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Hocnioxceno 3asadozaxuuwenicmv icnyionux paodioninii 3
WYMONOVIOHUMU CULHANAMU MA YUPPOBUMU BUOAMU MOOYLSL-
uii. Ananiz nokasye, wo 3acmocy6anns maKux CueHalie 6 ymo-
8ax paodioenexmponmoz0 Konpaikmy He 0038071€ 3a0e3newumu
HeoOXiOHUIl piseHb NOKA3HUKIE 3a6ad0CMiliKOCmi ma Npuxo-
eanocmi nepedasanns paodioniniii 36’a3xy. Bemanosaeno, wo
NPUMUHOIO MOMY € HAABHICMb UUKIIOCMAUIOHAPHOCMI HECYH020
KOuBanHns 6 cuznanax 3 yudposumu euoamu mooyasuii. Taxi
8J1ACMUBOCMI CRPOWYIOMb GUABJIEHHS MA NOWYK CUZHALIE 34
00110M02010 CREKMPATBLHO-KOPENAUTUHUX Mem00i68 CYHACHUX
3aco0ie padioenexmponnoi po3eioxu npomusnuxa.

Jns eupimenmz uiei npooaemu 3anpononosano sacmocyean-
HSL HECMAYUIOHAPHUX CUZHATILHUX xoncmpyxmu 13 3MIHHOI0 UeH-
MPALHOIO0 HACMOMOI0 MA CREKMPATLHOIO winbHiCmIo nomyoic-
Hocmi. Po3po6nieno memoouxy popmyeanns maxux cCuzHAIbHUX
KoHCcmpykuiti na ocnoei npouedypu opmozonanizauii Ipama-
IlTmioma 0o ancamomo 6azamoxomnonenmuux JIIYM cuenanie 3
KepoBanumMu CneKkmpanoHUMu XapaKmepucmuKamu.

3anpononogano ouintoeamu pizui CMpYKmypu CUzHAIbHUX
KOHCMpPYKYiti 0a2amoKoOMNOHEHMHO20 CUZHATY NO (PA308UM
nopmpemam CyMapHux CuzHali6 6 3aJeHCHOCmi 6i0 3HAUeHb
Koeiyienma macumaoyseanns. Buznaueno epanuuni snauenns
Ub020 Koeiyicnma, npu axux 3adezneuyemovca YCcKAAOHEHHs
cmpyxmypu 6azamoxomMnoOHeHmH020 CuzHaALY i 3anodizaemocs
supoocenns npouecy 6 kaacuuny JIIM.

IIposedeno docnioxncenns 3minu UMOBIPHOCME CUMEOTLHOL
NOMUNKU 8 KAHAL NPU GUKOPUCMAHHI DA2AMOKOMNOHEHMHUX
0PMO2OHANLHUX CULHATILHUX KOHCMPYKUIY 6 3A1eHCHOCMI 610
cniggionowenns cuznan/mym. Lle dozsonse oyinumu nomen-
uitiny 3aeadocmiiikicmos padioninii 3a ymoeu, w0 cnigioHo-
WeHHSL CUZHAIL/WYM BUSHAUAEMBCI 34 EHEPEMUUHUMU NOKA3 -
HUKAMU PAOIOKAHANY MA CNEKMPANLHOI0 WINLHICMIO WYMiE
npuUpooH020 NOX00NHCEHH.

Cmpyxmypna npuxosanicno po3pooaeHuUx CUzZHATbHUX KOH-
CmpyKYiti OUIiHI06ANAC 34 00ONOMOZOH) eHEPLEMUUHO20 emeK -
mopa i demexmopa yuxocmayionaprocmi. Bcmanosneno, wo
npu enepzemuvHoOMy OemeKxmyeanti HeCMAUIOHAPHI CULHAIU,
aK i cuenanu 3 O0yov-axum iHwum 6UOOM MOOYAAUil, eKeiea-
Jlenmui. IIpome, npu suKopucmani 6eme1cmopa yuxaocmayio-
Hapnocmi umoezpmcmb 6UABTIEHHS HECMAUIOHAPHUX CUZHATIb-
HUX KOHCMPpYKUill 3mMenmyemocs 6 2—2,5 pa3u 6 nopiensani 3
THWUMU 6UOAMU MOOYLAUTL CUZHATIIE
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(DSSS) and /or frequency hopping spread spectrum (FHSS)

