
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/10 ( 96 ) 2018

64
 О. Vysotskа, M. Georgiyants, K. Nosov, Y. Balym, A. Pecherska,  

A. Porvan, S. Pavlov, V. Shekhovtsova, T. Klochko, A. Solodovnikov , 2018

1. Introduction

At present, global climate change and the increased 
impact of mankind on nature pose numerous threats to bi-

osecurity. The character of these threats requires a revision 
of certain concepts related to the strategy for environmental 
activities. It is required to not only care about preserving the 
evolutionary-created biodiversity. There is a need to develop 

DEVELOPMENT OF A SPATIAL-
DYNAMICAL MODEL OF 

THE STRUCTURE OF TOXIC 
CYANOBACTERIA CLUSTERS FOR 

BIOSECURITY PURPOSES
O .  V y s o t s k a 

Doctor of Technical Sciences, Professor*
E-mail: olena.vysotska@nure.ua

M .  G e o r g i y a n t s 
MD, Professor

Department of Pediatrics Anesthesiology and Intensive Therapy**
K .  N o s o v 

PhD
Department of Theoretical and Applied Informatics

School of mathematics and computer science
V. N. Karazin Kharkiv National University 
Svobody sq., 4, Kharkiv, Ukraine, 61022

Y .  B a l y m 
Doctor of Veterinary Science, Professor

Department of Reproductology
Kharkov State Zooveterinary Academy

Academichna str., 1, Malaya Danylivka, Dergachi district, Kharkiv region, 
Ukraine, 62341

A .  P e c h e r s k a
PhD*

A .  P o r v a n 
PhD, Associate Professor* 

S .  P a v l o v 
PhD, Professor

Central research laboratory**
V .  S h e k h o v t s o v a 
PhD, Associate Professor* 

T .  K l o c h k o 
Senior Lecturer

Department of Chemistry, Ecology and Expertise Technology
National Aerospace University “Kharkiv Aviation Institute”

Chkalov str., 17, Kharkiv, Ukraine, 61070
A .  S o l o d o v n i k o v 

PhD
Department of Medical and Biological Physics and Medical Informatics

Kharkiv National Medical University 
Nauky ave., 4, Kharkiv, Ukraine, 61022

*Department of Information Control System 
Kharkiv National University of Radio Electronics

Nauky ave., 14, Kharkiv, Ukraine, 61166
**Kharkiv Medical Academy of Postgraduate Education

Amosova str., 58, Kharkіv, Ukraine, 61176

Розроблено просторово-динамiчну 
модель, що описує структуру скупчень 
токсичних цiанобактерiй на великих вод-
них площах. Продемонстровано засто-
сування побудованої моделi до виявлен-
ня структури скупчення на цифрових 
знiмках. Характер бiопродукцiйних про-
цесiв, що визначають небезпеку скупчен-
ня токсичних мiкроорганiзмiв, визнача-
ється рядом параметрiв, якi можуть 
бути вимiрянi дистанцiйно аерокосмiч-
ними методами (фотографуванням). 
Запропонована модель на пiдставi циф-
рового знiмка дозволяє вiдновити про-
сторово-динамiчну картину скупчень 
шляхом визначення стану бiопродукцiй-
них процесiв рiзних частин скупчення. 
Iнформацiя про такi стани має вели-
ке значення для оптимiзацiї заходiв по 
елiмiнацiї загроз токсичностi.

Розробка даної просторово-динамiч-
на моделi пов'язана з необхiднiстю вияв-
лення структури скупчень токсичних 
цiанобактерiй на водних площах для 
цiлей усунення загроз бiобезпеки. Такi 
скупчення є надзвичайно складними 
об'єктами i не вiдтворюються нi теоре-
тичними, нi натурними моделями. 

Побудована просторово-динамiч-
на модель дозволяє виявити динамiч-
ну картину бiопродукцiйних процесiв 
в рiзних частинах скупчення мiкроор-
ганiзмiв. Прикладна важливiсть отри-
маних результатiв пов'язана з пiдвищен-
ням ефективностi заходiв по елiмiнацiї 
загроз токсичностi, тобто завдяки побу-
дованої моделi можна виявляти най-
бiльш ефективнi, з точки зору усунення 
загрози, дiлянки.

Результат застосування моделi до 
цифрових знiмкiв токсичних цiанобак-
терiй вiдповiдають гiдробiологичним 
уявлення про об'єкти даного роду
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нi процеси, колорометричнi параметри, 
бiобезпека
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tools for the use of various aspects of biodiversity in order to 
eliminate the specified threats. Among these tools, an im-
portant role belongs to methods of mathematical modeling. 
Given the task to devise these methods, one should note the 
new approach to the understanding of biodiversity, stated in 
[1] within the concept of optimal diversity. The key source of 
the specified, and similar, approaches can be considered the 
position described earlier in [2], in accordance with which 
an environmentalist treats each measure of diversity as an 
opportunity to construct a system with a feedback. A large 
number of different mathematical models have been built up 
to now for a formalized description of the structure and func-
tioning mechanisms of these feedbacks. One can highlight 
among the most known models the structural equations, a 
path analysis, (fuzzy) cognitive maps, matrix models of pop-
ulation biology, continuous and discrete dynamic models of 
competition, and many others.

However, a series of important applications in ecology, 
theoretical biology, medicine, and other disciplines, require 
analysis of not only the internal structure of relations, but 
also the relations in space. Space can be both one-dimen-
sional and have multiple dimensionalities. In response to 
these requirements, a separate field or research has been 
formed ‒ spatial statistics, or spatial analysis, which is not 
identical to multivariate statistics and is based on its propri-
etary methods.

Application of spatial models in biosecurity is aimed at 
prediction and description of natural objects that represent a 
biological threat. The major concerns include threats to differ-
ent types of water consumption. They are formed, in particu-
lar, by the eutrophication of water bodies with massive growth 
of toxic cyanobacteria in them. In many cases, the elimination 
of these threats falls into the field of veterinary medicine. We 
are talking about biosafety conditions for watering the live-
stock, grazing on coastal sites at eutrophied water reservoirs, 
water supply to livestock complexes. A vivid example of such 
a potential threat associated with the development of the ag-
ricultural economy, in a freshwater reservoir, is the situation 
at the Middle East Lake Kinneret. This water reservoir is the 
main source of drinking water for Israel; its eutrophication 
poses a serious risk related to the emergence of accumulations 
of toxic cyanobacteria in its waters. The assessment of this 
risk has involved a multi-year research into stability factors of 
the Kinneret hydrobiocenosis [3].

