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Pospobnerno cmoxacmuuny modens pobomu cucmemu ynpasuinus
3anacamu mamepianie nHa cyonopemonmuomy 3aeodi (CP3). 3 memoro
8paXYEaAHHS MUHHUKIE HEBU3HAMEHOCMI ma pu3uKy (6unadxosi momen-
mu npudymms na CP3 cyoden, eunaoxosi posmipu 06cszie pemonmie)
011 MO0eN06aHHsI 3ANPONOHOBAHO GUKOPUCMAMU anapam Maproe-
coKux npoyecis 3i 3necenusam. Ili npoyecu dozsonstoms epaxyeamu ouc-
Kpemnuil xapaxmep 3min uucevHocni cyoen, sxi snaxooamocs na CP3,
ma Gesnepepenuii xapaxmep KoJIUGAHH PiGHA 3anacie mamepianie Ha
ckaadi. Ilpu yvomy npunanu CP3 inmepnpemyiomvcs K cucmema Maco-
6020 obcayeosysanns. Beajcaemvcs maxodc, wo nonosnenns zanacie
Mamepianie Ha CKAA0I Ma BUKOPUCMANHA ni0 uac pemonmy cyoen 30iiic-
HI0EMbCA Ge3nepepeno 3 NOCMIIHUMU THMEHCUBHOCMAMU, AJle 6 3aTleC-
Hocmi 610 Has8HOCMI Mamepianie Ha ckaadi. B pezyavmami docaidsicenns
chopmynvosana 3a0ana cmMoxXacmuvHoi onmuMi3auii inmeHcueHocmeu
NONOGHEHHS 3ANAcCi6 Mamepianié 3a Kpumepiem MIHIMYM CYMAPHUX
cepednix nomounux eumpam CP3, sxi épaxoeytoms maxoxc eumpamu,
wWo cmocyomvCcs 000amK06020 NPOCMOI0 CYoen 6HACTIN0K 6i0cCymHocni
3anacis mamepianie nHa ckaaoi nio wac npoeeodeHHs pemonny.

Moodenv 3acnosano na cnoayuenni memooie meopii 3anacie i meopii
Macosoz20 oocayzosyeanns. Ilonosnenns anacie mamepianie na cknaoi
ma ix euxopucmanns 30iliCHI0EMbCA 0e3nepepPeHo 3 NOCMIUHUMU THMeH-
cusnocmamu. CPopmynboeano 3a60anHs CMoOXacmuyunoi onmumizayii
iHmencueHoCmell NONOBHEHHSL 3ANACI6 Mamepianie 3a Kpumepiem MiHi-
MYM CYMapHux cepeonix eumpam 3aeody 6 odunuuio uacy. /loeedeno,
Wo ompumani pezyavmamu GajNCAUSL Ol NPAKMUKU POOOMU CIYdiC-
ou nocmavanna CP3, ockinvku 00360ns10mv popmyeamu cmpamezito
ynpaeninna 3anacamu mamepianié nac ckaadax CP3 6 ymosax nepis-
HOMIPHOCMI Y MACY BUHUKHEHHA nompeOu Y pemonmi cyoen. 3 meopemu-
HOI mouKu 30py 00epIHCami pe3yibmamu OeMOHCMPYIOMb MONHCAUBICMD
BUKOPUCIMAHHS ANAPamY MApKOBCLKUX NPOUECI8 31 3HECEHHAM 0TSt BUPI-
WeHHSsL PI3HUX 3A60aHb ONMUMATILHOZ0 YNPABIIHHS 3ANACAMU 6 YMOBAX
6UNA0K06020 NONUMY HA 3anaAcu

Kmouosi cnosa: cyonopemonmnuii 3a600, cucmema mMacogozo 00cuy-
208YBaHHS, 3aNACU MaMepianie, PusuK nNPocmor CyoeH, ONMUMAIbHe
Ynpasainus 3anacamu
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1. Introduction

2. Literature review and problem statement

Ship repair is a complex and low mechanized industrial
sector. Ship repair yards (plants) perform a dock repair, as
well as repair of bottom-overboard fittings, pipelines, pro-
peller-rudder system, they replace hull’s steel structures,
they manufacture fuel equipment for ICE, spare parts for
ship equipment and devices, etc. If the repair involves a
significant amount of work, an industrial method is applied,
based on specialization and cooperation of the repair base,
zero stage, aggregate method of repair, automation and inte-
grated mechanization.

