный удар по внутренней поверхности корпуса двигателя [8–10]. При этом необходимо учитывать динамические свойства материала [9]. Рассмотрено воздействие фрагмента массой 0,1 кг по однослойным и двухслойным (с накладкой) элементам корпуса ГТД. При скоростях удара до 400 м/с деформации происходят в упругой стадии, а при скоростях до 1000 м/с происходит упругопластическое деформирование и в ряде случаев пробивание элемента корпуса. На рис. 4 представлена деформация и цветом распределение упругопластических деформаций в области удара для фрагмента корпуса с накладкой. Видна локализация напряжений.

Рис. 3. Радиальные перемещения на периферии охлаждаемой лопатки (а) и локализация интенсивности напряжений в ножке (б) и на поверхности охлаждающих каналов (в)

Таблица 1
Злияние вращения на частоты колебаний компрессорных
лопаток

№ п/п	Частоты 1 ступени, ГЦ			Частоты 2 ступени, ГЦ		Частоты 3 ступени, ГЦ		
	ω=0 рад/с	ω= 837 рад/с	экспери- менталь- ные	ω=0 рад/с	ω=837 рад∕с	ω= 0 рад/с	ω=837 рад∕с	
1	137,37	242,68	170-184	236,26	329,53	250,15	355,82	
2	374,67	407,07	367-388	816,67	855,1	962,11	1046,4	
3	595,22	607,59	680-732	1007,8	1075,4	1269,7	1303,9	
4	660,8	781,42	900-925	1749,1	1795,2	2129	2170,6	
5	914,62	928,47	988-1020	2289,7	2326,6	2841,7	2923,3	
6	1187,3	1265,7	1190-1210	2860,7	2928,1	3215,8	3275,9	
7	1608,1	1663,4	1440-1480	3050,3	3079,8	4940	5013,2	
8	1715,2	1727,7	1670-1840	3790,6	3846,4	5410,8	5491,6	

Рис. 4. Деформации и интенсивности напряжений в двухслойном элементе корпуса при скорости соударения 1000 м/с

3. Выводы

Центробежные силы приводят к деформированному состоянию лопаток, вокруг которого происходят их колебания. Для компрессорных лопаток основное значение имеет их раскрутка, а для охлаждаемых лопаток турбин с полками и лабиринтными уплотнениями – радиальные перемещения. Центробежные силы существенно влияют на величины собственных частот лопаток, особенно низших форм, и значительно меньше на формы колебаний и распределения относительных напряжений. Отделившиеся фрагменты лопаток под действием центробежных сил совершают локальный удар по внутренней поверхности корпуса ГТД. При скоростях удара до 400 м/с локальные деформации происходят в упругой стадии, а при скоростях 1000 м/с – в упругопластической. При больших скоростях соударения возможно пробивание элемента корпуса.

Учет рассмотренных факторов позволяет выявить зоны повышенных напряжений и дать предложения по их снижению, что будет способствовать повышению прочности элементов ГТД.

Литература

- 1. Биргер, И. А. Динамика авиационных газотурбинных двигателей [Текст] / И. А. Биргер, Б.Ф. Шорр М.: Машиностроение, 1981, 48 с.
- Ножницкий, Ю. А. О прочностной надежности монокристаллических рабочих лопаток высокотемпературных турбин перспективных ГТД [Текст] / Ю.А. Ножницкий, Е.Р. Голубовский // Прочность материалов и ресурс элементов энергооборудования. Труды ЦКТИ. – СПб, 2009. – Вып. 296. – С. 74-82.
- Воробьев, Ю. С. Анализ локализации напряжений при колебаниях лопаточного аппарата турбомашин [Текст] / Ю.С. Воробьев, К.Ю. Дьяконенко и др. // Прочность материалов и ресурс элементов энергооборудования: Труды ЦКТИ. – СПб, 2009. – Вып. 296. – С. 282-306.
- Vorobiov, Yu. S Analysis of turbomachinery blading vibrations using new materials [Tekct] / Yu. S. Vorobiov, M. Chugay, J.S. Rao, R. Rzadkowski, S.B. Kulishov, A.N. Skritskij // VETOMAC VIII International Conference On Vibration Engineering And Technology of MachineryGdansk, Poland. – 2012. – P. 315-324.
- Vorobiov, Yu. S. Vibration characteristics of cooled single-crystal gas turbine blades [Teκcr] / Yu. S. Vorobiov, K.Yu. Dyakonenko, S.B. Kulishov, A.N. Skritskij, R. Rzadkowski // VETOMAC VIII International Conference On Vibration Engineering And Technology of Machinery Gdansk, Poland. – 2012. – P.324-331.
- 6. Rao, J. S. Life calculation of first stage compressor blade of a trainer aircraft [Текст] / J.S. Rao, Narayan Rangarajan, Rejin Ratnakar, R. Rzadkowski, M. Solinski, I. Vorobiev // ASME Turbo Expo 2012, june 11-15, Copenhagen, Denmarc. P. 1 8.
- Vorobyov, Yu. S. Vibration stress localization in turbomachine blading [Текст] / Yu.S.Vorobyov, V.N.Romanenko, M.A.Storozhenko, O.V.Tyshkovets, K.Yu.Dyakonenko // Proceedings of the 3rd Korea-Ukraine Gas Turbine Technology Symposium (Korea Institute of Machinery & Materials) – Korea, Daejeon, 20-23 November 2006. – P. 1-9.
- Chernobryvko, M. V. Method to Analyze the Effect of the Shock-Wave Loading on Building Elements [Teκcτ] / M. V. Chernobryvko, Yu. S. Vorobyov, L. Kruszka // International Journal of Protective Structures. Vol. 3, № 2, 2012. P. 141-146.
 Meyers, M. Dynamics behavior of materials. New York: Wiley, 1994. 283 p.
- Воробьев, Ю. С. Локальное ударное воздействие на цилиндрические элементы конструкций [Текст] / Воробьев Ю.С., Овчарова Н.Ю. // Авиационно-космическая техника и технология. – Харьков: НАКУ «ХАИ» – 2012. 11 (47). – С. 35 – 43.