Similar problems have occurred at many other freshwa-
ter and marine waters. An example of this kind is the Baltic 
Sea, where there are clusters of toxic cyanobacteria (CTC) 
the size of tens of kilometers. Addressing these issues re-
quires the application of satellite-based methods to monitor 
localization and displacement of CTC over a water site. To 
this end, there are very powerful international institutions, 
such as the HELCOM Commission (Baltic Marine Environ-
ment Protection Commission ‒ Helsinki Commission) [4].

An important application of the specified satellite meth-
ods is information support of decision-making on measures 
for elimination of CTC. The importance of the specified 
application could increase significantly in case of the occur-
rence of particularly toxic mutants of cyanobacteria within 
CTC. Such mutants can form naturally. In addition, current 
situation in the world [5] does not make it possible to rule 
out a variant when the advent of such mutants might result 
from structures engaged in bioterrorist activity. In such 
situations, drastic measures to eliminate CTC would be jus-
tified. An example of such radical measures is the treatment 

of CTC with algaecides using aviation. That would require 
operative methods to search for the target ‒ in order to de-
tect clusters in the water area.

Modern remote (aerospace) methods enable the detec-
tion of CTC over a water area and make it possible to define, 
with a satisfactory level of detail, their boundaries at most. 
Under emergency related to the occurrence of CTC with 
highly toxic mutants, such information will not suffice. 
This is predetermined by that the efficiency of procedures 
to address threats of toxicity often depends on the correct 
determination of the structure of clusters. Thus, the efficien-
cy of air-borne treatment of CTC with algaecides could be 
improved by a proper choice of sites for such an influence. 
It is obvious that treatment with algaecides, which suppress 
the processes of cyanobacteria photosynthesis, will be most 
effective at areas with a high intensity of these processes. 
At sites with a lower intensity of bioproduction process, 
efficiency could be significantly smaller. For example, at 
areas where a bioproduction strategy of accumulation and 
conservation of biogenic elements due the die-out of the 
cyanobacteria biomass is implemented. On the other hand, 
sites with a different character of bioproduction processes 
can vary in conditions and likelihood for the introduction of 
highly toxic mutants to CTC.

Therefore, the development of methods for detecting 
within CTC the sites with a different character of biopro-
duction processes is important from the standpoint of biose-
curity. In this case, bioproduction processes at these sites are 
an important aspect of biodiversity and are also of interest 
from the viewpoint of basic biology. An important aspect of 
such methods is their remote character, which makes it pos-
sible to carry out research using aerial and space photogra-
phy. It is a relevant task to develop of such methods in order 
to study the clusters of toxic cyanobacteria.

2. Literature review and problem statement

The basic method for studying bioproduction processes 
over large areas is the remote sensing. Primarily, this relates 
to that laboratory and field research methods incur consid-
erable temporal, financial, organizational, and other costs, 
sometimes rendering research impossible. In this regard, 
significant results were obtained for terrestrial plant com-
munities. Paper [6] generalized results of the application of 
remote sensing methods for determining the character of 
bioproduction processes at land plots in the south of Western 
Siberia where agricultural crops are cultivated. Study [7] 
demonstrated a possibility for isolating the plots of crops of 
perennial grasses with different parameters of bioefficiency 
by using remote optical methods. The results of application 
of remote sensing methods for finding the degraded forest 
areas with a reduced biological productivity were reported 
in [8]. However, these methods are not suitable for the bi-
oproduction processes in water arrays due to specificity of 
the latter.

A significant success has been achieved when using re-
mote methods to examine the bioproduction processes with-
in phytoplankton communities at marine and continental 
water reservoirs. Paper [9] report results that demonstrate 
a possibility to highlight, based on the remotely determined 
colorimetric attributes, the areas in an ocean with a different 
character of bioproduction processes related to the functions 
and forms of carbon compounds.
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Work [10] proposed a new mathematical model for de-
tection of accumulations of toxic cyanobacteria ‒ a descrip-
tive binary model (DBM). Even though a given model is 
designed for describing dynamic systems whose components 
are measured at the simplest scale, dichotomous, it has sever-
al important advantages. The model makes it possible, based 
on the observations, which lost a temporal arrangement, to 
restore that order, and to describe the relationships among 
components that generate the dynamics of the system. Ap-
plied to the task on detecting CTC, a given model, as shown 
in [10], identifies a cluster based on a digital image taken 
under conditions of poor visibility. However, the structure 
of the cluster, which reflects the dynamics of bioproduction 
processes, cannot be identified. This is due to the very char-
acter of the model, its dynamics and a dichotomous scale of 
measurement, which make it impossible to identify the re-
quired properties of a cluster. Paper [11] proposes, in order to 
improve conditions for remote detection of CTC at a water 
area, to process its image using discrete models of dynamic 
systems (DMDS). The application of DBM and DMDS 
creates additional possibilities for reducing requirements to 
the methods of direct measurement of primary colorimetric 
parameters. We are talking about the colorimetric parame-
ters of CTC, as well as the plots of surrounding water free of 
them. Study [11] employed primary colorimetric parameters 
related to the content of chlorophyll, as well as red and 
yellow-orange plant pigments. Given this, values for these 
parameters are related to the character of bioproduction pro-
cesses in the examined system. Building on the approach de-
scribed in [11], it is possible to suggest interpretation of dif-
ferent combinations of these values, which are represented 
by phases in the identified dynamic process as the manifes-
tation of certain strategies for bioproduction processes. The 
actual material required for the identification of a dynamic 
process can be acquired from a computer-based analysis 
into parameters of the RGB-model of a digital photography. 
In this case, images of sites at water area with CTC can be 
derived using relatively simple and cheap modifications of 
drones, by employing their embedded equipment for digital 
photography. Thus, the specified results could identify the 
dynamics of bioproduction processes of CTC, but not the 
spatial structure of clusters.

It is known that research into bioproduction processes in 
the clusters of cyanobacteria is very difficult. As noted in [4], 
CTC are complex natural objects. They cannot be properly 
reproduced via experimental or theoretical models due to 
the complexity of relationships among many non-permanent 
relevant factors. Paper [12] noted that given the considerable 
mobility and dynamic of clusters, remote sensing methods 
make it possible to satisfactorily define only the border area 
of CTC. Recognition of the structure of cyanobacteria clus-
ters, which matches the character of bioproduction process-
es, is not yet possible when using existing remote methods. 
A variant to overcome associated difficulties could be a 
construction of the spatial model of a cyanobacteria cluster, 
which takes such a structure into consideration.

Spatial models are widely used at present in a variety 
of areas in which it is important to study the spatial dis-
tribution of properties, attributes, parameters, and charac-
teristics [13].