Management team at SRY must be able to effectively
manage under critical conditions, to adapt to changing
market conditions [1], and strive to minimize possible risks.
This requires the application of scientific methods for mak-
ing decisions on inventory management under conditions
of uncertainty and risk, accounting for competition, as
well as advances information technologies. That gives rise
to many new, non-standard scientific tasks because classic
models, constructed to study operations, do not take into
consideration at all, or to a less degree, the specificity of SRY
functioning as a specialized enterprise, as well as its behav-
ior under market conditions. The above necessitates further
research in this field.

In paper [2], authors performed an analysis of ship repair
market and concluded that small ship-repairing companies
increasingly win bids for the repair of ships in Ukraine. The
reason for this relates to the fact that large SRY have higher
overhead costs, while the lowest price on repair, without
compromising its quality, is typically a key requirement from
the commissioner. Study [3] suggested an approach to im-
prove effectiveness of managing a SRY, based on the project
management methods. Work [4] proposed an entropic model
of risk management during implementation of ships repair
projects, while paper [5] devised principles for building a
risk-oriented strategy to maintain and repair ships. Study
[6] suggested a procedure to construct probability trees and
to calculate the ratios of probability derivation in order to
analyze various organizational and technical tasks in ship
repair under conditions of uncertainty and risk. However,
the approaches, applied in [3—6], do not take into consider-
ation the dynamics of change in the production situation at
SRY, the stochastic character of arrival of ships at SRY, and
fluctuations in the volumes of their repair.

Papers [7—11] propose a series of simulation schemes for
production processes at SRY, whose implementation could
improve the organization of repair operations. Thus, work




[7] suggests a simulation model in terms of discrete events
in order to plan and manage the utilization of technological
equipment at SRY and supplies of materials to it. In this
case, the model takes into consideration the possibility to
perform a sensitivity analysis of plans if the initial data
changes in the process of implementing plans, which makes it
possible to improve equipment utilization. At the same time,
the issue related to the supply of materials for repairs was not
considered in [7]. In [8], authors propose a decision-making
system for operational planning in order to maximize the
throughput capacity of SRY and to minimize complete
production costs, which helps to avoid internal competition
between cost centers at a plant and to improve hardware
utilization. Underlying this system is the construction of a
common information base to be accessed by all departments
at a plant. Paper [9] designed a multiagent information sys-
tems (Multi-Agent System) in order to model technological
processes in ship repair, which makes it possible to integrate
data flows, business processes, and financial flows. However,
the issues related to predicting the repairs at SRY based on
a given information base have not been addressed in [8, 9],
which limits the scope of application of the specified infor-
mation system.

Production activity of SRY, similarly to that at any in-
dustrial enterprise, requires, in order to perform ship repairs,
different types of materials and components. Demand for
these materials occurs when repairs are performed on the
ships in docks at SRY, that is, generally speaking, at random
time. Therefore, in order to effectively handle inventories
of these materials, it is expedient to employ methods from
the theory of inventory control under conditions of random
demand. This area of inventory control theory has inten-
sively developed over recent decades. For example, paper
[10] examines the model of inventory control in which the
time required to execute an order for replenishment is set,
while the demand for products is subject to the log-normal
distribution. It is unclear, however, how to manage inventory
by applying this model if demand is described by any other
probability distribution. Work [11] analyses the problem
on defining an optimal replenishment policy for perishable
products with a backlogged demand and adjusted for infla-
tion. In this case, a change in the discount factor is described
using a Markovian process. However, this approach is not
applicable in a situation when the demand itself fluctuates
randomly. Study [12] provides a series of classic models for
the optimal inventory control at random demand; they, how-
ever, do not take into consideration the dynamics of change
in the fluctuations of stocks over time, thereby reducing
their practical significance.

Formally, any SRY could be represented in the form of a
multi-channel queueing system (QS), in which the requests
for service are the ships themselves with a certain set of
repair operations of several types, while the servers are the
wharves and docks together with the required equipment.

Even though the queueing theory — QT — includes at
present a large number of models for different QS [13], the
specificity of individual types of industries still necessitates
the construction and investigation of specialized new models.
Such systems could certainly include SRY, at which the above
specificity manifests itself in a simultaneous description of the
production process (arrival of ships and their repair) and the
process of materials supplies for conducting repair operations.

At the same time, there is an obvious lack of studies that
would address the interaction between a process of a ship ar-

rival and the repair process, on the one hand, and the process
of replenishment and consumption of materials, required to
execute repair operations, on the other hand. Such a research
is necessary to improve operational effectiveness of SRY and
to reduce the risk of vessel idling during repairs due to a
shortage of materials needed for repairs.

