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1. Introduction

Broadband signals (BBS) are used in communication 
lines to provide structural and parametric security. Such 
signals are formed by direct-sequencing spread spectrum 

(DSSS) and/or frequency hopping spread spectrum (FHSS) 
[1, 2]. Various types of digital-frequency modulation (DFM) 
are used in BBS formation: amplitude, phase, frequency or 
combined modulation. However, the abovementioned mod-
ulation methods have a common disadvantage: cyclo-sta-
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Дослiджено завадозахищенiсть iснуючих радiолiнiй з 
шумоподiбними сигналами та цифровими видами модуля-
цiї. Аналiз показує, що застосування таких сигналiв в умо-
вах радiоелектронного конфлiкту не дозволяє забезпечити 
необхiдний рiвень показникiв завадостiйкостi та прихо-
ваностi передавання радiолiнiй зв’язку. Встановлено, що 
причиною тому є наявнiсть циклостацiонарностi несучого 
коливання в сигналах з цифровими видами модуляцiї. Такi 
властивостi спрощують виявлення та пошук сигналiв за 
допомогою спектрально-кореляцiйних методiв сучасних 
засобiв радiоелектронної розвiдки противника. 

Для вирiшення цiєї проблеми запропоновано застосуван-
ня нестацiонарних сигнальних конструкцiй iз змiнною цен-
тральною частотою та спектральною щiльнiстю потуж-
ностi. Розроблено методику формування таких сигнальних 
конструкцiй на основi процедури ортогоналiзацiї Грама-
Шмiдта до ансамблю багатокомпонентних ЛЧМ сигналiв з 
керованими спектральними характеристиками. 

Запропоновано оцiнювати рiзнi структури сигнальних 
конструкцiй багатокомпонентного сигналу по фазовим 
портретам сумарних сигналiв в залежностi вiд значень 
коефiцiєнта масштабування. Визначено граничнi значення 
цього коефiцiєнта, при яких забезпечується ускладнення 
структури багатокомпонентного сигналу i запобiгається 
виродження процесу в класичну ЛЧМ.

Проведено дослiдження змiни ймовiрностi символьної 
помилки в каналi при використаннi багатокомпонентних 
ортогональних сигнальних конструкцiй в залежностi вiд 
спiввiдношення сигнал/шум. Це дозволяє оцiнити потен-
цiйну завадостiйкiсть радiолiнiї за умови, що спiввiдно-
шення сигнал/шум визначається за енергетичними показ-
никами радiоканалу та спектральною щiльнiстю шумiв 
природного походження.

Структурна прихованiсть розроблених сигнальних кон-
струкцiй оцiнювалася за допомогою енергетичного детек-
тора i детектора циклостацiонарностi. Встановлено, що 
при енергетичному детектуваннi нестацiонарнi сигнали, 
як i сигнали з будь-яким iншим видом модуляцiї, еквiва-
лентнi. Проте, при використаннi детектора циклостацiо-
нарностi ймовiрнiсть виявлення нестацiонарних сигналь-
них конструкцiй зменшується в 2–2,5 рази в порiвняннi з 
iншими видами модуляцiї сигналiв

Ключовi слова: нестацiонарнi багатокомпонентнi сиг-
нальнi конструкцiї, ортогоналiзацiя Грама-Шмiдта, цикло-
стацiонарнiсть несучого коливання, структурна прихо-
ванiсть
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tionarity, which makes it possible to realize procedures for 
detecting and determining signal structures [3–5].

Therefore, development of a procedure for formation of 
nonstationary signal structures which will complicate detec-
tion of such signals is a topical line of study.

2. Literature review and problem statement

One of the possible ways of improving transmission secu-
rity is the use of non-positional timer signals with a variable 
structure. However, this problem is not solved in full because 
it is aimed at complicating solely structure of the extended 
digital signal. Therefore, this line requires further studies [6].

Another option for building high-security communica-
tion systems is the use of determinate chaotic oscillations 
[7]. Unlike the regular structure signals, chaotic oscillations 
have an extended continuous spectrum and low spectral 
power density which greatly increases complexity of identi-
fication and prediction of carrying oscillation parameters. In 
addition, the use of direct-chaotic transmission can combat 
multipath propagation and fading in the communication 
channel. However, the use of chaotic signals in real systems 
is limited because of low reproducibility and high oscillation 
instability.