Such models are most widely used in geo-informational 
systems [14], where a modeled object implies a spatial ob-
ject. A spatial object is typically defined as a representation 
(model) of an actual object, containing its position and a set 

of attributes. In geo-informational systems, spatial objects 
are the abstract representations of actual objects and are the 
subject of informational simulation. However, the geo-infor-
mational systems mostly address tasks on spatial analysis 
(manipulation of spatial and attributive data upon requests, 
implementation of operations in computational geometry, 
analysis of overlays, construction of buffer zones, network 
analysis, analysis of spatial distribution of objects), without 
taking into consideration dynamic changes in the analyzed 
objects.

In addition to geoinformatics, spatial models are com-
monly applied in various sectors of economy, ecology, geog-
raphy, and astronomy. We shall mention only certain fields 
associated with models of this type.

Paper [15] studied the spatial interpretation of the 
known Bertrand model ‒ a model of price competition in 
oligopolistic market. This model investigated the product 
differentiation competition under conditions when all firms 
compete with all. The size of cities and concentration of con-
sumers do not have to be identical, and the model produces 
the unified and easily defined Nash equilibrium. A given 
model is dynamic; it, however, similar to many models of 
competition, is used to find stable, equilibrium states, which 
represent fixed points in a state space. Meanwhile, for nat-
ural systems, other types of dynamic are often important. 
For example, in the classic Lotka–Volterra model (a pred-
ator-prey model), one of the important types of behavior is 
the oscillatory, close to periodic, dynamics of components, in 
which the character of interaction between a predator and a 
prey manifests itself.

Spatial models are employed in environmental studies 
when examining the distribution of species and populations. 
Paper [16] constructed a spatial-temporal model for a pyro-
phytic bush (Ulex parviflorus) at the Mediterranean coast, 
which establishes a dependence of growth curve for individ-
uals bush species and their spatial arrangement. The spatial 
pattern in the arrangement of bushes is not accidental; it 
is managed by a certain biological mechanism. That paper 
employed an apparatus of spatial point stochastic processes, 
which is extension of the theory of stochastic processes to 
the structures of spaces of a rather general type ‒ the locally 
compact Hausdorff spaces, whose details are given in [16]. 
A given stochastic apparatus is used for the simulation of 
growth of agricultural crops, forests, and similar objects, 
when it is required to explore the changing characteristics 
of fixed or inactive objects, for example, the structure of tree 
stand in the course of forest growth. However, the specified 
stochastic processes are of little value to CTC, which are 
very mobile objects, located at the water surface. 

Paper [17] built a spatial model of the regulatory func-
tion for ecosystem in the marshes of Huanghai Lake (China). 
The mathematical model is a complex dynamic system that is 
described by functional, difference, and regular differential 
equations. Application of the model makes it possible to nu-
merically explore the dynamics spatial and temporal changes 
in the regulatory function of the marshland ecosystem in 
order to study the effect of agriculture and fishing on the 
ecosystem. However, the models from [17] do not apply to 
CTC due to their specificity, making it possible for them to 
explore only the described phenomena.

Spatial models are traditionally used in epidemiology. 
Paper [18] employed, in order to model the propagation of 
Ebola virus, a chamber gravity model, given in the form 
of a system of regular differential equations. The chamber 
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structure of each country includes a series of dynamic 
components, associated with the spread of the virus ‒ the 
number of susceptible patients, bearers of latent forms, 
those who recovered, etc. A spatial component of the model 
is a three-focal gravity model, including a chamber model, 
in which spatial coordinates of the capital are used as the 
spatial center of population. Thus, a given example employs 
a hierarchical structure when studying this phenomenon. 
The model makes it possible to model the spread of the vi-
rus at various levels ‒ regional, nation-wide, and to predict 
responses to different types of intervention through the 
parameters embedded in the model, as well as to take into 
consideration stochastic factors, etc.

As mentioned, spatial modelling includes a wide set of 
methods appropriate to the specific phenomena studied. Com-
monly used tools in econometrics, epidemiology, ecology and 
other fields are the generalized linear mixed model, a spatial 
autoregression, and others. These models, when applied to 
spatial phenomena, make it possible to calculate the param-
eters (for example, regression coefficients) based on spatial 
data, and to produce an optimal forecast for plots for which 
data are not available. However, as noted in [19], obtaining 
high accuracy of the forecast and checking adequacy of the 
model to the examined phenomenon very often require find-
ing a dynamic process that generates the spatial distribution. 
For example, the same work [19], among other examples, refers 
to study [20], according to which morbidity in wild nature is 
defined by a pattern in the displacement of a parasite species 
over the area of habitat. By knowing such a pattern, one can 
predict the spread of a disease much easier and more accu-
rately than when constructing a statistical model only. Paper 
[19] refers to differential equations in partial derivatives (de-
terministic and stochastic) as a dynamic process suitable for 
many occasions. However, results from [19] cannot be directly 
applied to the task on identifying the structure of CTC. This 
is due to the lack of models, based on differential equations, 
that could satisfactorily describe the structure of CTC. In 
addition, such models typically make it possible to explore 
the dynamics of objects that they describe only qualitatively 
(determining asymptotic behavior, stability, etc.), while they 
are not suitable for the identification of a structure.

Thus, a spatial-temporal (or spatial-dynamic) model of-
ten has higher predictive qualities than the purely statistical 
model. This allows us to suggests that the spatial-dynamic 
model of a cyanobacteria cluster, provided the adequate 
choice of a dynamic process that defines the properties of a 
given object, would make it possible to obtain a model that 
could accurately enough reproduce production processes 
within CTC.

3. The aim and objectives of the study

The aim of this study is to construct a spatial-dynamic 
model of the structure of a cluster of toxic cyanobacteria. 
Such a model would enable an analysis of the structure of 
a cyanobacteria cluster, and to identify the areas of accu-
mulation where it could be most appropriate to implement 
measures for eliminating biothreats. Given significant di-
mensions of CTC, one can expect that such an optimization 
would considerably bring down the cost of methods for deal-
ing with the biothreat emanating from CTC.

To achieve the set aim, the following tasks have been 
solved:

– to acquire colorimetric parameters for a digital photo-
graph of CTC that would define the character of bioproduc-
tion processes in a cluster of toxic microorganisms; 

– to devise a procedure for the identification of spatial 
objects in a two-dimensional domain within the bounds of 
CTC, based on a digital photograph of this domain using 
the DMDS model; 

– to verify the model constructed by using a digital im-
age of the cluster of microorganisms and to derive practical 
conclusions aimed at organizing activities for eliminating 
the biological threat posed by CTC.