It is known [13] that the construction of mathemat-
ical models for QS has commonly employed the appara-
tus of Markov random processes with a discrete set of
states. However, in certain cases, an equally convenient
type of the Markovian random processes are the so-called
Markovian drift processes. Markovian drift processes are
now widely applied in order to model and analyze various
logistics systems [14—16], as well as transportation systems
[17]. The phase space of such processes represents a direct
product of discrete and continuous sets. From an applied
point of view, a discrete set describes the dynamics of QS
states, defined by discrete variables (the number of ships at
docks and in queues to them), while the continuum set can
describe, for example, a fluctuation of inventory levels at a
warehouse over time. This circumstance makes it possible
to state and solve a variety of tasks on optimal inventory
management under conditions of uncertainty and risk.
This approach could be used in order to solve the problem
related to examining an influence of the level of materials
stocks at SRY on the dynamics of change in the number of
vessels at the yard, and to the construction of an optimi-
zation method for the replenishment policy regarding the
specified stocks.

3. The aim and objectives of the study

The aim of this study is to state mathematically, and
solve, the problem on the optimal inventory control over
materials required to repair ships, under conditions of uncer-
tainty about the time of ships arrival at SRY and the volumes
of repair operations.

To accomplish the aim, the following tasks have been set:

—to provide a formalized description of SRY in terms
of QT and a stock theory, taking into consideration the
non-uniformity in ships arrival for repairs and different
volumes of repair operations, as well as the consumption of
materials, based on the application of an appropriate Marko-
vian drift process (or with “speeds”);

— to derive a system of integral-differential equations for
the described probabilistic model of SRY in order to find the
joint distribution of the number of ships at docks of SRY un-
der repair and in queue side by side the quantity of materials,
components, which are at a SRY warehouse;

— to find, based on the obtained solution:

a) analytical expressions for calculating key performance
indicators of SRY as a QS and to estimate average operating
costs of SRY for the repair of ships, as well as the costs in-
curred because of the exhaustion of supplies in warehouse;

b) to construct a model for the stochastic optimization of
intensities in the replenishment of materials stocks.

4. Formalized description of SRY in terms of
the queueing theory and the theory of stocks

We shall consider SRY that is simplistically described by
the following constituent elements:



a) a warehouse for storing M types of materials required
for the execution of repair operations;

b) a stock of material of the m-th type, replenished con-
tinuously, at intensity U,;

c) the market of materials suppliers is unlimited,;

d) the cost of materials delivery per unit time is propor-
tional to the intensity of the replenishment of a material;

e) each ship, arriving at SRY, requires for her repair
a random quantity y, of a material of the m-th type, that
is, repair of each ship, regardless of other ships, requires a
random vector of materials (yi, ys,..., yar). For simplicity, we
shall assume that all these random variables are mutually
independent, and

Py, <x}=G, (x); )

f) in the process of carrying out repair operations in line
with the assigned technology, the intensity of utilization of a
material of the m-th type is equal to W, >U,,;

g) each arriving ship takes one of #n unoccupied identical
and interchangeable docks at SRY, if any; otherwise, it fol-
lows the queue to docks; in this case, vessel queue length is
limited by the value R.

As regards the above assumptions, the following note
should be made.

The modern theory of inventory management considers
models with different replenishment policies [12]: contin-
uous replenishment, replenishment by fixed-size batches
based on orders, on the current level of existing stock at
a warehouse, on the level of demand, etc. Here, only one
policy is considered, namely continuous replenishment. This
assumption means that restocking is very common, but in
relatively small batches; therefore, it could be assumed that
the replenishment is performed approximately continuously
over time.

Inventory control theory often employs a feedback be-
tween a replenishment strategy and the current inventory
level. The described modeling scheme allows a situation
when, during ship repair, an inventory level of any material
(for example, the m-th) is exhausted. In this situation, we
shall assume that the repair of the ship continues, but the
intensity of stock replenishment (and applying this type
of a material to perform repair operations) becomes equal
to Uy, =U,. Specifically, it could be equal to the intensity
of utilization of a material of the m-th type W, or remain
equal to U,. In the second case, it is obvious that the repair
time increases, which could lead to penalties claimed by the
shipowner against SRY.

Note that since a repair ends when all M types of oper-
ation have been executed, then, provided that all work is
performed in parallel, repair time T of an arbitrary ship is
equal to

T=max L,...,Y—M .
W Wy,

Hence, from (1), it follows that a repair time of arbitrary
ship is a random variable with the distribution function

P{1<t)=G,(Wt)..G, (W, t)= B(t).