An intermediate position among monochromatic oscil-
lations and determinate chaotic signals belongs to signals 
with an additive fractal structure. Such signals are irregular 
in structure and flexible as to variation of characteristics [8].

Thus, use of aggregate signals with controlled structure 
in which central frequency, f0, and spectral power density, 
s(f), vary in time. Such a task can be solved by means of 
multicomponent LFM signals.

3. The aim and objectives of the study

The study objective was to develop a procedure for for-
mation of nonstationary signal structures on the basis of 
multicomponent LFM signals. This will make it possible to 
increase security of operation of radio lines by reducing the 
cyclo-stationary nature of structure of transmitted signals.

To achieve this objective, the following tasks were solved:
–to study dynamics of variation of the multicomponent 

signal structure depending on the scaling factor value and ap-
ply the Gram-Schmidt orthogonalization to a set of multicom-
ponent LFM signals with controlled spectral characteristics;

– to estimate potential noise immunity of the developed 
signal structures;

– to conduct a comparative analysis of structural se-
curity of the developed signal structures in relation to the 
time-frequency methods of signal detection.

4. Orthogonalization of multicomponent LFM signals 
based on the Gram-Schmidt procedure

4. 1. Initial data for development of signal structures
It is known [5, 9, 10] that cyclic autocorrelation function 

is used to estimate correlation properties of cyclo-stationary 
signals at different frequency pairs. Therefore, in order to 
ensure stability of the time-frequency detection methods, 
the developed signal structures must have a zero spectral 
correlation function, that is, satisfy the condition:
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where XT(t) is the spectral component of the process, x(t), 
which is observed at frequency f in the band width 1/T. Also, 
such signal structures should have the following statistical 
characteristics:

( ){ } ( ){ }0M M ,x t T x t+ ≠

( ) ( )0, , .x xR t T R t+ τ ≠ τ 	 (2)

where M{x(t)} is the mean value of the process x(t) at time 
interval t; Rx(t, τ) is an autocorrelation function.

LFM signal is used as an initial signal for formation of 
signal structures:

( ) ( )2
0 0 0 0cos 2 0.5 ,U t U f t h t= ⋅ ⋅π ⋅ ⋅ + ⋅ ⋅ + f 	 (3)

where f0=0.5(f1+f2) is average signal frequency; t is the cur-
rent time; f1, f2 are lower and upper spectrum frequencies; 
h=2π(f2–f1)τ0

‑1 is frequency change rate; U0, τ0, φ0 are am-
plitude, duration and initial phase of the signal, respectively.

4. 2. Studying the properties of multicomponent LFM 
signals as nonstationary signals

Structure of a multicomponent LFM signal depends on 
the zero (reference) oscillation form and the scaling factor 
k which is a quantitative measure of scale invariance of a 
couple of parameters of LFM oscillations being parts of the 
formed signal. It is worth noting that multicomponent LFM 
signals feature a hyperbolic connection between parameters. 
At the same time, there is a stretch of parameters in one di-
rection (in the case considered, this is the rate of frequency 
change, hkn) and compression in another direction (decrease 
in amplitudes of the LFM signal components, U0k-n). Stretch 
results in stochasticization but compression is necessary in 
order that trajectories of the LFM signal components re-
mained in a limited region of the phase space [11, 12].

The considered laws and an expression for classical LFM 
oscillations make it possible to reduce mathematical expres-
sion of a multicomponent signal to the form:
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where U0 is the amplitude of zero (reference) LFM oscil-
lation; n, N are number and quantity of LFM oscillations 
involved in formation of a multicomponent signal. Fig. 1, 2  
show respectively (in a time domain) a reference LFM 
oscillation and a multicomponent signal obtained at dimen-
sionless amplitudes U0=1 and U1=1.75; frequency deviation 
Δf=f2–f1=8; factor k=2 and signal duration τ0=2. Current 
time t was taken in an interval [0, 1]. The signal (Fig. 1) is 
a sum of a reference and two homeomorphic (similar) LFM 
oscillations (n=0, 1, 2 are the component numbers). It can 
be seen from Fig. 1 and 2 that the multicomponent signal 
significantly differs from the reference LFM oscillation. 
Physically, this irregularity is determined by mutual influ-
ence (interaction) of the LFM oscillations that are parts of 
the multicomponent signal.