[1, 2]. Various types of digital-frequency modulation (DFM)

Broadband signals (BBS) are used in communication
lines to provide structural and parametric security. Such
signals are formed by direct-sequencing spread spectrum

are used in BBS formation: amplitude, phase, frequency or
combined modulation. However, the abovementioned mod-
ulation methods have a common disadvantage: cyclo-sta-




tionarity, which makes it possible to realize procedures for
detecting and determining signal structures [3—5].

Therefore, development of a procedure for formation of
nonstationary signal structures which will complicate detec-
tion of such signals is a topical line of study.

2. Literature review and problem statement

One of the possible ways of improving transmission secu-
rity is the use of non-positional timer signals with a variable
structure. However, this problem is not solved in full because
it is aimed at complicating solely structure of the extended
digital signal. Therefore, this line requires further studies [6].

Another option for building high-security communica-
tion systems is the use of determinate chaotic oscillations
[7]. Unlike the regular structure signals, chaotic oscillations
have an extended continuous spectrum and low spectral
power density which greatly increases complexity of identi-
fication and prediction of carrying oscillation parameters. In
addition, the use of direct-chaotic transmission can combat
multipath propagation and fading in the communication
channel. However, the use of chaotic signals in real systems
is limited because of low reproducibility and high oscillation
instability.

An intermediate position among monochromatic oscil-
lations and determinate chaotic signals belongs to signals
with an additive fractal structure. Such signals are irregular
in structure and flexible as to variation of characteristics [8].

Thus, use of aggregate signals with controlled structure
in which central frequency, fy, and spectral power density,
s(f), vary in time. Such a task can be solved by means of
multicomponent LFM signals.

3. The aim and objectives of the study

The study objective was to develop a procedure for for-
mation of nonstationary signal structures on the basis of
multicomponent LFM signals. This will make it possible to
increase security of operation of radio lines by reducing the
cyclo-stationary nature of structure of transmitted signals.

To achieve this objective, the following tasks were solved:

—to study dynamics of variation of the multicomponent
signal structure depending on the scaling factor value and ap-
ply the Gram-Schmidt orthogonalization to a set of multicom-
ponent LFM signals with controlled spectral characteristics;

— to estimate potential noise immunity of the developed
signal structures;

—to conduct a comparative analysis of structural se-
curity of the developed signal structures in relation to the
time-frequency methods of signal detection.

4. Orthogonalization of multicomponent LFM signals
based on the Gram-Schmidt procedure

4. 1. Initial data for development of signal structures

It is known [5, 9, 10] that cyclic autocorrelation function
is used to estimate correlation properties of cyclo-stationary
signals at different frequency pairs. Therefore, in order to
ensure stability of the time-frequency detection methods,
the developed signal structures must have a zero spectral
correlation function, that is, satisfy the condition:

o S oo o .
Sx (f):hmhmii XT t?f+5 T tvf_E dl’=0,

At—eoT—eo A T

P M
X, (6,f)= j x(u)e ™ du;
t-T/[2

where X7(¢) is the spectral component of the process, x(¢),
which is observed at frequency fin the band width 1/T. Also,
such signal structures should have the following statistical
characteristics:

M{x(t+To)} = M{x(t)},
R (t+T,,t)# R, (t,7). (2)

where M{x(¢)} is the mean value of the process x(¢) at time
interval ¢; Ry(¢, 1) is an autocorrelation function.

LFM signal is used as an initial signal for formation of
signal structures:

Uo(t):UO~cos(2~1t~f0-t+0.5-h~t2+¢0), 3)

where fo=0.5(f1+f3) is average signal frequency; ¢ is the cur-
rent time; fi, /o are lower and upper spectrum frequencies;
h=2n(fo—f1)7, is frequency change rate; Up, o, ¢ are am-
plitude, duration and initial phase of the signal, respectively.