These dependences will hold if, during repair of a ship,
not such a situation occurs when a warehouse runs out of

stock of at least one type of a material used to repair the ship.
We shall address a situation below when the exhaustion of
materials stocks is possible; we shall examine in detail the
two kinds of stock replenishment strategies when a ware-
house is empty, namely:

a) U0m=Uma
b) Ugm=Wi. (2)

For the case a), there is a risk for an additional downtime
of the ship under repair due to a decrease in the intensity
of stock replenishment; for case b), there will not be ship
additional idling.

The ultimate purpose of constructing the described
SRY model is to state and solve the problem on finding the
optimal values Ui, Us,..., Uy, characterizing the process of
materials stocks replenishment at a warehouse, in line with
some economic criterion for optimization.

5. Derivation and analysis of the system of differential
equations and boundary conditions for finding
a stationary joint distribution of the number of ships at
SRY and the quantity of materials in stock

We assume that ships arrive at SRY at random points in
time, with their flow described by a model of the homoge-
neous Poisson process with parameter A. We accept that the
random variables y,,, m=1, 2,..., M are distributed according
to exponential laws with average values g, m=1, 2,.., M. We
introduce the following conditional designations: v(¢) — the
number of ships at SRY at time ¢; Z,,(¢) — inventory level of a
material of the m-th type in warehouse at time ¢.

For simplicity, we shall assume that the storing capacity
of a warehouse is large enough, that is, we disregard a possi-
bility to fill the warehouse to capacity.

Given the above assumptions, the random process (v(¢);
Z4(0),..., Zp(t)) is a Markovian vector drift process. To find the
limit probability distribution of this process, it is possible, in
principle, to derive an appropriate system of differential equa-
tions in partial derivatives, as well as the boundary conditions.

For arbitrary M, however, the mentioned system of equa-
tions is too cumbersome and difficult to solve. Below, we give
it for particular cases M=1 and M=2, and n=1, that is, for a
single dock.

Case M=1. Denote

q,(x)=lim,__P{x<Z(t)<x+dx}/dx,

ke F={01,.R+1),

pr=lim,__P{Z()=0v(t)=k), ke F\{0}.

In order to determine these functions and constants
using the method given in paper [18], it is possible to derive

the following system of ordinary differential equations and
boundary conditions:

Uy (x)==Agy (x) +ng, (x),
“Vgi(x)==(A+1)q,(x)+Ag,_, () +1g,., (x),

i=12..,R,



VG (X)=—UG g, (¥)+AGp (x), x>0, (3)
—W,p; +U4,(0)=0,

~(A+p,) pr + 1Py +V4,(0)=0,

~(M+u,) P+, P+ AD, +VG,(0)=0, i=23,.,R,
~HDrs + Mg + Vi (0)=0, *)

where u=W,/g, w,=U,/8 V=W-U, Ujequals Uor W
(see (2)).

The normalization condition for the system of equations
(3) and (4) takes the following form:

R+t R+l
S+ [a(x)de=1. ®)

Solving a boundary problem (3)—(5) implies certain
computational challenges. The standard method to solve it
is based on the application of the Laplace transform to the
system of equations (3)—(5) and subsequent determining
the constants

pr,i=12., R+1.

As a result of solving it, one could find the basic perfor-
mance indicators for the described inventory control system,
namely:

a) the average quantity of a material in stock at any mo-
ment of time:

MZ = ng q,(x)dx; (6)

b) the probability of additional stay of a ship under repair
due to the lack of a material in stock (for case Uy=U):

R+1

dU)=%p.. @

6. Statement of a problem on the stochastic optimization
of intensities in material stock replenishment

By using indicators (6), (7), it is possible to state a
problem on the parameter U optimization, characterizing a
material replenishment policy at SRY warehouse. An opti-
mization criterion could be the minimum of average sum-
mary costs of SRY per unit time. For case Uy=U, these costs
are related to a material stock replenishment, its storage at
a warehouse, as well as fines for additional stay of repaired
ships due to the lack of a material in stock. The analytical
expression for these costs takes the following form:

SWU)=aU+cMZ+c,d(U), 8)

where a is the cost per unit of a material; ¢y is the daily cost
of storing a unit of a material at a warehouse; ¢ is the penalty
per unit time for an idling ship due to the lack of a material
at a warehouse.

For case Uy=W, the specified costs could be represented
as follows:

§(U)=a[w'§1 p;+U(1—R§+1 p,-11)]+clMZ. 9)

Note that the multiplier at parameter a in the right-
hand side of (9) defines the average intensity in stock
replenishment.