The degree of irregularity of the multicomponent signal 
can be visually analyzed and estimated by the phase por-
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traits given in Fig. 3, 4. They show behavior of the depicted 
point in the phase plane. Phase portrait of a classical LFM 
oscillation with amplitude U1=1.75 is shown for comparison 
in Fig. 3. Scatter of phase trajectories (Fig. 4) and their 
inverse return to the attractor (the attracting set) visually 
characterizes influence of interaction of all components of 
LFM oscillations and, as a consequence, the degree of ir-
regularity of the multicomponent signal. Construction of a 
phase portrait (PP) of signals requires knowledge of deriva-
tive (differential) of the function U(t) [11].

Fig. 1. Time realization of a reference LFM signal

Fig. 2. Time realization of a multicomponent signal

Fig. 3. Time realization of the phase portrait of a reference 
LFM signal

Fig. 4. Time realization of the phase portrait of a 
multicomponent signal

Next, depict LFM oscillation and a multicomponent sig-
nal in a spectral form using the Fourier transform:
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Fig. 5, 6 show the spectra obtained in accordance with 
formulas (5) and (6). It follows from comparative analysis of 
the spectra that the multicomponent signal has a continuous 
extended spectrum in comparison with the classical LFM 
spectrum. This extension is determined by the influence 

of homeomorphic signal components which have spectrum 
wider than the reference oscillation. The multicomponent 
signal spectrum is frequency-shifted spectra of LFM oscilla-
tions addition of which is determined by the ratio set by the 
initial model of the multicomponent signal. With an increase 
in the number of components, the amplitude spectrum is 
further deformed and the frequency band occupied by the 
signal extends.

Fig. 5. The reference LFM signal spectrum

Fig. 6. The multicomponent signal spectrum

Thus, the extended continuous spectrum confirms qua-
si-randomness of the generated signal. At the same time, the 
deterministic process of formation using a pseudorandom 
set of linearly independent multicomponent signals enables 
obtaining of a plurality of signals with different spectral 
densities.

Dynamics of the multicomponent signal variation was 
studied depending on value of the variable scaling factor 
k and number of the signal components, N=5. Analysis of 
phase portraits of the summed signals has given grounds 
to conclude that a significant complication of the signal 
structure begins to occur at the scale factor k=1.4. Further 
increase in k leads to an even more complicated signal. 
However, with achievement of k=2.6 and its further growth, 
structure of both the signal and its phase portrait change 
very weakly. This is due to the fact that amplitudes of the 
signal components are small when their numbers grow and k 
values are significant, so they make a small contribution to 
the structure of the summed signal. In other words, degen-
eration of the signal into classical LFM takes place. Thus, 
it is expedient to choose value of the scaling factor k≈1.4 to 
2.6 for formation of a summed signal with a rather irregular 
structure.

Analysis of time realizations and phase portraits of the 
summed signal with different quantities of components at a 
fixed value of k makes it possible to conclude that structural 
complexity of the signal is mainly determined by its first 
three components. This is because of insignificant ampli-
tudes of the signal constituents with numbers higher than 
three. When analyzing time realizations and phase portraits 
of additive signals, N=3, it can be concluded that structural 
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complexity of the signal is determined by the first four com-
ponents.

4. 3. Formation of orthogonal signal structures
Since it is practically impossible to form an infinite series 

of the function taken in the initial signal model, multicom-
ponent signal structures were studied based on a limited 
number of components of the initial function. Analysis has 
shown that to form signal structures, it is appropriate most 
of all to use an additive set of four components. Dimension of 
the multicomponent LFM space corresponds to the number 
of scale factors, kM. Taking into account the foregoing, it is 
possible to form the M-th alphabet of nonstationary signals:
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An additional growth of the signal space dimension is 
possible at the expense of loss of scale invariance of the lat-
ter. In this case, dimension of the set of signal structures is 
(N–1)kM:
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where ξ j+1=│ζj–M│ if ξ j>M.
As a result of such construction of (8), frequency ar-

rangement in a series of the initial function differs from 
geometric progression. However, the insignificant differ-
ence in scaling factors supposes quasi-stationarity of the 
process at certain intervals of observation time. This leads 
to appearance of phase relations between different signal 
frequencies and can be used to obtain estimates of the 
spectral correlation function in corresponding frequency 
coordinates [12].

