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Onucana mexaniuna mooenb 00HOMACO80L 610po-
MAWUHY 3 NOBOPOMHO-KONUBATIVHUM PYXOM NaaAm-
dopmu i 6i6po36YyOHUKOM Y 6U2NA0T NACUBHO20 ABMO-
oanancupa. [Tnamgopma mosice KoAUBAMUCA HABKOJLO
nepyxomoi oci. Ha nnameopmy ecmanosnenuii baza-
mowaposuii, 6azamopoauxosuii abo Gazamomasm-
Huxoeuil aemobanancup. Bicv obepmanna aemooa-
Jancupa napaneivHa 0ci nogopomy naamdopmu.
Aemobanancup odepmaemocs 6i0nocto niamgopmu 3
nocmiinoro kymoeoro weuoxicmio. Ha xopnyci aemo-
oanancupa ecmanosenuii 0ebanancHuil 6anmaic 0Js
30Y0CeHHA WBUOKUX KOAUBAHD NAAMPOPMU 3 HACMO-
moto obepmannsa asmoobanancupa. Ilepedbananocs,
wo Kyai abo ponuxu nepexawyiomocsi no 6izo6ux
dopisckax ecepeduni xopnycy aemoobanancupa e
8idpusy i xoezanmnsa. Bionocnomy pyxy eammasicie
nepewxooxcaiomv Hovtomoniecoki cuau 6'13K020
onopy. Ilpu nopmanvio npayioronomy asmodarancu-
pi eanmaici (Masmuuxu, Kyai, poauKu) He MOIcCYymo
Haz0ozHamu Kopnyc i 3acmpsiiomo HA Pe3OHAHCHIU
yacmonti xoueans naampopmu. Ifum 30yoicyromocs
NnoGiLNbHI pe30HaHCHI Koausanns naamepopmu. Taxum
YUHOM, ABMOBANANCUP BUKOPUCIOBYEMBCA 0N 30Y-
Oddicenns dsonacmomnux eiopauiii.

Iz 3acmocysannam pienanv Jazpanxca II pooy
eusedeni ouepenyianvii pieHanns pyxy eiopomauiu-
nu. Byao ecmanoeneno, wo 6 pasi kyab06020 i poauxo-
6020 asmobanancupa oudepenuianvii pieHAHNA PYXY
siopomawmunu nodioni (30izaromvcsa 3 mounicmio 00
nosnayensv), a 6 pasi MaAsMHUK08020 agmobdaiacupa -
8iopisnsiomocs 3a popmoro.

upepenyianvii pisnanns pyxy eidbpomawunu
3anucani 05 6unaoky 00HAKOBUX 6AHMAICIE.

Iooyodosani modeni 3acmocosui sk 01s anavimuy-
H020 00CNiONCEHNHA OUNHAMIKU 6i0n06iIOHUX 6i0poMa-
wun, max i 013 npoeedents 00MUCTIOBANLHUX eKcne-
pumenmie.

B ananimuunux docaioxncennsx mooesi npusnaueni
015 NOWYKY YCMATLEHUX PENCUMIB PYXY BIOPOMAMUNY,
BU3HAUEHHS YMOBU X ICHYBAHHS | cmitiKoCcmi

Kniouoei cnosa: inepuyiiinuii 6i6po3dyonux, 060-
yacmomui 6ibpauii, pezonarncna eibpomamuna, agmo-
oanancup, inepuiiina eibpomamuna
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1. Introduction

Among such vibratory machines as screeners, vibra-
tory tables, vibratory conveyers, vibratory mills, etc., the
multi-frequency- and resonance machines are very promis-
ing.

Multi-frequency vibratory machines demonstrate better
performance [1] while resonance vibratory machines are
the most energy-efficient [2]. That is why it is a relevant
task to design such vibratory machines that would combine
the advantages of multi-frequency and resonance vibratory
machines [3].

The most promising techniques for exciting resonance
vibrations are based on the phenomenon of a parametric
resonance [4—8] or the Sommerfeld effect [9-23]. The res-
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onance mode in such vibratory machines is resistant to a
change in the mass of a vibration platform.