Consider in detail a special case when R=0. In this case,
system (3) takes the following form:

Ugy (x)=—Aqy () +ug, (x),
—qu(x) =—(A+u)q, (x)+ Aq, (x), x>0,
-u,p; +Ug,(0)=0,

—,p; +Vg,(0)=0,

pr+ (@ G+ @) =1. (10)

Summing the first two equations from system (10), fol-
lowing the integration, we obtain equality

qu(x)qu1 (x),xZO, 11)

thus, for example, the first equation from system (10) could
be disregarded.

A solution to the system of equations (10), (11) is easily
derived via direct integration and takes the form:

9 (%)=, (0)e™,

5:&_E>0,
U v

_ wQAV-ul)
W= [ —n0)+wu 0

(12)

U AW =+ W)U
y =—q,(0)= .
T = oW —ur 0

Formulas (12) are valid only under condition

&>L or
U w-u

AW
Ap’

which is required for the existence of the steady-state op-
eration regime of the analyzed inventory control system.
Meeting it prevents the accumulation of too many materials
at warehouse over time.

By using ratios (11), (12), we obtain

MZ = Ix(qo(x)+q1(x))dx = kg[?»WLYl(];+u)U]' (13)
for case Uy=U and
MZ = [ 2(q,()+ ¢, (1)) =
WUV (1)

W = (e U T[AW = (o gl + W7

for case Uy=W.

Thus, taking into consideration (12), (13), for the replen-
ishment strategy Uy=U, an explicit expression for objective
function (8) takes the following form:



s wuU?

AW —(A+ W)U
MW-U)

S(U)=aU +¢, 15)

+c,
AW —(A+)U]

It is easy to see that the second term in the right-hand
side of expression (15) increases, while the third one decreas-
es with an increase in U. Thus, function (15) indeed reaches a
minimum at some positive value for parameter U.

For case Uy=W, an explicit expression for objective func-
tion (9) takes the form:

W (W-U) y
A+ W)W —(A+p)gU

uw
AW - +)U |

E(U):(

><|:a7»g +c (16)

where u=W/g.

Note that, instead of criterion (16), one could consider
other optimization criteria, for example, an average current
profit of SRY from repair operations, which could be repre-
sented as follows:

_ o(t)
n(U):(ng yn)/t—aU—clMZ—czd(U), A7)

where @(¢) — the number of ships whose repair was finished
in a time interval (0, ©); (b) is the income received by SRY
per unit of a repair operation. One could demonstrate by
applying the methods of queueing theory that under a steady
(statistically equilibrium) regime

o(t) Rl Riles
M7, =gt(u1 Lip; +ux glqi(X)dx)y
therefore, expression (17) takes the form:
- R+1 R+1 o
nu)= b(UZ ip; + WY, i[q,(x)dx)—
i=1 =1 0

—aU —cMZ -¢,d(U). (18)

7. A case of several types of materials

Let M>1 and we assume that different types of ship
repair operations are performed separately, that is, there are
consistently executed operations of the first type of repair,
the second, and so on. In other words, each type of repair
operations is not performed in parallel. We denote Upy,,=U,,.

Here, we must introduce new designations:

Z,(t) — stock level of materials of the m-th type, which
are at SRY warehouse at time ¢;

v(t) — the number of ships at TSE at time ¢;

o(t) — the number of the type of repair performed at time z.

Hereafter, we shall confine ourselves to case M=2. De-
note

qo (2, Xy )dx dx, = P{v(t) =0,
X, <Z, () <x,+dx,x, <Z,(t) < x,+dx,},

G (1, %530 ), doc, = P{V(E) =
=ko(t)=mx, <Z () <x +dx,,

X, <Z,(t)<x,+dx,},

k=12,...,R+1m=1,2x,x,>0;
G (xy;)dx, =P{v(t) =k, o(t)=1, Z(t)=0,
x, <Z,(t)<x,+dx,}, x,>0,

Qi () de, = P{V(L) = b, olt) =

=2,x,<Z(t)<x,Z,(t)=0}, x,>0.

(19)

Of interest is the limit probability distribution (19) as
t = oo, which is denoted:

Go(Xp X))y QX %5), (%), G (X))-

To find the specified distribution using a standard
method [9-11, 18], based on considering the probability of
Markovian process transitions from one state to another
one over an infinitesimal time interval, one could derive an
appropriate system of differential equations in partial deriv-
atives and boundary conditions.