In order to eliminate this disadvantage, ensembles of mu-
tually orthogonal multicomponent signals obtained from the 
m-dimensional orthonormal basis are proposed. Encoding of 
the set of information characters is made using linear combi-
nations of orthogonal non-stationary signals. By definition 
[13], if the random process x(t) with a finite mathematical 
expectation M{x(t)} and continuous correlation function 
Rxx(t1, t2) is set in a closed interval [a; b], then there is a 
complete orthonormal system of functions {uk(t)} such that
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,k k
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x t c u t
∞
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______

d ,
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k k
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c u t x t t= ∫  ( )1, 2, ,k = … 	 (9)

where integrals and a series coincide at a mean value.
Thus, the random process at the output of the radio 

transmitter can be represented by a set of random factors 
{ck}. In particular, there exists a complete orthonormal sys-
tem uk(t)≡ψk(t) such that all quantities ck are uncorrelated 
standard random quantities.

To obtain a set consisting of m orthogonal signals, con-
sider n-dimensional space Rn. Any point p of this space can 
be represented by an n-dimensional vector which is a linear 
sum of the set of orthogonal basis vectors, ui:

1 1 2 2 3 3 np= u u u ... u ,np p p p+ + + + 	 (10)

where ui∈Rn; i∈[1,m]; piVi∈[1,m] are valid factors.
Consider a subset consisting of m basis vectors described 

by an m-dimensional subspace within the n-dimensional 
space Rn. A series of vectors describing some hyperspace s 
within an m-dimensional subspace can be represented as:

1 1 2 2 3 3 ms= u u u ... u , s at .n
mc c c c R n m+ + + + ∈ ≥ 	 (11)

Real vectors ui can be derived from real-valued functions 
Ui(t) as follows. Let ui=[u1i…uni]T and Uji=Ui(( j‑1)T+ti) where 
j∈[1,n], i∈[1,M], ti is the current sampling time at the point 
of each vector and T is sampling period. For convenience, 
write it as matrix U=[u1…uM] where U∈RnM. In practice, 
the signal ui vector can be generated by discretization of the 
real-valued function Ui(t). Thus, the problem is reduced to 
constructing a set of real values of orthogonal vectors ui∈Rn 
(where i∈[1, M]) capable of generating a set of orthogonal 
functions in real time in the interval UiVi∈[1, M], t∈[0,nT]. 
A set of such functions can be obtained using the Gram-
Schmidt orthogonalization procedure for a system consist-
ing of M linearly independent vectors. It should be noted 
that correspondence of the value of dimension n to restric-
tion n≥M is the mandatory condition for constructing an or-
thonormal system with M linearly independent signals taken 
from the orthogonal basis of the functions UiVi∈[1, M]. 

The Gram-Schmidt orthogonalization procedure for an 
ensemble of signals {Ui(t), i=1, 2,…, M} of duration τc with 
energy {Ei, i=1, 2,…, M} can be represented as follows [13]:
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A message transmitted in radio lines is encoded using 
linear combinations of orthogonal functions:

1 1 2 2 3 4( ) ( ) ( ) ( ) ... ( ),M Ms t c u t c u t c u t c u t= + + + + 	 (13)

or in a shorter vector representation:

( ) u ( )c,Ts t t=  [ ]1 2 3u ( ) ( ), ( ), ( ),..., ( ) ,T
Mt u t u t u t u t= 	 (14)

where uT is the orthonormal system of vectors; cT(t)=[c1, c2,  
c3,… cM] is a linear combination of message characters.

In the process of receiving information symbols, receiver 
of the radio line determines factors of each orthogonal com-
ponent by computing M correlation integrals:
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which can be represented in an equivalent vector representa-
tion with taking into account (15) and (16) as follows:
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Expression (17) is valid for any orthogonal set of signals. 
Distinctive feature of this system consists in that signals 
can be transmitted sequentially via a separate channel and 
simultaneously via all channels. The system throughput will 
be determined by dimension of the ensemble of orthogonal 
signal structures. Fig. 7 shows a diagram of an orthogonal 
multi-component signal shaper.