To induce resonance vibrations, it was proposed to apply
passive auto-balancers of the ball-, roller-, pendulum-types
[12]. Work of the method is based on the Sommerfeld effect
[9]: under certain conditions, loads in an auto-balancer can-
not catch up with the rotor and get stuck at the resonance
frequency of platform oscillations, exciting thereby reso-
nance oscillations [12—23]. Fixing the unbalanced mass at
an auto-balancer’s casing makes it possible, in this case, to
induce faster vibrations — at the rotor frequency [12, 19-23].

The feasibility of the technique has not been theoreti-
cally investigated up to now for the case when the platform
is set into rotary-oscillatory motion. The necessary stage
of theoretical research is to describe a mechanical model of




the vibratory machine and to derive differential equations
of motion.

2. Literature review and problem statement

There are several techniques to excite resonance oscil-
lations. The simplest one is inertial, under which the unbal-
anced mass rotates at the resonance frequency of platform
oscillations [2]. A drawback of the method is that at a change
in the mass of a platform the vibratory machine significantly
deviates from the resonance mode of operation.

A common current technique is based on the application
of electromechanical vibration exciters [3]. However, such
vibration exciters require a sophisticated control system in
order to respond to a current change in the mass and reso-
nance frequency of platform oscillations.

Less sensitive to a change in the mass of a vibration plat-
form is the technique for exciting resonance oscillations of
the platform based on a parametric resonance phenomenon.
A vibration exciter consists of one or more pendulums [4],
or several rolling bodies (balls, rollers), placed in circular
sectors [5]. The pendulums are mounted onto the axis, par-
allel to the longitudinal axis of the rotor, while centers of
the circular sectors are at a certain distance from the longi-
tudinal axis of the rotor. The technique is applicable for the
single-mass [4—7] and [8] multi-mass vibratory machines,
for the case of vibratory platforms on the isotropic [4, 6] and
anisotropic [5, 7, 8] supports. The technique mostly exploits
the main parametric resonance [7]. And though the system
adjusts to a change in the mass of a platform, the range of
shaft rotation speed, at which the parametric resonance is
achieved, is small.

There are techniques to excite resonance oscillations of
the vibratory platform that employ the Sommerfeld effect [9].

In [10], a pendulum is mounted onto the electric motor
shaft. The rated shaft rotation frequency is slightly less than
the resonance frequency of the vibratory platform oscilla-
tions. Owing to the Sommerfeld effect, the pendulum gets
stuck at the resonance frequency of platform oscillations.
The disadvantage of the method is that the electrical circuit
of the motor in this case is overloaded. In [11], instead of a
small engine, a wind wheel is applied, combined with an un-
balanced mass. The wheel is fed a stream of compressed air.
The wheel gradually accelerates to the resonance frequency
of platform oscillations. The shortcoming of the method is
the low performance coefficient of the system “compressed
air — wind wheel — vibratory platform”.

Paper [12] proposed to induce dual-frequency resonance
vibrations using a passive auto-balancer. The technique is
based on the same Sommerfeld effect that is employed in
studies [10, 11]. Only, instead of a small engine, the authors
exploit small forces of viscous resistance to the relative
motion of loads (pendulums, balls, rollers). Additionally,
as a second vibration exciter, the unbalanced mass at an
auto-balancer’s casing is applied. It should be noted that
the small resistance forces initially accelerate the loads. The
energy from the motor, in a much larger amount, is then
transferred to the loads, similar to the way a gymnast twists
hoops around the body.

Hypothetically, it is assumed that the vibration exciter in
the form of a passive auto-balancer is applicable for single-,
two-, three-mass vibratory machines with a different motion
kinematics of vibratory platforms [12].

In this regard, there is an issue to substantiate the
feasibility of a new technique to excite the two-frequency
vibrations.

We shall consider several studies whose results can be
indirectly employed in order to substantiate the technique.

A phenomenon of the loads that get stuck in an auto-bal-
ancer, which is undesirable, was theoretically investigated
when studying the process of rotor balancing by the ball-
type and pendular-type auto-balancers [13—18]. The most
significant, new theoretical results were reported in:

[13] — within a spatial model of the rotor on isotropic
supports, balanced by the pendulum-type auto-balancer;

[14] — within a flat model of the rotor on isotropic sup-
ports, balanced by the ball-type auto-balancer;

[15] — within a spatial model of the rotor on isotropic
supports, balanced by the ball-type auto-balancer;

[16] — within a spatial model of the rotor on isotropic
supports, balanced by two dual-pendulum auto-balancers;

[17] — within a flat model of the rotor on anisotropic sup-
ports, balanced by the ball-type auto-balancer.