4. 2. Studying the properties of multicomponent LFM
signals as nonstationary signals

Structure of a multicomponent LFM signal depends on
the zero (reference) oscillation form and the scaling factor
k which is a quantitative measure of scale invariance of a
couple of parameters of LFM oscillations being parts of the
formed signal. It is worth noting that multicomponent LFM
signals feature a hyperbolic connection between parameters.
At the same time, there is a stretch of parameters in one di-
rection (in the case considered, this is the rate of frequency
change, ~k") and compression in another direction (decrease
in amplitudes of the LFM signal components, Uyk™). Stretch
results in stochasticization but compression is necessary in
order that trajectories of the LFM signal components re-
mained in a limited region of the phase space [11, 12].

The considered laws and an expression for classical LFM
oscillations make it possible to reduce mathematical expres-
sion of a multicomponent signal to the form:

N-1
U(t)= YUy k" -cos(2:m: f,-t+0,5-h-k"-*+9,),  (4)
n=0

where Uy is the amplitude of zero (reference) LFM oscil-
lation; 7, N are number and quantity of LFM oscillations
involved in formation of a multicomponent signal. Fig. 1, 2
show respectively (in a time domain) a reference LFM
oscillation and a multicomponent signal obtained at dimen-
sionless amplitudes Uy=1 and U;=1.75; frequency deviation
Af=fo—/1=8; factor k=2 and signal duration tp=2. Current
time ¢ was taken in an interval [0, 1]. The signal (Fig. 1) is
a sum of a reference and two homeomorphic (similar) LFM
oscillations (n=0, 1, 2 are the component numbers). It can
be seen from Fig. 1 and 2 that the multicomponent signal
significantly differs from the reference LFM oscillation.
Physically, this irregularity is determined by mutual influ-
ence (interaction) of the LFM oscillations that are parts of
the multicomponent signal.

The degree of irregularity of the multicomponent signal
can be visually analyzed and estimated by the phase por-



traits given in Fig. 3, 4. They show behavior of the depicted
point in the phase plane. Phase portrait of a classical LFM
oscillation with amplitude U;=1.75 is shown for comparison
in Fig. 3. Scatter of phase trajectories (Fig. 4) and their
inverse return to the attractor (the attracting set) visually
characterizes influence of interaction of all components of
LFM oscillations and, as a consequence, the degree of ir-
regularity of the multicomponent signal. Construction of a
phase portrait (PP) of signals requires knowledge of deriva-
tive (differential) of the function U(¢) [11].
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Fig. 3. Time realization of the phase portrait of a reference
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Fig. 4. Time realization of the phase portrait of a
multicomponent signal

Next, depict LFM oscillation and a multicomponent sig-
nal in a spectral form using the Fourier transform:

05t X o,
S(f) _ (]1 . J' e.7(2~1r-(/o*/)¢+0.3.h.z )dt : (5)
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N-1 0.5t
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Fig. 5, 6 show the spectra obtained in accordance with
formulas (5) and (6). It follows from comparative analysis of
the spectra that the multicomponent signal has a continuous
extended spectrum in comparison with the classical LFM
spectrum. This extension is determined by the influence

of homeomorphic signal components which have spectrum
wider than the reference oscillation. The multicomponent
signal spectrum is frequency-shifted spectra of LFM oscilla-
tions addition of which is determined by the ratio set by the
initial model of the multicomponent signal. With an increase
in the number of components, the amplitude spectrum is
further deformed and the frequency band occupied by the
signal extends.
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Fig. 5. The reference LFM signal spectrum
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Fig. 6. The multicomponent signal spectrum

Thus, the extended continuous spectrum confirms qua-
si-randomness of the generated signal. At the same time, the
deterministic process of formation using a pseudorandom
set of linearly independent multicomponent signals enables
obtaining of a plurality of signals with different spectral
densities.