Generator of multicomponent signals generates a set 
consisting of M additive LFM signals. Each signal consists 
of a set of components obtained from initial oscillation at dif-
ferent scaling factors k. Choice of components of the summed 
oscillation is made according to the pseudorandom law with 
the help of a control parameter ξ j. Digitized signal samples 
are orthogonalized using the Gram Schmidt procedure and 
arrive at the modulator.

5. Estimation of potential noise immunity of radio lines

Let us calculate potential noise immunity of radio 
lines as a probability that the system detector performs an 
optimal signal receival. For orthogonal signals of equal en-
ergy, optimal detector will select a signal that will have the 
greatest correlation with the received signal s and each of M 
possible signal vectors {uM}, that is:
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Since the probability density functions at the output of 
correlators, {rm}, are statistically independent, the common 
probability density will be determined by the product M-1 
of the proper probabilities of the form:
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These probabilities are the same for m=2, 3,..., M, that 
is, the cumulative probability (the probability of correct 
receival) is defined as:
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Thus, probability of a character error in a radio channel 
can be defined as in [14]:
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Fig. 8 presents results of numerical simulation of a char-
acter error from the signal-to-noise ratio (S/N).

Fig. 8. Noise immunity of radio communication 
lines with the use of developed signal structures

The firm curve shows the lower limit for probability of 
a character error when two signal structures are used. The 
dashed line represents maximum achievable (in terms of 
practical implementation) value of probability of a character 
error when using 1024 orthogonal signal structures. Ex-
pression (21) allows one to estimate noise immunity of the 
radio line in idealized conditions when the S/N is completely 
determined by energy indicators of the radio channel, Es, and 
the spectral density of the noise of natural origin N0. In most 
practical applications, it is advisable to consider both noise 
immunity and security of radio lines [15].

6. Analysis of structural security of the developed signal 
structures and signals with digital modulation types in 
relation to the time-and-frequency methods of signal 

detection

The radio line security can be quantified by the proba-
bility of signal detection. The algorithm of searching for the 
spectral harmonic corresponding to the symbol frequency 
can be described as follows. The band which is determined 
by the formula (22) is only taken for analysis in the signal 
spectrum at the output of a nonlinear operator. A spectral 
component with maximum amplitude and an extreme right 
harmonic whose amplitude exceeds 0.25Smax are sought in 
this band. The value of the latter frequency is taken as an 
estimate of symbol frequency.

Figs. 9, 10 show dependence of probability of correct recog-
nition, Prec 16-PSK and 128-QAM using common phase con-
stellation and combination of the common phase constellation 
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with its squared variant. It can be concluded from analysis of 
the dependences depicted in Fig. 9, 10 that application of expo-
nentiated variants of phase constellations can significantly im-
prove probability of correct recognition of modulation type in 
a range of low S/N values. For example, probability of correct 
recognition of 128-QAM at S/N 8dB increases from 0 to 0. 98.

Fig. 9. Probability of recognition of signals from 16-PSK 
using a squared constellation: for combined phase 

constellations (- - -); for ordinary phase constellations (– –)

Calculation of the spectrum width is realized in the fol-
lowing way. Amplitude-frequency spectrum is calculated 
by means of a fast Fourier transform. An example of such 
a spectrum for a signal with an eight-fold PSK is shown 
in Fig. 11. To reduce influence of fluctuations of spectral 
harmonics on accuracy of the spectral width measurement, 
arithmetic averaging of amplitudes of neighboring harmon-
ics was used:

( )
( ) ,

k N

c
n k

S nF
S kF

N

+

=

= ∑ 	 (22)

where N is the number of read-outs taken for averaging. An 
example of the averaged spectrum is shown in Fig. 12.

Fig. 10. Probability of 128-QAM signal recognition using a 
squared constellation: for combined phase constellations  

(- - -); for ordinary phase constellations (– –)

Spectrum width, Δfc0, is calculated as a difference in fre-
quencies of spectral components of the smoothed spectrum 
that exceed the value of the set threshold, Sp, to the right 
and left of the central value of frequency fc0 calculated by the 
following expression:
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where Sc(fi) is amplitude of the spectral harmonic corre-
sponding to frequency fi.