4. Method for detecting the spatially-dynamic structure 
of a flowering stain using the discrete dynamic model 

DMDS

When constructing any spatial-dynamic model, one must 
choose the type of dynamics and a technique for the interplay 
between the dynamics and a spatial structure. The dynamics, 
defined based on a state space and transition functions of the 
dynamic system, can be deterministic, stochastic, continuous, 
discrete, or mixed. A spatial structure is determined by the 
selected spatial objects that match the actual objects.

This study, when building a spatial-temporal model of 
CTC, was based on the DMDS model, which is a discrete 
dynamical model with deterministic state transitions, deter-
mined by the internal structure of the model. We selected, 
as spatial objects, those segments at a digital photograph, 
which are matched by sites of cyanobacteria clusters located 
at the water surface. 

In order to construct a spatial-dynamic model, we shall 
introduce the required concepts and designations for the 
DMDS model. A complete description of the dynamical 
model DMDS could be found, for example, in [21, 22].

Underlying the model is the assumption on that the ex-
amined system consists of N components that are denoted 
A1, A2,..., AN. Each component accepts K numeric or ordered 
values. The ordered values cannot, of course, always be rep-
resented quantitatively. If the system’s components are or-
dered, the values for each component are related via a linear 
order. We consider time to discrete, too, that is the system’s 
state is registered at moments t=0, 1,.... For each component 
Ai, its states at moments t=0, 1,... are denoted Ai(0), Ai(1),.... 
The state of the system in general, as the states of all its com-
ponents, can be represented in the form of a matrix as

 
 
 
 
  

1 1 1

2 2 2

(0) (1) (2) ...

(0) (1) (2) ...
.

... ... ... ...

(0) (1) (2) ...N N N

А А А

А А А

А А А

	 (1)

It is assumed that the dynamics of the system is strictly 
deterministic (the state at time t+1 is uniquely identified 
by the state at moment t). This implies that trajectory (1) 
becomes periodic starting at some point. Therefore, starting 
at certain point s, the submatrix (1)

+ + τ − 
 + + τ − 
 
 + + τ − 

1 1 1

2 2 2

( ) ( 1) ... ( 1)

( ) ( 1) ... ( 1)
.

... ... ... ...

( ) ( 1) ... ( 1)N N N

А s А s А s

А s А s А s

А s А s А s

	 (2)
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produces a complete description of the system’s dynamics. A 
positive integer T  is a period of the trajectory. 

The components of the system can be linked via the fol-
lowing pair-wise relations: (0, 0), (0, +), (0, –), (–, +), (0, +), 
(0, –). Their essence is similar to such relations, adopted 
in theoretical biology and ecology. For example, if compo-
nents Ai and Aj are linked via relationship (−, +) (which can 
be written as Ai ⇐ (–, +) ⇒ Aj), this would indicate that 
component Ai has a positive effect on Aj, while Aj negatively 
affects Aj. Other relationships are determined in a similar 
manner. 

If one designates a pairwise relationship between Ai and 
Aj through (ωi, ωj), where ωk∈{–, 0, +}, (k=i, j), then the com-
plete structure of relations between the system’s components 
can be represented by a relation matrix

 
 ω ω 

ω ω ω ω 
 
  ω ω ω ω ω ω 

1 2

1 1 1

2 2 1 2 2

1 2

...

( , )

( , ) ( , ) .

... ... ... ...

( , ) ( , ) ( , )

N

N N N N N

А А А

А

А

А

	 (3)

Elements above the main diagonal are omitted due to the 
anti-symmetry of the pairwise relationships. 

Papers [21, 22] introduced two types of dynamics (based 
on weight functions and an approach based on a minimum 
law by Liebig), which make it possible in the presence of 
initial conditions to construct a trajectory of form (1) or (2). 

Identification of the system of relations based on obser-
vational data proceeds according to the following procedure. 

Suppose the following table of observations was acquired 
from observations over the system

 
 
 =
 
  

�

11 12 1

21 22 2

1 2

...

...
.

... ... ... ...

...

B

B

N N NB

C CС

C CС
M

C CС

	 (4)

The observations that are in columns can be executed at 
any time and are not necessarily ordered for time. 

We denote via P and �P  the correlation matrices by Pear-
son (if the starting components of the system are measured 
along a quantitative scale) or by Spearman (that is suitable 
for the quantitative and ordered scale) between the rows of 
matrix (2) and rows of table � ,M  respectively. We introduce 
a measure of proximity between matrices P and �P

[ ]( )−

= = +

 = −  ∑ ∑� �
21

1 1

( , ) .
N N

ij ij
i j i

D P P P P

A minimization task is set

→�( , ) min,D P P

for all possible component-to-component and initial con-
ditions for the system’s state. Based on the derived compo-
nent-and-component relations and initial conditions, one 
can build a trajectory of system (2). These initial conditions 
would most accurately, in the sense of measure D, describe the 
dynamics of the system observed in matrix � .M  In this case, 
in matrix � ,M  as stated above, the temporal order between 
observations could be lost. Papers [21, 22] show the viability 
of such an identification procedure (in the probabilistic sense).

Thus, in order to identify the DMDS model based on 
initial data, we need a table of observations (4), we must 
select the number of levels K and other parameters, which 
define a specific model. Upon identification, the model can 
be interpreted and applied for other procedures.

Application of the model to spatial data, represented in 
digital images, has its own features, whose examples can be 
found in papers [11, 23]. These features are associated with 
obtaining a table of observations (4). Because in this case 
we consider a spatial model (at least at the level of initial 
data), one must highlight the spatial objects to be examined. 
Papers [11, 22] chose, as spatial objects, segments of an im-
age. In many cases, the segments on digital images that are 
convenient to select are the rectangles, which are matched 
by a certain spatial region on the ground or on water area. 
The rectangular shape of an object is not mandatory; it could 
be different in other cases. We assume that each segment 
represents one state of the system at some time point. The 
components of system A1, A2,..., AN, in a given case, are the 
colorimetric parameters. If we use a photograph in the RGB 
model, these parameters are calculated based on components 
R, G, B. It is also assumed that each segment considered in 
dynamics behaves as a dynamical system under the DMDS 
scheme, but different segments are at different steps along 
trajectory (1). Therefore, a given situation obeys the de-
scribed identification scheme for DMDS model. Table of 
observations (4) is then a set of N colorimetric parameters 
while the number of columns in Table (4) corresponds to 
the number of segments. Identifying parameters for the dy-
namical system in line with (4), we obtain a notation of the 
dynamical process that generated these data.