These models lack the platform, there is only the rotor,
mounted on flexible supports. That is why results from these
studies are not directly applicable to substantiate the effi-
ciency of the new method of vibration excitation. The papers
found that balls or pendulums may get stuck at one of the
resonance velocities of rotor rotation. This suggests that in
the presence of platforms the loads can get stuck at the reso-
nance frequencies of platform oscillations.

Similarly, in studies [13—16], the rotor is placed on iso-
tropic supports, and in [17] — on anisotropic. However, the
results obtained do not provide an answer to the question of
whether the loads may get stuck given the high anisotropy of
supports (rigidity in one of the directions tends to infinity).

Paper [18] investigated the balls that get stuck within a
flat model of the rotor with the ball-type auto-balancer, in
which the rotor is mounted on isotropic supports, which rest
against a movable foundation. The research results could be
applied to substantiate the feasibility of the technique when
vibrations are induced in the dual-mass vibratory machine.
To this end, it is necessary to treat the movable foundation
as a vibratory platform.

Theoretically, the feasibility of the new technique was
investigated for the single-mass vibratory machine with a
rectilinear translational motion of the platform [19-21]. The
following stages of research were adopted:

— equations of motion were derived [19];

— possible frequencies at which loads get stuck and re-
spective motion modes were identified [20];

— the stability of motion modes [21] defined in [20] was
examined.

In accordance with the results reported in papers [19-21]:

— differential equations of motion (for the single-mass, du-
al-mass, or three-mass) of the vibratory machine are reduced to
the form independent of the type of an auto-balancer;

—loads in the auto-balancer get stuck at the resonance
frequency of platform oscillations;

—in this case, despite the high anisotropy of supports,
there occur the almost perfect dual-frequency vibrations of
the platform.

The feasibility of the technique for the case of a sin-
gle-mass vibratory machine with a rotary-oscillatory motion
of the platform was tested by a 3D simulation of the dynam-
ics of a vibratory machine [22] and when performing a field
experiment [23]. The results obtained demonstrate that:



— the new technique of vibration excitation is feasible;

— despite the strong asymmetry of supports, the auto-bal-
ancer excites the almost perfect dual-frequency vibrations.

However, the design of such vibratory machines requires
a theoretical investigation into their dynamics, as is the
case in [19-21]. The necessary stage of such a research is
the construction of a mechanical-mathematical model of the
vibratory machine.

3. The aim and objectives of the study

The aim of this study is to construct mechanical-math-
ematical models of the single-mass vibratory machine with
rotary-oscillatory motion of the platform and a vibration
exciter in the form of a passive auto-balancer.

To accomplish the aim, the following tasks have been set:

—to describe a mechanical model of the single-mass
vibratory machine with rotary-oscillatory motion of the
platform and a vibration exciter in the form of a passive au-
to-balancer of the ball-, roller-, or pendulum-type;

— to derive differential equations of motion.

4. Methods for constructing mechanical-mathematical
models of the single-mass vibratory machine with a
rotary-oscillatory motion of the vibratory platform

In order to build mechanical models of the vibratory
machines, provisions from the theory of vibratory machines
[2, 3] are applied, as well as provisions from the theory of
rotary machines with passive auto-balancers [14].

To derive the differential equations of motion, the La-
grangian equations of the second kind in the following form
are employed [24]:

43T T v D _
dtdq; dq; 9dq; 9q,

0, /ji=L1/, )

where ¢ is the time; T is the kinetic, Vis the potential energy
of the system; D is the dissipative function; g; is the general-
ized coordinate, ¢, is the generalized velocity number j; fis
the number of degrees of freedom for a mechanical system.