For example, for case R=0, this system of differential
equations takes the following form:

0 0
U j%(xwxz):_}‘qo(xwxz)"'uzqﬂ(xvxz)’

JES— + —_
1 2
ox, ox,

v

J
1 q11(x1,x2)=—},qu“(x1,x2)+kq0(x1,x2),
ox,

2
ox,

J J
1axl_vzaxzj%2 (x1,x2)=

=W, (x1vx2)+u1%1(x1vx2)’ X%, >0.

U

(20)

The corresponding boundary conditions take the follow-
ing form:

dq; (x i~
Uz%_ 191,(0,%,) = —Wig;, (x,), x,>0, 21
2
dq;,(x ‘o=
U1%_ 315 (21,0) = —W5q;, (%), x>0, (22)
1
dq,(x) ‘a-
U1T-FUzqo(xuO):“z%z(xJ’ x>0, 23)
1
dq;(x,) " a
“V,——4U, q,(0,x,) =1} g, (%), x,>0, 249
2
q,(0,x,)=0,
4,,(x,,0)=0, (25)
q,,(0)=0,
where

v=w-U,>0, u =W /g;
w,=U,/8, m=12.

The system of equations (20) to (25) shall be also supple-
mented with a normalization condition:



jCIﬂ(xz)dxz +Jq1_2(x1)dx1 +

0 0

+J‘J.(qo(x1vx2)+QH(xwxz)""Q12(x17x2))dx1dxz =1. (26)
00

We shall explain the physical meaning of boundary con-
ditions (21) to (25).

Constraint (21) describes a transition of the process to
the state when a repair of the first type is performed, and the
stock of a material of the first type is missing at a warehouse,
with the intensity of its use during the repair became equal
to the intensity of its replenishment, that is Uj;. The stock
of a material of the 2-nd type is replenished at intensity U,.

Constraint (22) describes a transition of the process to the
state when a repair of the 2-nd type is performed, the stock of
amaterial of the 2-nd type at a warehouse has been exhausted,
and the intensity of its use during the repair became equal to
the intensity of its replenishment, that is U,. The stock of a
material of the 1-st type is replenished at intensity Uj.

Constraint (23) represents a transition of the process to
the state when:

a) a repair of the 2-nd type is finished at a zero level of
stock of a material of the 2-nd type at a warehouse;

b) ship repair is completed and the ship leaves SRY; re-
plenishment of the stock of a material of the 2-nd type starts
at a warehouse at intensity Uy,

¢) the stock of a material of the 1-st type at a warehouse
is replenished at intensity Uy.

Finally, constraint (24) reflects a transition of the pro-
cess to the state when a repair of the 1-st type is completed
at a zero level of stock of a material of the 1-st type at a ware-
house; its stock is replenished at a warehouse at intensity Uy ;
repair of the 2-nd type begins.

Conditions (23) represent the impossibility for the pro-
cess to enter the following states:

a) the lack of stock of a material of the 1-st type at a ware-
house at the time immediately after the repaired ship leaves
SRY (that is, upon completion of a repair of the 2-nd type);

b) the lack of stock of a material of the 2-nd type at a
warehouse at the time immediately after another ship is due
for repair;

¢) the lack of stock of a material of the 2-nd type at the time
immediately after completion of the 1-st kind of repair in the
absence of stock of a material of the 1-st type at a warehouse.

The boundary value problem (20)—(26) could be solved
by the method of the Laplace transform. Denote

qg*(SvSQ) = .HBXP(_SNQ = 8,2, )4, (X, 20, )dx, do,,

61;,(81’82) = (J) geXP(_Sﬁﬂ = 8,24, (%, %, )da,dx,,

m=1,2,

27)

a <s2)=Iexp(—s2x>qa(x)dx,

%_2*(51) = gexp(—qx)qu(x)dx, Res,, Res, > 0.

We first apply the Laplace transform to equations (15)
considering conditions (25). Following the standard trans-

formations, we arrive at the following system of equations
relative to representations (27):

A+sU, +s,U, )6];‘(51 1Sy)— qu;;(sﬂsz): U2q5(51 ,0),
_}"qs*(swsz )+ =8,V +s,U, )qz(svsz )= —V1qI1(0,82 )s

_u1q1*:(s1r52)+ (1, + U, _32‘12)‘1:;(31’52) =

= U;QI2(0v32)_V2‘]:2(S170)7
Res, >0, m=1,2, (28)

where the following designations are used:

qf,(s,O) = {eim%(xvo)dxr
q;(O,S) = 2[6_&((]”(0,36)(176,

4,(5,0)= [e=q,,(x,0)dx, Res>0.
0

Let us transform by Laplace the boundary conditions
(21) to (24) taking into account conditions (25):