This scheme has a series of unresolved issues. These include 
the selection of a segment size, determining their borders, high-
lighting (filtering) those segments data on which are in poor 
agreement with the assumed dynamics, which in turn may be 
due to data transmission errors, failures in photographic equip-
ment, etc. Paper [22] resolved these issues heuristically, by 
employing a knowledge about the examined objects.

All of the above applies to the traditional identification of 
the model based on initial data. In the present study, another 
task is being solved ‒ based on spatial data (a digital photo-
graph), to identify spatial objects through their assignment 
to the corresponding step along the computed trajectory of 
a dynamical system that takes form (2). That would make it 
possible to assign a temporal sequence, which corresponds to 
the time sequence of trajectory (2), to spatial objects. 

Hereafter we assume the starting system’s components 
(that is, colorimetric parameters) to be quantitative, and we 
shall apply the Spearman matrix for identification.

In this case, the task on referring the observations from 
Table (4) to a step along the trajectory of system (2) is am-
biguous in the following sense. For each component Ai the 
number of ranks used to calculate the Spearman correlation 
coefficient can amount to tens, hundreds, or a larger value 
(depending on the size and character of the sample). In this 
case, the number of levels K, employed when computing tra-
jectory (2), is typically accepted small ‒ from 3 to 5. Given 
this, the specified identification can be based on different 
approaches. We shall describe two of them.

1. Identification based on the maximum share of recog-
nized observations. 

Assume that one has a table of observations (4) and 
trajectory (2), identified based on it and the selected model. 
The number of levels K is fixed. 
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at < µ ,1i ix  and −≥ µ , 1ii i kx  conditions (5) are trivially supple-
mented by additional inequalities; we do not elaborate on 
the subject. 

The essence of function Ψ(· , ·, …, ·) is the computation of 
discrete vector (k1, k2, …, kN)ϵk1×k2×…×kN based on numer-
ical vector (x1, x2, ..., xN). It follows from (5) that Ψ(· , ·, …, ·) 
is a definite function. When computing it, parameters μij are 
employed as thresholds, hence a condition

κ −< µ < µ < < µ <…,1 ,2 , 1 ,
ii i i i im M  i=1, 2, …, N. 

Consider trajectory (2). Its each column can be recorded 
as an element from set k1×k2×…×kN. We denote via S  the 
totality of all such elements that correspond to columns (2). 
We shall derive an indicator function of totality S  on set 
k1×k2×…×kN
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NN k  on which Ψ(· , ·, …, ·)  
depends. The multiplier 1/B takes the normalizing role, elim-
inating the dependence of the maximized magnitude in (6) 
on the sample size, which may prove important when com-

paring models, based on different data. Essentially, problem 
(6) comes down to finding the thresholds μij, which, through 
function Ψ(· , ·, …, ·), make it possible to refer the maximum 
number of columns in matrix (4) to the states of the system 
included in trajectory (2). It follows from the properties of 
the maximized magnitude in (6) that a maximum is always 
achieved, however, the issue on the uniqueness of thresholds 
and, therefore, the uniqueness of values for Ψ (C1k, C2k,…, 
CNk), requires additional study.

After we obtain parameters μij, each observation (C1k, 
C2k,..., CNk) in (4), which satisfies σ Ψ =…1 2( ( , , , )) 1,k k NkC C CS  
is assigned the state in (2) in line with rule
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2. Identification based on the maximum proximity of 
correlations. 

It is possible to find the threshold values for function  
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considering that function Ψ(· , ·, …, ·) maps a vector-column 
into a vector-column. 

Each line i in matrix ˆ ,M  similar to trajectory (2), has 
no more than κ i  different values. We find P̂  ‒ a correlation 
Spearman matrix between lines ˆ .M  

Set the problem ‒ it is required to find a minimum for all 
possible sets of parameters µ ij
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Thus, based on the initial table (4), we find a matrix of 
discrete values ˆ ,M  which has the closest correlation matrix, 

in the sense of magnitude [ ]
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are computed among lines), to the correlation matrix P. 

For the reasons given above, one can say that a given 
minimum is reached, however the issue on the uniqueness of 
parameters requires further study. 

The found function Ψ(· , ·, …, ·) allows us to proceed from 
Table (6) to the trajectory matrix in line with the previous 
rule (7).

A special case worthwhile mentioning is when function 
Ψ(· , ·, …, ·) assigns, for some of the columns in observation 
matrix (4), a vector that is not included in totality S , that 
is, when it is impossible to assign the state along trajectory 
(2) to an observation. Such a situation is possible; it can be 
predetermined by a series of circumstances. It is possible 
that discretization of the model defined by number K does 
not make it possible to carry out the specified classification. 
In the examined case, when using a color RGB-model, val-
ues for components belong to the quantitative scale (in most 
software packages, 32- and 64-bit real values, sometimes 
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8-bit integers). However, the number of levels along the tra-
jectory is small, typically not more than 5. Another possibil-
ity is when an observation in (4) accepts a certain intermedi-
ate value between the states of the trajectory. Finally, there 
may be errors in the source data that pose the same problem.

In practice, an observation that is not identified with the 
state of a dynamical system can be either neglected or, by 
using the approaches accepted in clustering, be attributed to 
a certain close state. 

Thus, the procedure for constructing a spatial model 
based on a digital photograph can be expressed by the fol-
lowing scheme:

1) split the original image into segments (spatial objects); 
2) compute colorimetric parameters for all segments and 

compile a table of observations (4); 
3) identify parameters of the dynamic model, the result 

being the computed trajectory (2); 
4) use a procedure for attributing an observation to the 

state of the system when each observation in (4) is assigned 
with the state or the number of the step along trajectory (2); 

5) visualize obtained results, making it possible to derive 
a spatial pattern of the restored dynamics.

5. Application of the spatial-dynamic model to a digital 
photograph of the cluster of toxic cyanobacteria 

A source material for the computational implementation 
of the model was a digital photograph of CTC [12], shown 
in Fig. 1.

Fig. 1. A flowering spot is the accumulation of toxic 
cyanobacteria in the Baltic Sea

The image was split into 15 (horizontal)×10 (verti-
cal)=150 segments (spatial objects). In this case, construc-
tion of the spatial-dynamic model employed 100 segments, 
which unambiguously belonged to the spot. 50 segments 
showing the open water (top right corner and bottom left) 
were excluded from the analysis. The excluded segments are 
displayed in the photograph with modelling results. 