Fig. 11. Initial amplitude-frequency spectrum of the received 
8-PSK signal

Fig. 12. Averaged amplitude-frequency spectrum of the 
received 8-PSK signal

The calculated value of the spectrum width, Δfc0, is taken 
as the central value of frequency of the band of spectral peak 
search which corresponds to the symbol frequency. The con-
ducted studies with simulated and real signals show that the 
spectral harmonic corresponding to the symbol frequency is 
within the frequency band in a vast majority of cases:

0 0
0 0...

2 2
c c

c c

f f
f f

D D
D − D + .	 (24)

Thus, a harmonic of symbolic frequency will be sought 
solely within the band defined by expression (24). In most 
cases, the harmonic corresponding to the symbol frequency 
has maximum amplitude, Sc, in the signal spectrum from the 
output of the nonlinear limiter (Fig. 13). This fact is used for 
its search in existing algorithms of symbol frequency estima-
tion. This enables analysis and classification of signals, even 
in the case of low S/N and strong signal distortion. There-
fore, application of spectral-correlation analysis methods is 
most appropriate currently (Fig. 14).

Fig. 13. Initial spectrum of the module of aggregate signal 
amplitude

Fig. 14. Spectrum of the module of the aggregate amplitude of 
the signal distorted by influence of the propagation medium

The performed simulations show that the spectral com-
ponent of the symbol frequency is the extreme right harmon-
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ic in the spectrum of the signal with amplitude greater than 
0.25Smax where Smax is the maximum amplitude in the signal 
spectrum. The cyclo-stationarity detector can be described 
in general by the following expressions:
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Let us analyze spectral correlation functions (Fig. 15, 16) of 
a classical broadband phase-modulated signal and a non-sta-
tionary signal. Obviously, the developed structures qualita-
tively differ from classical broadband signals. This makes it 
possible to increase security of information transmission via 
radio lines on the basis of spectral and correlation analysis 
of signals.

In the general case, when the process is non-stationary, 
the values
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are not invariant with respect to the transfer of moment 
t1 [16]. For any t=t1, probability density of such a process  
p(s, t1) is described by the expression
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P s s t s s

p s t
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D

	 (29)

Fig. 15. Spectral correlation function of a binary PSK signal

Fig. 16. Spectral correlation function of non-stationary signal

Let us determine signal at the output of the radio line 
transmitter through a Gaussian stationary process n(t) with 
a zero mathematical expectation and a deltoid correlation 
function
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( ){ }E 0,n t = 	 (31)

( ) ( ) ( )2 1 2 1 .2
NR t t t t− = δ − 	 (32)

According to [16], if the initial process is expressed 
through the Gaussian by means of a linear transformation, 
then it is Gaussian as well. According to (31), mathematical 
expectation, dispersion and correlation function of this pro-
cess are described as follows:
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Define properties of increments in the intervals that 
do not intersect (t3>t2>t1) from an it follows from obvious 
equality

( ) ( ) ( )
2

1

2 1 d ,
t

t

s t s t n− = τ τ∫ 	 (36)

that the mathematical expectation is zero and the dispersion 
of increments is proportional to the difference between the 
moments of time:
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Mutual correlation of the function of increments using 
(35) is defined as
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Thus, the process increments, s(t) in non-overlapping 
time intervals are uncorrelated, and given normal distribu-
tion, they are independent which should have been proved. 
In addition, the process increments can be called stationary 
since their mathematical expectation is zero and disper-
sion is proportional to the difference between the time 
moments. The following formula is a direct consequence of 
these features:
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where t0<t1<…<tm<t, Δ=max(ti-1–ti)..
The convergence of the sequence of random sums to the 

left and the non-random variable to the right is interpreted 
as convergence by probability.

 

 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 ( 96 ) 2018

36

This confirms the assumption that a multicomponent 
orthonormal signal is a Gaussian non-stationary process 
with zero mathematical expectation and a dispersion pro-
portional to time. Realizations of the process are increas-
ingly scattered and non-reproducible with the course of 
time (Fig. 17, 18).

Fig. 17. Vector diagram of multicomponent orthogonal signal 
structures (10,000 realizations)

Fig. 18. Vector diagram of multicomponent orthogonal signal 
structures (50,000 realizations)

Signal constellations from the computer are shown for 
comparison in Fig. 19, 20.