V1q1*1(0752) = (uy+s,U, )%J(Sz),
Vod15(5,0) = (W5 +5,U,)q; (s)~U,q;(0),
Uzq; (81’0) = (M; - S1U1 )q;(31)+ UQQE(O),

U1qrz(ovsz)= (' +S2V2)Q1j(s2)‘ (29)

The determinant of a system of three equations (29), as
it is easy to see, equals
A(S1,82)=(7\,+81U1 +32U2)><

X("H iz +SZVQ)(M2 +sU, _32‘/2)_7‘”1“? (30)

The corresponding determinants for finding unknown
functions g, (s,,5,),412(5;5,),41,(s;,5,)  are:

A (5,8,) = Uy (51,00 (1 = 5,V; +5,V,) x

X(Wy + 3,0, =5,V,) = W, [1, Vi, (0,5,) —

~(1y =5V, +5,U,)(U,q,5(0,5,) = Voq;,(5,,0))],

A (sy,8,)= _‘/'19:1(0’52 YA +sU +s,U,)x
X(Wy +5,U, = $,V,) + A'{Uzq:)(swo)(uz +8,U,=s,V,)+

+H2[U1QI2(0’52)_‘/2‘];2(3170)]}y 31

A (S,8)=(A+5,U, +5,U, ){[Uﬂ:z 0,s,)—
_V'ZQIz(SpO)](M =sVi+s,U,)-
_WVH;(SNO)} + 7\.].11U2q; (5,0).

Thus, by using ratios (29) to (31), we obtain
qf,*(s“sz) =A8y(5:8,) / A8, 85),

qu(swsz) =A,(5,,8,) / AGSy,8y),



5]:’;(31’32) = Ay (559)/A(:8,)-

(32)
The derived solution contains four unknown functions

q;(s1,0), QI1(31yO)v 412(31’0), QIZ(O’SZ)-

These functions are expressed, by using boundary condi-
tions (29), through two unknown functions g; (s,), g, (s,),
which are determined by using a condition of analyticity of
functions (27) in region Res,, Res, >0, that is, the con-
dition for matching zeros at denominator and numerators
in fractions (32). The result is a certain boundary value
problem for functions of two complex variables. This compu-
tational procedure is described in details in monograph [19].
The remaining unknown constant ¢, (0) is determined from
the normalization condition (26).

Similar to the case of a single type of materials, one could
also state the problem on U,, U, parameters optimization in
order to minimize the average intensity of costs related to
the supply of materials and losses due to idle ships caused
by the interruption of repair, that is, a function of the form

SWU,U)=aU,+aU,+

+6,MZ, +c,MZ, +¢,d(U,,U,), (32)

where d(U,,U,) is the probability of additional stay of ships
under repair because of the lack of materials in stock, and

d<U1,U2>=Iq;(x)dx+Eq(2<x>dx+q;(0>=
=5, (0)+45,"(0)+4; 0);

MZ, is the mean quantity of a material of the i-th type at a
warehouse, and

MZ = £ {x1(q0(x1,x2)+q“(x1,x2)+

+q,,(x,,20)))doc,dx, + Ixc];z (x)dx,

Mz, = g{xz(%(xvxz)"“h(xwxz)"’

+4,,(x,,20)) ) do, + g xq;, (x)dx;

a; is the unit cost of a material of the i-th type; ¢y is the
daily cost of storing a unit of a material of the i-th type at a
warehouse.

8. Example of solving a problem on the stochastic
optimization of restocking intensities

We give a numerical example that illustrates the de-
scribed problem on stochastic optimization, confining our-
selves to case M=1, R=0, that is, we consider the problem of
minimization of function (13) for different values of parame-
ter Wand at the following initial data: = 5 thousand mone-
tary units per ton, ¢;=0.08 thousand monetary units per ton
per day, ¢»=10 thousand monetary units per day, g=0.5 tons.

Calculations are performed applying the software pack-
age Microsoft Excel. The results of calculations are given in
Table 1.

—_

Table

Calculation results on a stochastic optimization model

Minimal value
No. of Value for param- | Optimal value for for function
: eter W, tons per | parameter U, tons | (13), thousand
entry .
day per day monetary units
per day
1 0.15 0. 005 0. 22438
2 0.20 0. 050 0. 32500
3 0.25 0.070 0. 35843
4 0.30 0.074 0. 37904
5 0.35 0.077 0. 03962
6 0.40 0.079 0.41105
7 0.45 0. 081 0. 42440
8 0.50 0. 082 0. 43673
9 0.55 0. 084 0. 44839
10 0.60 0. 085 0. 45964

Data from Table 1 show that with an increase in values
for the intensity of material utilization during repair opera-
tions (parameter W), the optimal values for the intensity of
material replenishment at a warehouse (parameter U) grow
slower, and this growth has a limit.