For each of 100 segments we computed average (per a 
segment) values for the intensity of RGB components, which 
are denoted: R, G, B. By using these averages, we computed 
colorimetric parameters of specific hydrobiological meaning, 
essential for a given object:

R/(R+G+B) ‒ this parameter is related to the number of 
orange-yellow and red pigments that are prevalent in the old 
and dead cells in most photosynthesizing organisms, includ-
ing cyanobacteria; 

G/(R+G+B) ‒ this parameter is related to the amount of 
the green pigment chlorophyll, which determines the level of 
photosynthetic productivity; 

G/(R+G) ‒ this parameter is an indicator of ratio of the 
magnitude of photosynthetic products to the total, dead and 
alive, biomass of plant communities; 

R/G ‒ this parameter demonstrates the pigment diversi-
ty of phytoplankton associated with its stability.

We have chosen for the identification a discrete model 
based on the Liebig’s law, with the number of discrete levels 
of components taken as K=3. 

For the purposes of this study, it would suffice to cal-
culate trajectory (2), which is why the structure of compo-
nent-to-component-relations, also the result of simulation, is 
neglected. The trajectory of the system is given in Table 1. The 
rows correspond to the specified colorimetric parameters 
that have three levels in a given model (K=3). These levels 
can be interpreted as low (1), middle (2), and high (3).

Table 1

Trajectory of the system, representing a cycle in the change 
of values for colorimetric parameters of a cluster of toxic 

cyanobacteria, shown in Fig. 1. t is the discrete time

R/(R+G+B) 3 3 3 2 1 1 1 2

G/(R+G+B) 1 2 3 3 3 2 1 1

G/(R+G) 1 1 1 2 2 2 2 1

R/G 2 2 2 1 1 1 1 2

t 1 2 3 4 5 6 7 8

In order to construct a spatial-temporal model, we em-
ployed the identification based on the maximal share of iden-
tified observations. It follows from Table 1 that the number 
of levels κ i  for components R/(R+G+B), G/(R+G+B), G/
(R+G), R/G are equal, respectively, to 3, 3, 2, 2. Thus, the 
number of parameters µ ij is equal to 6 (=3+3+2+2–4).

Fig. 2 shows a spatial-temporal pattern, corresponding 
to the model.

Fig. 2. A spatial-dynamical structure of a flowering spot 
shown in Fig. 1. Spatial objects (rectangles) contain numbers 
that correspond to their chronological order according to the 
trajectory of the system in Table 1. The rectangles with the 
same numbers are colored similarly. N/I is the unidentified 
segment. The objects excluded from the analysis are shown 

by white rectangles without a number

We should pay attention to the following. When con-
structing a spatial-temporal pattern, we registered no ob-
servation that corresponds to time t=6. Out of 100 spatial 
objects, only one was not identified. Values for components 
R/(R+G+B), G/(R+G+B), G/(R+G), R/G for it are equal, 
respectively, to 0.235, 0.390, 0.624, 0.603. By using the 
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above procedure based on clustering, one can find a close 
state of the system for it as well.

The constructed model allows us to apply the following 
hydrobiological treatment. In the trajectory of the system 
(Table 1), one can isolate a series, hereafter called the “pro-
ductive”, consisting of steps at t=2, 3, 4, 5. In this series, we 
observe an increase in the values for colorimetric parameter 
G/(R+G) at a simultaneous decrease in the values for col-
orimetric parameter R/G. Such dynamics in the specified 
colorimetric parameters are matched with a certain series 
of alternating strategies in the functioning of CTC plant 
community. This series is characterized by an increase in 
the photosynthetic productivity of CTC biosystem and by 
a decrease in its stability (a sign of which is the reduction 
of pigment diversity). In this series, there is also a reduction 
in the red component of CTC color (colorimetric parameter  
R/(R+G+B)) at a simultaneous increase in the green com-
ponent (colorimetric parameter G/(R+G+B)). This is a man-
ifestation of processes that give rise to the living, actively 
photosynthesizing biomass, while decomposing the dead. 
Decomposition of the dead biomass saturates water with 
nutrients, required for the growth of living biomass.

The series, hereafter called the “stabilizing”, includes 
steps with numbers t=6, 7, 8, 1 (because the dynamics are pe-
riodic, point 8 is followed by point 1). In this series, there is 
a decrease in the values for colorimetric parameter G/(R+G) 
at a simultaneous increase in the values for colorimetric 
parameter R/G. Such dynamics of the specified colorimetric 
parameters are matched with another series of alternating 
strategies. This series is characterized by a decrease in the 
photosynthetic productivity of CTC biosystems and an 
increase in its stability (a sign of which is the increased 
pigment diversity). In this series, there is also an increase 
in the red component of CTC color (colorimetric param-
eter R/(R+G+B)) at a simultaneous decrease in the green 
component (colorimetric parameter G/(R+G+B)). This is a 
manifestation of the die-out processes of living biomass and 
the accumulation and preservation of biogenic elements in 
the dead.

The specified series of strategies in the spatial structure 
of CTC correspond to the zones of: production and stabili-
zation. 

Fig. 2 shows that the stabilization zone occupies the 
central area of CTC, from the upper-left corner of the image 
to the right bottom. Water exchange occurs under relatively 
unfavorable conditions within it. 

Production zones are the periphery of CTC, where con-
ditions for water exchange and for supplying nutrients to the 
living biomass are better.

Thus, the simulation results correspond to known biolog-
ical and physical-chemical regularities in the functioning of 
aquatic plant communities [24]. 

The following illustrations show the structure of CTC 
in coastal waters. In order to identify them, we also select-
ed a model with the approach based on the Liebig’s law and 
the number of levels of components K=3. The structure of 
these clusters has a series of features associated with the 
shallow depth of the water reservoir and the proximity to 
the bank.

The image was split into 300 segments; we then repeated 
the procedure described for the image in Fig. 1. The trajecto-
ry of colorimetric parameters is given in Table 2; the spatial 
structure is shown in Fig. 4.

Fig. 3. Cluster of cyanobacteria at the river Sudbury, 
Massachusetts, United states [25]

Table 2

A cycle of change in the colorimetric parameters of the 
cluster of toxic cyanobacteria, shown in Fig. 3

R/(R+G+B) 1 1 1 1 1 1 2 2

G/(R+G+B) 2 1 1 1 2 3 3 3

G/(R+G) 1 1 2 3 3 3 2 1

R/G 3 3 2 1 1 1 2 3

t 1 2 3 4 5 6 7 8

Fig. 4. Spatial objects, identified according to the trajectory 
of the system from Table 2. Notation is similar to Fig. 2

Some steps of the cycle (Table 2) did not find any match-
ing among image segments in Fig. 4. The reasons for this 
were partly discussed above. A similar property is also char-
acteristic of the structure of other CTCs analyzed below.