Dynamics of the multicomponent signal variation was
studied depending on value of the variable scaling factor
k and number of the signal components, N=5. Analysis of
phase portraits of the summed signals has given grounds
to conclude that a significant complication of the signal
structure begins to occur at the scale factor £=1.4. Further
increase in k leads to an even more complicated signal.
However, with achievement of £=2.6 and its further growth,
structure of both the signal and its phase portrait change
very weakly. This is due to the fact that amplitudes of the
signal components are small when their numbers grow and
values are significant, so they make a small contribution to
the structure of the summed signal. In other words, degen-
eration of the signal into classical LFM takes place. Thus,
it is expedient to choose value of the scaling factor k=1.4 to
2.6 for formation of a summed signal with a rather irregular
structure.

Analysis of time realizations and phase portraits of the
summed signal with different quantities of components at a
fixed value of £ makes it possible to conclude that structural
complexity of the signal is mainly determined by its first
three components. This is because of insignificant ampli-
tudes of the signal constituents with numbers higher than
three. When analyzing time realizations and phase portraits
of additive signals, N=3, it can be concluded that structural



complexity of the signal is determined by the first four com-
ponents.

4. 3. Formation of orthogonal signal structures

Since it is practically impossible to form an infinite series
of the function taken in the initial signal model, multicom-
ponent signal structures were studied based on a limited
number of components of the initial function. Analysis has
shown that to form signal structures, it is appropriate most
of all to use an additive set of four components. Dimension of
the multicomponent LFM space corresponds to the number
of scale factors, ky;. Taking into account the foregoing, it is
possible to form the M-th alphabet of nonstationary signals:

3
U, (t)= YUy k" -cos(2:m- f,-t+0,5-h-k"-* +0,),
7
Uy (€)=Y Uy ky " -cos(2:m fy£+0,5-h-ky" 12+, ).

n=0

An additional growth of the signal space dimension is
possible at the expense of loss of scale invariance of the lat-
ter. In this case, dimension of the set of signal structures is
(N-1)*M;

3

>U1 (O)=X U, (k& mod(k,)) " x

XCOS(Q‘TC‘fo't+0,5'h‘(k1'§j mod(kM))n'LJ +¢0)’
3 ®)
Uy (t)= YUy (ky €, mod( k,,)) " x

xeos(Z-n-fO-t+0,5-h-(kM-éj mOd(kM))”.t2 +¢0),

where &;=|¢j-M]| if &>M.

As a result of such construction of (8), frequency ar-
rangement in a series of the initial function differs from
geometric progression. However, the insignificant differ-
ence in scaling factors supposes quasi-stationarity of the
process at certain intervals of observation time. This leads
to appearance of phase relations between different signal
frequencies and can be used to obtain estimates of the
spectral correlation function in corresponding frequency
coordinates [12].

In order to eliminate this disadvantage, ensembles of mu-
tually orthogonal multicomponent signals obtained from the
m-dimensional orthonormal basis are proposed. Encoding of
the set of information characters is made using linear combi-
nations of orthogonal non-stationary signals. By definition
[13], if the random process x(¢) with a finite mathematical
expectation M{x(¢)} and continuous correlation function
Ryx(ty, to) is set in a closed interval [a; b], then there is a
complete orthonormal system of functions {u(¢)} such that

x(t)= gckuk (¢) ¢, = j.uk ()x(t)de, (k=12,...), 9)

where integrals and a series coincide at a mean value.

Thus, the random process at the output of the radio
transmitter can be represented by a set of random factors
{cg}. In particular, there exists a complete orthonormal sys-
tem up(t)=y,(¢) such that all quantities ¢, are uncorrelated
standard random quantities.

To obtain a set consisting of m orthogonal signals, con-
sider n-dimensional space R". Any point p of this space can
be represented by an n-dimensional vector which is a linear
sum of the set of orthogonal basis vectors, u;:

P=pu, + pou, + plis .+ pu,, 10)
where w;e R"; ie [1,m]; p;Vie[1,m] are valid factors.