3. Results of construction of mechanical-mathematical
models of the single-mass vibratory machine with a
rotary-oscillatory motion of the vibratory platform

5. 1. Description of a mechanical model of the vibra-
tory machine

A vibratory machine (Fig. 1, @) has a vibratory platform
of mass M. The vibration platform rests on an elastic-vis-
cous support with a coefficient of rigidity &, and a viscosity
coefficient b,. The vibratory platform can rotate around a
fixed axis that passes point O. The angle of rotation is de-
noted through vy (Fig. 1, b). The platform hosts a vibration
exciter in the form of the ball-, roller- (Fig. 1, ¢) or pendu-
lum-type (Fig. 1, d) auto-balancer. An unbalanced mass of
weight m is attached to the casing of the auto-balancer.
The distance from the center of mass of the unbalanced
load to the center of the auto-balancer’s casing (point K) is
Ry. The auto-balancer’s casing rotates relative to the plat-
form at a constant angular rotation velocity ®. Position of

the unbalanced mass relative to the platform is defined by
angle oz, where ¢ is the time.

c d

Fig. 1. Mechanical model of the single-mass vibratory
machine with a rotary-oscillatory motion of the platform and
a vibration exciter in the form of a passive auto-balancer:
a — circuit of the vibratory machine; b — kinematics of the
vibratory platform motion; ¢ — kinematics of the unbalanced
mass and balls (rollers) motion; d — motion kinematics of the
unbalanced mass and pendulums

The passive auto-balancer consists of N loads. Load
number j has mass m;; its center of mass (point C)) is at a
distance R; from the center of the auto-balancer’s casing.
Position of the load relative to the platform is defined by
angle /j=1,N /.

The central moment of inertia of the load about axis (in-
cluding the unbalanced mass)

I, =mp’, /j=O0,N/, 2)

where p; is the radius of gyration of the load.
In turn, for a ball or a roller of radius 7;, respectively:

2
pj_ grjy

1 . T
py=yyf /i=IN/. 3)

Balls or rollers roll along the rolling tracks without in-
terruption and slip.

The angular velocity of rotation of the pendulum or the
unbalanced load around the center of mass

®;=Yy+¢;, /j=0N /. *)

The angular velocity of rotation of a ball or a roller
around the center of mass
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Note that motion of the system is described by gener-

/ji=LN/. (6)

alized coordinates v, ¢; /j=14N/ and it has f=N+1
degrees of freedom.

Hereafter, for the sake of brevity, we shall term a dif-
ferential equation of motion, derived from the Lagrangian
equations of the second kind for the generalized coordi-
nate v, the motion equation of the platform. Similarly, the
equation that is obtained for the generalized coordinate
¢; shall be termed the motion equation of the load (num-
ber j).

5. 2. Derivation of the differential motion equations of
the vibratory machine

3. 2. 1. Kinetic energy of the system

The kinetic energy of the platform and the auto-balanc-
er’s casing

1

To=ylo¥ (6)

where I is the moment of inertia of the platform, together
with the auto-balancer’s casing (without the unbalanced
load on the casing) about axis.

Coordinates of the center of mass of the load (including
the unbalanced) relative to the movable axes &, (:

éC,j:éK+RjCOS(Pj’ t_:C,j:CK+RjSin(pj) /]:W/, (7
where
9, =wt, =0, ¢, =0. ®)

Coordinates of the center of mass of the load relative to
the fixed axes x, z

Xe; = Eac,;‘ COS‘V_QC,]' siny =

=(Ex +R;cos;)cosy —(y + R;sing, )siny,
20, =8 siny+L. cosy =

=(Ex +R;cos;)siny +(L + R sing; )cosy,

/j=0N /. )

Projections of velocity of the center of mass of the load
upon the fixed axes x, z:

ey =6, cosy =G Wsiny

L, siny —C. Weosy,

Zc; :E-’C,j sin\|l+§cyj\jlcos\|f+

+CC,j cosy — Cc,j\i’ siny,

/jZOrN/r

where

€., =—R;sing; (., =Rp;cosq, /j=0N/.

In the expanded form
T, =—R,0,;sin@; cosy—(Ex +R;cos@, siny —
—R;p; cos@;siny —(§, + R;sing, )y cosy,

2c;=—R;sin@;siny+(Ex + R, cos@; cosy +
+R;¢, cos@; cosy — (L + R;sing; )ysiny,

/i=0N/.
Square of velocity of the center of mass of the load:
Ufp]- 2563‘,]' +22‘,j =R]2(\jl+¢j)2 +d?<‘~i]2 +

PRV +0,)(E 0059, +L,5ing)),

/j=0,N/, 10)
where
dK = gi +C?<

is the distance from the axis of rotation of the platform to
point K.