The structure in Fig. 4 can be given the following hydro-
biological treatment. Step 8 corresponds to the high system’s 
stability (for parameter R/G), although it is low, relative to 
the total biomass, in terms of photosynthetic productivity 
(for parameter G/(R+G)), a relatively high ratio of dead cells 
to the living cells (ratio of R/(R+G+B) to G/(R+G+B)). This 
state is matched by a relatively weak vulnerability of CTC 
to the treatment by means that preclude the photosynthetic 
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productivity, hence the high sensitivity of cyanobacteria to 
external influences, for example, treatment with algaecides 
that eliminate photosynthesis.

Fig. 4 shows a qualitative effect due to the location of 
segments in such a state closer to the bank than segments for 
steps 4, 5, 6. The latter steps are characterized by relatively 
low values of stability and high values of productivity for the 
same indicators at low values of the number of dead cells and 
an increase in the value for the number of living cells.

Fig. 5. Cluster of cyanobacteria at the coastal strip of a 
water reservoir [26]

Split into 300 segments; the trajectory of colorimetric 
parameters is in Table 3; the spatial structure is in Fig. 6.

Table 3

A cycle of change in the colorimetric parameters for the 
cluster of toxic cyanobacteria, shown in Fig. 5

R/(R+G+B) 3 3 3 2 1 1 1 1 2

G/(R+G+B) 1 2 3 3 3 2 1 1 1

G/(R+G) 1 1 1 2 2 2 2 1 1

R/G 2 2 2 1 1 1 1 2 2

t 1 2 3 4 5 6 7 8 9

Fig. 6. Spatial objects, identified according to the trajectory 
of the system from Table 3. Notation is similar to Fig. 2

In Fig. 5, the state (step 1) that is characterized by the max-
imum prevalence of dead cells over the living cells corresponds 
to the coastal areas. Step 8 corresponds to the areas bordering 
on the open water, where such a prevalence is not observed.

Split into 216 segments, the trajectory of colorimetric pa-
rameters is in Table 4; the spatial structure is shown in Fig. 8.

Fig. 7. Cluster of cyanobacteria at the coastal strip of a 
water reservoir [27]

Table 4

A cycle in the change of colorimetric parameters for the 
cluster of toxic cyanobacteria, shown in Fig. 7

R/(R+G+B) 2 3 3 3 3 3 2 1 1 1 1 1

G/(R+G+B) 3 3 3 3 2 1 1 1 1 1 2 3

G/(R+G) 3 3 2 1 1 1 1 1 2 3 3 3

R/G 1 1 2 3 3 3 3 3 2 1 1 1

t 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 8. Spatial objects, identified according to the trajectory 
of the system from Table 4. Notation is similar to Fig. 2

In Fig. 8 we observe a pattern similar to that shown in 
Fig. 6. Step 4 with low productivity and high stability, as 
well as the proportion of dead cells that is relatively higher 
in comparison with other steps, corresponds to coastal areas. 
The areas that are more distant from the bank (steps 1 and 
12) are matched by states with high productivity and low 
stability at a relatively lower proportion of the dead organic 
matter.

In Fig. 9, the location of a coastal area can be identified 
by the reflection of trees in the upper left corner of the im-
age. Split into 180 segments; the trajectory of colorimetric 
parameters is in Table 5; the spatial structure is shown in 
Fig. 10.

In Fig. 10, we also observe the states at the coastal areas 
(steps 6, 8) with low productivity and high stability. At areas 
remote from the bank (steps 1, 2), we observe high produc-
tivity and low stability.
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Fig. 9. Cluster of cyanobacteria at Lake Mendota, Wisconsin, 
United States [28]

Table 5

A cycle in the change of colorimetric parameters for the 
cluster of toxic cyanobacteria, shown in Fig. 9

R/(R+G+B) 3 3 3 2 1 1 1 1 2

G/(R+G+B) 1 2 3 3 3 2 1 1 1

G/(R+G) 1 1 1 2 2 2 2 1 1

R/G 2 2 2 1 1 1 1 2 2

t 1 2 3 4 5 6 7 8 9

Fig. 10. Spatial objects, identified according to the trajectory 
of the system from Table 5. Notation is similar to Fig. 3

6. Discussion of results of the spatial-dynamical 
modelling of clusters of toxic cyanobacteria

The spatial-dynamical model, constructed in this study, is 
based on the following patterns. The examined spatial objects 
are treated as separate implementations of a certain dynamic 
system with the deterministic dynamics corresponding to 
conditions in a given space domain. These objects differ only 
by their own time, which is identified using the described 
methods. Thus, the dynamics of objects can be restored based 
on spatial data, and the main result of this study is the con-
struction of a mathematical model that makes it possible to 
restore the temporal arrangement for spatial objects.

The key results of our work are as follows.
1. The highlighted colorimetric parameters for a digital 

photograph of CTC will make it possible to establish the 

character of bioproduction processes in different clusters. 
These parameters are derived based on the RGB color model; 
they describe such characteristics of bioproduction processes 
as the number of pigments, the level of photosynthetic pro-
ductivity, the ratio of magnitude of photosynthetic produc-
tion to the biomass of plant communities, an indicator of the 
pigment diversity of phytoplankton.

2. The devised procedure for the identification of spatial 
objects in a two-dimensional image of CTC based on a digi-
tal photograph enables finding the correspondence between 
segments of the image and steps in the trajectory of the 
dynamic model DMDS. Thus, the specified identification 
restores the spatial-dynamical pattern of bioproduction pro-
cesses related to accumulation. We have developed two vari-
ants of the spatial-dynamical model ‒ based on the maximal 
share of identified observations and the maximal proximity 
of correlations.

3. We have verified the model using a series of photo-
graphs of the clusters of cyanobacteria in the Baltic Sea 
and at coastal sites of water reservoirs. The approbation has 
shown that when the model is applied, almost all segments 
in the image are identified with the respective phases in the 
bioproduction process. In our opinion, this testifies to the 
sufficient adequacy of the model to the studied phenomenon. 
The resulting structure of the cyanobacteria cluster allows 
us to draw practical conclusions in order to organize activi-
ties for eliminating the biological threat posed by CTC (for 
instance, treatment with chemicals).

The constructed model opens up new perspectives in the 
development of remote sensing of CTC owing to the combi-
nation of two of its main features. First, a local analysis (at a 
segment, a plot) of the character of bioproduction processes 
employs the colorimetric parameters acquired from a digital 
photograph. Second, the restoration of the spatial arrange-
ment uses a dynamic pattern, which adequately describes 
the progress of these processes in the cyanobacteria cluster.