Consider a subset consisting of m basis vectors described
by an m-dimensional subspace within the n-dimensional
space R". A series of vectors describing some hyperspace s
within an m-dimensional subspace can be represented as:

s=cu, +c,u, +cu, +...+c,u,, SER" at n=2m.

m-m? (11)

Real vectors u; can be derived from real-valued functions
Ui(t) as follows. Let wj=[uy;...ui]" and U;=Ui((j-1)T+t;) where
jell,n], ie[1,M], t; is the current sampling time at the point
of each vector and T is sampling period. For convenience,
write it as matrix U=[uy..up] where UeR™. In practice,
the signal u; vector can be generated by discretization of the
real-valued function U;(¢). Thus, the problem is reduced to
constructing a set of real values of orthogonal vectors ue R"
(where ie[1, M]) capable of generating a set of orthogonal
functions in real time in the interval U;Vie[l, M|, te[0,nT].
A set of such functions can be obtained using the Gram-
Schmidt orthogonalization procedure for a system consist-
ing of M linearly independent vectors. It should be noted
that correspondence of the value of dimension #n to restric-
tion n>M is the mandatory condition for constructing an or-
thonormal system with M linearly independent signals taken
from the orthogonal basis of the functions U;Vie[1, M].

The Gram-Schmidt orthogonalization procedure for an
ensemble of signals {U;(?), i=1, 2,..., M} of duration 1. with
energy {E;, i=1, 2,..., M} can be represented as follows [13]:

]/1(?’[1'): U1(nT),

u, (nT):L (o)

\/ig; )
y,(nT)= UM(nT)_A§<ui(nT)yUM(nT)>

= (w.(nT),u,(nT)) (D),

_ Yy (nT)

T

A message transmitted in radio lines is encoded using
linear combinations of orthogonal functions:

uy (nT)

(12)

s(t) = cu, (£)+ cyuy (B) + cqu, (B) + ...+ ¢ty (B), 13)
or in a shorter vector representation:
s()=u"(t)e, u' ()= [u,(0),u,(0),us(t), oty ()], (14)

whereuTis the orthonormal system of vectors; ¢T(¢)=[cy, ¢a,
C3,... €] is a linear combination of message characters.

In the process of receiving information symbols, receiver
of the radio line determines factors of each orthogonal com-
ponent by computing M correlation integrals:

15 .
¢ =ﬁ£s(t)ui(t)dt Vie[t,M], (15)



(16)

1T
P —
l T-([u (t)dt,

which can be represented in an equivalent vector representa-
tion with taking into account (15) and (16) as follows:

];u(t)s(t)dt
S B A7)
Juu’ (6)dt

Expression (17) is valid for any orthogonal set of signals.
Distinctive feature of this system consists in that signals
can be transmitted sequentially via a separate channel and
simultaneously via all channels. The system throughput will
be determined by dimension of the ensemble of orthogonal
signal structures. Fig. 7 shows a diagram of an orthogonal
multi-component signal shaper.

These probabilities are the same for m=2, 3,..., M, that
is, the cumulative probability (the probability of correct
receival) is defined as:

r=]| 5

M-

11y2/Ny [,ﬁ]

ax p(n)dr,. (20)

Thus, probability of a character error in a radio channel

can be defined as in [14]:
1 4 & o - 2
2, =1- P—\/__[ (\/E_J;e de] e [ \/7] dy. (21)

Fig. 8 presents results of numerical simulation of a char-
acter error from the signal-to-noise ratio (S/N).
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Fig. 7. Block diagram of a shaper of multi-component orthogonal signal

structures

Generator of multicomponent signals generates a set
consisting of M additive LFM signals. Each signal consists
of a set of components obtained from initial oscillation at dif-
ferent scaling factors . Choice of components of the summed
oscillation is made according to the pseudorandom law with
the help of a control parameter ;. Digitized signal samples
are orthogonalized using the Gram Schmidt procedure and
arrive at the modulator.