Fig. 19. Vector diagrams of signals from 64-QAM

Fig. 20. Vector diagrams of signals from 256-QAM

To establish structural security of the developed 
signal structures, expressions describing the energy de-
tector and the cyclo-stationarity detector are used. In 
the case of detecting a single spectral component using a 
cyclo-stationarity detector, the following expressions can  
be used: 
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where Var() is the mean square deviation.
For energy detection of the signal:
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Characteristics of detecting the developed nonstationary 
signal structures are shown in Fig. 21.

Fig. 21. Dependence of the probability of detecting 
orthogonal signals and developed signal structures on S/N 
by means of the energy detector and the cyclo-stationarity 

detector (probability of false alarm, Pfa=0.1): developed 
SK SD (1); orthogonal SK SD (2); developed SK ED (3); 

orthogonal SK ED (4)

It follows from analysis of dependences shown in Fig. 21 
that in the case of energy detection, nonstationary signals as 
well as signals with any other type of modulation are equiv-
alent. It can also be seen that when using the cyclo-station-
arity detector, probability of detecting non-stationary signal 
structures is 2‒2.5 times lower compared to other types of 
signal modulation.

7. Discussion of the results obtained in the study and 
development of non-stationary signal structures

The obtained results enable growth of transmission 
security in communication radio lines by means of non-sta-
tionary signal structures in comparison with traditional 
broadband signals as to spectral and correlation analysis. 
This makes it possible to ensure transmission immunity to 
an organized noise. This is due to the fact that spectrum 
of the proposed multicomponent signal is continuously ex-
tended in comparison with the spectrum of classical LFM 
oscillation.

The study of dynamics of the multicomponent signal 
variation depending on value of the variable scaling factor, 
k, and number of the signal components N=5 has established 
limit values of these indicators. Significant complication of 
the signal structure begins to manifest itself at the scaling 
factor k=1.4 and decelerates at k=2.6. Thus, to form a mul-
ticomponent signal, it is expedient to choose value of the 
scaling factor k≈1.4‒2.6. This is of particular importance in 
development of modern military radio communication lines.
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It was proposed to provide required level of noise im-
munity through formation of non-stationary orthogonal 
signals with minimal mutual correlation. This is ensured by 
applying the Gram-Schmidt orthonormalization procedure 
to a series of multicomponent LFM signals with controlled 
spectral characteristics.

To estimate structural security of the developed signal 
structures, an analysis was made taking into account op-
eration of the energy detector and the cyclo-stationarity 
detector. It was proved that in the case of energy detection, 
nonstationary signals and signals with any other type of 
modulation are equivalent. However, when using the cyc-
lo-stationarity detector, probability of detecting non-sta-
tionary signal structures is 2‒2.5 times lower compared to 
other types of signal modulation.

The proposed methods of formation of nonstationary 
signals are the continuation of the study on construction 
of jam-resistant communication systems with noise-type 
signals designed to work in conditions of radio-electron-
ic conflict. In the proposed embodiment, it is possible 
to achieve transmission rate of up to 5 Mbit/s, which is 
acceptable for military radiocommunication systems but 
not enough for civilian ones. Further development of 
the study will be advisable in a direction of increasing 
noise immunity and transmission speed by introducing 
additional signal processing procedures, e.g. preliminary 

noise immune encoding, change of the orthogonalization 
procedure, etc.

8. Conclusions

1. It was found that complexity of irregular structure 
of a multi-component LFM signal is ensured at values of 
the scaling factor k≈1.4‒2.6 and the number of the signal 
structure components N=5. Complexity rate of the signal 
structure is slowing down at k>2.6. Orthogonalization of 
multicomponent LFM signals based on the Gram-Schmidt 
procedure is aimed at increasing transmission security 
through reduction of cyclo-stationarity in signal structures.

2. The study has revealed that potential noise immunity 
of the radio line worsens with growth of the ensemble of non-
stationary signal structures being used. This is explained by 
the fact that the energy distance between the signal struc-
tures of the ensemble decreases.

3. It was shown that the use of non-stationary signal 
structures ensures growth of structural security of signals in 
comparison with traditional broadband signals as to spectral 
and correlation analysis. When using a cyclo-stationarity 
detector, probability of detecting non-stationary signal 
structures is 2‒2.5 times lower compared to other types of 
signal modulation.
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