According to the Koenig theorem [24], kinetic energy of
the load (including the unbalanced):

T=tme?, 41, 0t /j=0N/,

i Emjvc,j 2 11)

where ;s the angular velocity of rotation of the load around
the center of mass.

Given (2), (4), (10), kinetic energy of the pendulum or
unbalanced load

2

1 . .
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1 o, . o
Fom P+ )" =g m [ dy + 2R G (Y +9,)

X(Ex cos@; + 8y sing ) +(p] + RH(W+6,)’]- (12)

Given (2), (5), (10), kinetic energy of the ball or roller:
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Kinetic energy of the system:
— for the case of a pendulum-type auto-balancer

N
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+(pj+Rf)(w+<pj)2]+5mo[d,iw‘+2Row(\v+w)x

X(& cosot + sinwt)+(p§+R§)(ljl+w)2]; (14)

— for the case of a ball- or a roller-type auto-balancer
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5. 2. 2. Potential energy and dissipative function of

the system

Potential energy that corresponds to the platform:

lZZ 2,02

V, =k, +Mghczkpl;’ +

+Mgl&, SHI(\V — )+ cos(y —a)].
Potential energy that corresponds to load number j:

Vi=m,gh.;=mg[(Ex + R, cos@;)sin(y—a)+
+(C + R, sin@;)cos(y —a)].

Potential energy of the system

122

V= V+2V+V k,

+Mg[E, sin(y — )+, cos(y )|+

+i m g[(E + R, cos@,)sin(y — o)+

+(Cx + R;sin@;)cos(y—a) ]+

+myg[ (&4 + R, cosot)sin(y —o) +

+(Cx + Ry sinot) cos(y —a)]. 16)

Dissipative function that corresponds to the platform
1, 1, .,
Dp ngva = Eb‘vl vy

Dissipative function that corresponds to load number J:

(15)

1 r
Df=2b]( ()) EbJR;Z((Pj_“))z’

/ji=LN/.

Dissipative function of the system

D:Dp+iDj=

J=1

Ly g s LS
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]R]z((p]_o))z,

/ji=LN/. (17)

5. 2. 3. Differential motion equation of the platform
Components generated by the kinetic energy in the mo-

tion equation of the platform

For the case of a pendulum-type auto-balancer:

aT
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For the case of a ball- or a roller-type auto-balancer:
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+my Ry (=& sin ot +§ , coswt )w’.

Components generated by the potential energy and
dissipative function in the motion equation of the plat-
form:

oD 9V ) .

£+£= b +k Py +

+ Mgl cos(y —0)~ L, sin(y o)+
N

+Y m,g[(&x + R, cos @, )cos(y —o) -
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Differential motion equation of the platform:

— for the case of a pendulum-type auto-balancer

N
{10 + Y m[dg+R;+pi+2R (E cos@, + i Sinq)j)]}l']]+

J=1

N
+2y Y m R (= sing; + Ly cos )P, +
j=1
< 2 2 . ..
+2mj[Rj +P; +R_7'(<t31< COsQ; +C.:K Sln(‘P]‘)](pj +
j=1

.
+ijRj(—E_,K sing; + cosq)j)('pf +

=
+my|dy + R, +p; + 2R (E cost + sin ot )+
+2ym R (—& 4 sinot +, cosot )o+
+my Ry (= sin ot +§ cos ot )o” + bplz\i; +
+kp12‘V +Mg[& cos(y —a) =L, sin(y— o) ]+

N
+zmjg[(5_,1< +R;cos@;)cos(y —a)—

j=1
—(C+ R;sin (pj)sin(\y -]+
+myg[ (& + R, cosmt) cos(y — o) —

—(Lx + R, sinot)sin(y —a)]; 21)

— for the case of a ball- or a roller-type auto-balancer
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3. 2. 4. Differential motion equations of the load
Components generated by the kinetic energy for pendu-
lum number j:
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Differential motion equations:
— for pendulums
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Components generated by the kinetic energy for ball or

roller number j:
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— for rollers or balls
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27)