5. Estimation of potential noise immunity of radio lines

Let us calculate potential noise immunity of radio
lines as a probability that the system detector performs an
optimal signal receival. For orthogonal signals of equal en-
ergy, optimal detector will select a signal that will have the
greatest correlation with the received signal s and each of M
possible signal vectors {u}, that is:

M
C(s, um)=s~um =;sk~umk,
=1

m=12,..., M. (18)

Since the probability density functions at the output of
correlators, {r,}, are statistically independent, the common
probability density will be determined by the product M-1

of the proper probabilities of the form:

p(n, <n|n)

fo e ]

Fig. 8. Noise immunity of radio communication
lines with the use of developed signal structures

The firm curve shows the lower limit for probability of
a character error when two signal structures are used. The
dashed line represents maximum achievable (in terms of
practical implementation) value of probability of a character
error when using 1024 orthogonal signal structures. Ex-
pression (21) allows one to estimate noise immunity of the
radio line in idealized conditions when the S/N is completely
determined by energy indicators of the radio channel, E, and
the spectral density of the noise of natural origin Ny. In most
practical applications, it is advisable to consider both noise
immunity and security of radio lines [15].

6. Analysis of structural security of the developed signal
structures and signals with digital modulation types in
relation to the time-and-frequency methods of signal
detection

The radio line security can be quantified by the proba-
bility of signal detection. The algorithm of searching for the
spectral harmonic corresponding to the symbol frequency
can be described as follows. The band which is determined
by the formula (22) is only taken for analysis in the signal
spectrum at the output of a nonlinear operator. A spectral
component with maximum amplitude and an extreme right
harmonic whose amplitude exceeds 0.258,,x are sought in
this band. The value of the latter frequency is taken as an
estimate of symbol frequency.

Figs. 9, 10 show dependence of probability of correct recog-
nition, P 16-PSK and 128-QAM using common phase con-
stellation and combination of the common phase constellation



with its squared variant. It can be concluded from analysis of
the dependences depicted in Fig. 9, 10 that application of expo-
nentiated variants of phase constellations can significantly im-
prove probability of correct recognition of modulation type in
arange of low S/N values. For example, probability of correct
recognition of 128-QAM at S/N 8dB increases from 0 to 0. 98.
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Fig. 9. Probability of recognition of signals from 16-PSK
using a squared constellation: for combined phase
constellations (- - -); for ordinary phase constellations (— —)

Calculation of the spectrum width is realized in the fol-
lowing way. Amplitude-frequency spectrum is calculated
by means of a fast Fourier transform. An example of such
a spectrum for a signal with an eight-fold PSK is shown
in Fig. 11. To reduce influence of fluctuations of spectral
harmonics on accuracy of the spectral width measurement,
arithmetic averaging of amplitudes of neighboring harmon-
ics was used:

kN
S.(kF)= 2¥, (22)
n=k

where N is the number of read-outs taken for averaging. An
example of the averaged spectrum is shown in Fig. 12.
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Fig. 10. Probability of 128-QAM signal recognition using a
squared constellation: for combined phase constellations
(- - -); for ordinary phase constellations (— —)

Spectrum width, Afy, is calculated as a difference in fre-
quencies of spectral components of the smoothed spectrum
that exceed the value of the set threshold, S, to the right
and left of the central value of frequency f( calculated by the
following expression:

2SS

YIATAR @

fro =

where S.(f;) is amplitude of the spectral harmonic corre-
sponding to frequency f;.
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Fig. 11. Initial amplitude-frequency spectrum of the received
8-PSK signal
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Fig. 12. Averaged amplitude-frequency spectrum of the
received 8-PSK signal

The calculated value of the spectrum width, Af,, is taken
as the central value of frequency of the band of spectral peak
search which corresponds to the symbol frequency. The con-
ducted studies with simulated and real signals show that the
spectral harmonic corresponding to the symbol frequency is
within the frequency band in a vast majority of cases:

Ag"o WA+ Aoy .