The merits of the proposed solution include a possibility 
to identify the spatial location of cluster sites, in line with 
various chronological phases in the bioproduction process-
es. As noted in our review of the scientific literature, at 
present the analysis of CTC employs sophisticated spectral 
methods, which, in principle, make it possible to explore the 
bioproduction processes through analysis of the colorimetric 
parameters of images. However, these methods are static, 
they do not take into consideration the complex dynamics 
of cyanobacteria clusters and, for the time being, enable the 
reliable determination of clusters’ boundaries only, without 
accounting for their internal structure.

It makes sense to note several constraints for the pro-
posed model, as well as ways to overcome them and to 
improve the model. As pointed in publications on a DMDS 
model [21, 22], identification of the model with high dimen-
sionality (many components and levels) is a computation-
ally challenging task. It is possible to partially overcome 
this obstacle by using specialized optimization techniques, 
such as evolutionary algorithms, however, for a given class 
of problems, it is still not clear how an extremum, derived 
from these methods, differs from the actual one. In general, 
solving the problems of high dimensionality requires the de-
velopment of effective algorithms that would find solutions 
at acceptable cost.

To be specially considered are also the methods for 
identification of sites where cyanobacteria accumulate. In 
this work, mainly for reasons of convenience, we considered 

 

 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/10 ( 96 ) 2018

74

the simplest type of segments with a rectangular shape. The 
further development of the method would probably require 
consideration of segments of arbitrary shape, which could be 
identified at steps of the trajectory of a dynamical system. 
This may require designing the new methods of image seg-
mentation, which would be appropriate for a given model.

The significance of the results obtained should be as-
sessed relative to the issue on eliminating the threats to 
biosecurity under certain extreme situations associated with 
the emergence of clusters of toxic cyanobacteria at large wa-
ter areas. In some cases, the information is required not only 
about their coordinates and parameters of motion, but also 
about the structure, which is especially important in case 
of the emergence of CTC with particularly toxic mutants 
of cyanobacteria. In such situations, it may be justified to 
apply radical measures to fight CTC, such as treating them 
with algaecides from air. There will be a need to determine 
the areas of accumulation at which the specified measures 
could prove most effective. The results of our work form pre-
conditions for the development of a technology for operative 
determination of such sites. The advantage of this technolo-
gy is the possibility of remote control when using aerospace 
methods for detecting these sites.

Currently, there are big volumes of data on different 
aspects of bioproduction processes in the phytoplankton of 
marine waters and biological communities, which it is a part 
of it. These rather detailed data were acquired by non-remote 
methods. The results of this work provide an opportunity to 
design the remote technology for determining the character 
of bioproduction processes. Comparing it with the non-re-
mote methods reveals the following pattern.

Non-remote methods enable obtaining more detailed 
data about bioproduction processes. Remote sensing makes 
it possible to operatively acquire data on vast water areas 
over tens or hundreds of miles. However, they provide only 
the most general idea about ratios of processes of photosyn-
thetic production, accumulation and the die-out of dead 
organic matter. These data, however, would suffice, for 
example, to detect the clusters where algaecide treatment 
at a given time is not advisable. We note that modern satel-
lite-based methods for detection of CTC, described in papers 
from our review, do not make it possible to contribute to the 
same general understanding and provide information only 
about the size of clusters, enabling the estimation of the total 
amount of the living and dead biomass of cyanobacteria.

Application of the proposed spatial-dynamical model 
would implement the benefits of remote sensing methods 
in the above-mentioned emergencies, when it is necessary 
under time constraints to decide on tactics and strategy to 
deal with CTC.

7. Conclusions

1. We have defined the colorimetric parameters (related 
to the amount of pigments, chlorophyll, and other biochemi-
cal indicators) that make it possible to identify the character 
of bioproduction processes in a cluster. These parameters 
could be computed based on a digital photograph, acquired 

by aerospace methods. The essence of this result is that the 
bioproduction processes are examined remotely, without 
referring to methods of laboratory biochemical diagnosis.

2. We have constructed an algorithm for the identifica-
tion of an image segment showing the state of a dynamical 
system that corresponds to a cluster. This makes it possible 
to specify to which step along the trajectory of a dynamical 
system a particular area of accumulation corresponds to. 
That yields important information about the dynamics of 
changes in a cluster, making it possible to separate those 
areas in which it is most appropriate to implement measures 
in order to eliminate biothreats. The essence of the algorithm 
for identifying the segments is to split the scale of changes 
in the colorimetric parameters into numeric intervals corre-
sponding to the levels of these parameters along the trajec-
tory of a dynamical system. Such a split can be performed in 
any number of techniques. In this work, the two approaches 
to splitting have been proposed. Under a first approach, the 
borders of intervals that divide the scale of a colorimetric pa-
rameter ensure the maximal share of the identified segments 
in their total number. Under a second approach, the borders 
minimize the measure that reflects the proximity of actual 
data with values for components calculated according to the 
algorithm of identification.

3. The devised spatial-dynamical model has been ver-
ified using 5 digital images of CTC in order to determine 
the structure of clusters. A variant of the model, based on 
the maximal share of identified segments, made it possible 
to identify almost all segments in the image. The share of 
unidentified segments for different photographs ranges from 
0 to 2.8 %. This indicator could be considered as evidence 
of the adequacy of the model. A detailed analysis of the 
structure of a cluster, identified based on a photograph of 
CTC in the Baltic Sea, detected two phases, reflected in the 
trajectory. The greatest threat, in terms of biosecurity, is 
posed by the phase that we denoted “productive”. This phase 
was matched by 19 segments out of 100. The phase consists 
of segments in four states, which points t=2, 3, 4, 5 in the 
trajectory correspond to (Table 1) with the number of seg-
ments 3, 6, 6, and 4, respectively. It is obvious that the choice 
of sites for the implementation of measures on the elimina-
tion of toxicity requires separate consideration, taking into 
account a variety of factors. However, the above indicator 
testifies to the model’s capability to separate at the surface of 
a cluster a small area where application of biosafety measures 
would be most appropriate.

4. The model allows the extension to a spatial structure 
of arbitrary dimensionality, since the concept of the model 
implies the representation of a spatial object in the form of 
a corresponding dynamic system. The extension is also pos-
sible in the direction of development of methods for linking 
spatial objects to the phases in a dynamic process. Because 
the dynamical pattern of the model is represented by DMDS 
model, which is itself a complex multiparameter dynamic 
system, an important step in improving the proposed spa-
tial-temporal model should be the parametric adjustment 
that would account for all biochemical, hydrobiological, 
physical information about a cluster, rather than a digital 
photograph only. 
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