3. 3. Differential motion equations of the vibratory

machine in the general and particular cases
3. 3. 1. General case

We shall place, in the differential motion equations, the
unknown components to the left part, and the known ones —
to the right part. We obtain the following differential motion

equations of the vibratory machine:
— for the case of a pendulum-type auto-balancer
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— for the case of a ball- or a roller-type auto-balancer
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Expressions (28) and (29) show that the differential mo-
tion equations of the vibratory machine:

— for the case of a ball- or a roller-type auto-balancer,
they coincide with accuracy to the sign;

— for the case of a pendulum-type auto-balancer, they
differ from the differential motion equations for the cases of
a ball- or a roller-type auto-balancer.

5. 3. 2. The case of identical loads
For the case of identical loads

my=m, R=R p;=p, b;=b /j=1N/, (30)
and differential motion equations of the vibratory machine
take the form:

— for the case of a pendulum-type auto-balancer
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— for the case of a ball-type or a roller-type auto-bal-
ancer
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6. Discussion of research results

The study conducted has allowed us to construct a model
of the single-mass vibratory machine with a rotary-oscillato-
ry motion of the platform and a vibration exciter in the form
of a ball-, a roller- or a pendulum-type auto-balancer.

When deriving the differential motion equations of the
vibratory machine, we considered the effect exerted by balls
or rollers that roll along the rolling tracks. Owing to the
effect and the rotary-oscillatory motion of the platform, the
differential motion equations of the vibratory machine, for
the case of:

— a ball- or a roller-type auto-balancer, are similar (coin-
cide with accuracy to the sign);

—a pendulum-type auto-balancer, differ in their form
from the differential equations for the case of a ball- or a
roller-type auto-balancer.

It should be noted that the differential motion equations
of the load directly include the platform’s angle of rotation.

Note that for the case of translational motion of the
platform [19]:

— differential motion equations of the vibratory machine
are reduced to the form that is independent of the type of an
auto-balancer;

— the differential motion equations of the load do not
directly include the platform coordinate; they contain only
its second time derivative.

This indicates a significant difference between the case
of a rotary-oscillatory motion of the platform and the case of
translational motion of the platform.

The derived differential equations of motion could be
applied both for an analytical study into dynamics of the
vibratory machine and for conducting computational experi-
ments. This is their advantage. Note that the results reported
in papers [22, 23]:

— suggest the form taken by approximate solutions to the
differential motion equations of the system, which could be
used when searching for them;

— could be applied to test the adequacy of the construct-
ed physical-mathematical model of the vibratory machine
(after finding the two-frequency modes of motion).

It should be noted that the constructed model does not
take into consideration:

— a possibility of encounters among loads;

— the influence of a processed material on the dynamics
of motion of the vibratory machine.

A first disadvantage of the model is typical for the ana-
lytical theory of passive auto-balancers [13—18]. It could be
partially eliminated by adding the appropriate constraints
to the angular coordinates of loads. However, that would
greatly complicate the model and would make it impossible
to conduct analytical studies. A second disadvantage is often
found in the theory of vibratory machines [1—8]. Its elimina-
tion requires a greater reconsideration of the model.

In the future we plan to search for the two-frequency
motion modes of the vibratory machine, to determine the
conditions for their existence and stability.

7. Conclusions

1. We have constructed a model of the single-mass vi-
bratory machine with a rotary-oscillatory motion of the
platform and a vibration exciter in the form of a ball-, a roll-
er-, or a pendulum-type auto-balancer. The model takes into
consideration the effect exerted by the balls or rollers that
roll along the rolling tracks.

2. We have derived the differential motion equations of
the vibratory machine and established their following spe-
cial features:

— differential motion equations of the vibratory machine,
for the case of a ball- or a roller-type auto-balancer, are iden-
tical (coincide with accuracy to the sign);

— differential motion equations of the vibratory machine,
for the case of a pendulum-type auto-balancer, differ in form
from the differential equations for the case of a ball-type or a
roller-type auto-balancer;

— differential motion equations of the load directly in-
clude the platform’s angle of rotation.

The equations derived are applicable both in order to
study analytically the dynamics of an appropriate vibratory
machine and to carry out computational experiments.
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