; (24)

Afco -

Thus, a harmonic of symbolic frequency will be sought
solely within the band defined by expression (24). In most
cases, the harmonic corresponding to the symbol frequency
has maximum amplitude, S, in the signal spectrum from the
output of the nonlinear limiter (Fig. 13). This fact is used for
its search in existing algorithms of symbol frequency estima-
tion. This enables analysis and classification of signals, even
in the case of low S/N and strong signal distortion. There-
fore, application of spectral-correlation analysis methods is
most appropriate currently (Fig. 14).
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Fig. 14. Spectrum of the module of the aggregate amplitude of
the signal distorted by influence of the propagation medium

The performed simulations show that the spectral com-
ponent of the symbol frequency is the extreme right harmon-



ic in the spectrum of the signal with amplitude greater than
0.258 125 Where Spax is the maximum amplitude in the signal
spectrum. The cyclo-stationarity detector can be described
in general by the following expressions:

M{s(tl) Il\lillNZsk (27)

and

R, (t,t,+71)=lim—

N~>o«

Zsk ()5, (¢, + 7).

(28)

Let us analyze spectral correlation functions (Fig. 15, 16) of
a classical broadband phase-modulated signal and a non-sta-
tionary signal. Obviously, the developed structures qualita-
tively differ from classical broadband signals. This makes it
possible to increase security of information transmission via
radio lines on the basis of spectral and correlation analysis
of signals.

In the general case, when the process is non-stationary,
the values

M{s(z }—lvlglNZSk (27)

and

R (t,t, +7)=1lim—

ZsA (t,)s, (¢, +7)

(28)

are not invariant with respect to the transfer of moment
ty [16]. For any t=t;, probability density of such a process
p(s, t1) is described by the expression

P[s<s <s+As]

p(s.t,)=1lim (29)
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Fig. 15. Spectral correlation function of a binary PSK signal
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Fig. 16. Spectral correlation function of non-stationary signal

Let us determine signal at the output of the radio line
transmitter through a Gaussian stationary process n(t) with
a zero mathematical expectation and a deltoid correlation
function

s(0)= [n(x)de, (30)
E{n(t)}=0, (31)
R(t,-1,)=(Nj)5(e,-1,). (32)

According to [16], if the initial process is expressed
through the Gaussian by means of a linear transformation,
then it is Gaussian as well. According to (31), mathematical
expectation, dispersion and correlation function of this pro-
cess are described as follows:

Efs()}=0, (33)
= ij{n(T1)n(T1)}dT1dT2 = %t, (34)
tz)=ﬁE{"( (v)}drdr, = (t t,). (35)

t b

Define properties of increments in the intervals that
do not intersect (¢3>to>t1) from an it follows from obvious
equality

(36)

that the mathematical expectation is zero and the dispersion
of increments is proportional to the difference between the
moments of time:

M{[s(t2)—s(t1)]2}= 1%([2 —t1), 1>

Mutual correlation of the function of increments using

(35) is defined as

M{[S(IB)_S(tz)][s(fz)—s(t1)]}=

= Rs(ts’tz)_Rs (tz’tQ)_Rs(tsyQ)"’Rs (tz’t1):0'

(37)

(38)

Thus, the process increments, s(¢) in non-overlapping
time intervals are uncorrelated, and given normal distribu-
tion, they are independent which should have been proved.
In addition, the process increments can be called stationary
since their mathematical expectation is zero and disper-
sion is proportional to the difference between the time
moments. The following formula is a direct consequence of
these features:

m—1
lims,, =1A1£%;[s(t2)— (39)
where t)<t;<..<t,,<t, A=max(tj1—t;)..
The convergence of the sequence of random sums to the
left and the non-random variable to the right is interpreted
as convergence by probability.



This confirms the assumption that a multicomponent
orthonormal signal is a Gaussian non-stationary process
with zero mathematical expectation and a dispersion pro-
portional to time. Realizations of the process are increas-
ingly scattered and non-reproducible with the course of

time (Fig. 17, 18).
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Fig. 17. Vector diagram of multicomponent orthogonal signal
structures (10,000 realizations)
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Fig. 18. Vector diagram of multicomponent orthogonal signal
structures (50,000 realizations)

Signal constellations from the computer are shown for
comparison in Fig. 19, 20.
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Fig. 19. Vector diagrams of signals from 64-QAM
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Fig. 20. Vector diagrams of signals from 256-QAM

To establish structural security of the developed
signal structures, expressions describing the energy de-
tector and the cyclo-stationarity detector are used. In
the case of detecting a single spectral component using a
cyclo-stationarity detector, the following expressions can
be used:

5
2

2, (N)= [ SU(f) S, (40)
d:E('Zsp‘[—11)-}3(250‘[—10)7 (41)
WVar(z, | H,)
where Var() is the mean square deviation.
For energy detection of the signal:
J(0)- d()SNR AN “2)

1+GN(1+%N)

Characteristics of detecting the developed nonstationary
signal structures are shown in Fig. 21.
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Fig. 21. Dependence of the probability of detecting
orthogonal signals and developed signal structures on S/N
by means of the energy detector and the cyclo-stationarity

detector (probability of false alarm, P;,=0.1): developed
SK SD (1); orthogonal SK SD (2); developed SK ED (3);
orthogonal SK ED (4)

It follows from analysis of dependences shown in Fig. 21
that in the case of energy detection, nonstationary signals as
well as signals with any other type of modulation are equiv-
alent. It can also be seen that when using the cyclo-station-
arity detector, probability of detecting non-stationary signal
structures is 2-2.5 times lower compared to other types of
signal modulation.

7. Discussion of the results obtained in the study and
development of non-stationary signal structures

The obtained results enable growth of transmission
security in communication radio lines by means of non-sta-
tionary signal structures in comparison with traditional
broadband signals as to spectral and correlation analysis.
This makes it possible to ensure transmission immunity to
an organized noise. This is due to the fact that spectrum
of the proposed multicomponent signal is continuously ex-
tended in comparison with the spectrum of classical LFM
oscillation.

The study of dynamics of the multicomponent signal
variation depending on value of the variable scaling factor,
k, and number of the signal components N=5 has established
limit values of these indicators. Significant complication of
the signal structure begins to manifest itself at the scaling
factor £=1.4 and decelerates at k=2.6. Thus, to form a mul-
ticomponent signal, it is expedient to choose value of the
scaling factor k#=1.4-2.6. This is of particular importance in
development of modern military radio communication lines.



It was proposed to provide required level of noise im-
munity through formation of non-stationary orthogonal
signals with minimal mutual correlation. This is ensured by
applying the Gram-Schmidt orthonormalization procedure
to a series of multicomponent LFM signals with controlled
spectral characteristics.

To estimate structural security of the developed signal
structures, an analysis was made taking into account op-
eration of the energy detector and the cyclo-stationarity
detector. It was proved that in the case of energy detection,
nonstationary signals and signals with any other type of
modulation are equivalent. However, when using the cyc-
lo-stationarity detector, probability of detecting non-sta-
tionary signal structures is 2-2.5 times lower compared to
other types of signal modulation.

The proposed methods of formation of nonstationary
signals are the continuation of the study on construction
of jam-resistant communication systems with noise-type
signals designed to work in conditions of radio-electron-
ic conflict. In the proposed embodiment, it is possible
to achieve transmission rate of up to 5 Mbit/s, which is
acceptable for military radiocommunication systems but
not enough for civilian ones. Further development of
the study will be advisable in a direction of increasing
noise immunity and transmission speed by introducing
additional signal processing procedures, e.g. preliminary

noise immune encoding, change of the orthogonalization
procedure, etc.

8. Conclusions

1. It was found that complexity of irregular structure
of a multi-component LFM signal is ensured at values of
the scaling factor £=1.4-2.6 and the number of the signal
structure components N=5. Complexity rate of the signal
structure is slowing down at £>2.6. Orthogonalization of
multicomponent LFM signals based on the Gram-Schmidt
procedure is aimed at increasing transmission security
through reduction of cyclo-stationarity in signal structures.

2. The study has revealed that potential noise immunity
of the radio line worsens with growth of the ensemble of non-
stationary signal structures being used. This is explained by
the fact that the energy distance between the signal struc-
tures of the ensemble decreases.

3.1t was shown that the use of non-stationary signal
structures ensures growth of structural security of signals in
comparison with traditional broadband signals as to spectral
and correlation analysis. When using a cyclo-stationarity
detector, probability of detecting non-stationary signal
structures is 2-2.5 times lower compared to other types of
signal modulation.
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