9. Discussion of results of examining the model of
stochastic optimization of inventory control at SRY

The present study shows that the proposed approach
to optimizing inventory control at SRY makes it possible
to minimize the expected operating costs of SRY under
conditions of the random arrivals of ships at SRY and the
randomness in the volumes of repair operations at each ship.
This is accomplished by finding the analytical dependences
of the respective cost components on the desired control
parameters (that is, intensities of restocking). In this case,
there appears a possibility to account for the losses by SRY
caused by penalties on the part of shipowners due to the
extra downtime of ships because of the lack of materials at
a warchouse. At the same time, for the case of several kinds
of materials (and related types of repairs), the implementa-
tion of this approach involves certain analytical difficulties,
which, however, could be overcome by specialized methods
for solving boundary value problems for functions of several
complex variables.

The described scheme of SRY operation modelling could
form the basis for the development of an appropriate simula-
tion model. This would be justified in cases where it is neces-
sary to take into consideration the non-Markovian character
of the random processes of ships arrivals at the yard (in par-
ticular, their arrival on a predefined schedule) and the vol-
umes of required repair of ships. It should be noted, however,
that solving the problem on stochastic optimization in this
case requires a significant volume of computation. In such a
situation, it appears most effective to apply a combination of
analytical and simulation approaches within the framework
of the so-called directed simulation calculations [20].

From the point of view of an inventory control theory,
applying the Markovian drift process makes it possible to
not only take into consideration the random fluctuations
in demand, but also to take into account the formation of
demand related to the transportation process, that is, to the



operation of ships, which in some (generally speaking, ran-
dom) time would be in need of repair.

Note that the described methodical approach could also
be used to solve the task on choosing the SRY by a shipown-
er to repair a ship based on the criteria obtained above, for
example, the minimum probability (5) or the average total
current costs (6), (28).

It is of practical and theoretical interest to further gener-
alize the results obtained, for example, for a case of different
materials replenishment strategies (delivery in individual
fixed batches, periodic replenishment, deliveries dependent
on the current level of stock at a warehouse, etc.).

10. Conclusions

1.1t has been proven that the formalized description
of SRY operation in the form of QS makes it possible to
simultaneously take into consideration the non-uniformity
in ships arrivals for repairs, different volume of repair opera-
tions, and to plan the respective cost of materials.

2. It has been shown that when interpreting SRY oper-
ation as a queueing system in terms of the Markovian drift
process there appears a possibility to derive an appropriate
system of differential equations in partial derivatives with
boundary conditions for finding a stationary joint proba-
bilistic distribution of the number of ships at SRY and the
quantity of materials at an SRY warehouse. Solving this
boundary value problem makes it possible to obtain analytic
expressions for different objective functions that evaluate
the efficiency of inventory control over materials at an SRY
warehouse, for example, the average total cost per unit of

time for replenishment and keeping a stock, or the average
profit by SRY per unit of time.

3. The solution to the specified system of differential
equations was derived using the Laplace transform and
the theory of boundary value problems from the theory of
functions of complex variables. An analytical solution in
the terms of the Laplace transform makes it possible, easy
enough, to calculate the desired performance indicators for
the examined inventory control system as a function of the
desired control parameters.

4. Based on the solution derived, we have obtained
analytical expressions for calculating key performance
indicators of SRY operation as a queueing system (the
average level of inventories at a warehouse, the probability
of additional idling of ships under repair due to the lack
of materials in stock, etc.). We have stated a problem on
determining the optimal values for the intensities of re-
stocking at a warehouse based on one of the two economic
criteria: a minimum of average current costs and a maxi-
mum of the average current profits by SRY. Solving these
optimization problems makes it possible to choose such a
strategy to manage materials stocks that would minimize
average current costs or maximize the average current
profit by SRY.

5. It has been demonstrated that in contrast to existing
stochastic models of inventory control, the proposed sto-
chastic model makes it possible to simultaneously describe a
production process (that is, repair of ships) and the process
to manage the inventory of materials required for repair
operations, which makes it possible to consider, when build-
ing a strategy for restocking, the uncertainty related to the
yard’s load in terms of repair operations.
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ITposedenumu docniorcennamu 6 opeanizauii 63aemooii pisnux 6uoie mpan-
cnopmy Ha iHMePMOOANLHUX MEPMIHANAX 6CMAHOBICHO, WO 0N 00CAZHEHHS
epexmusHozo PYHKUIOHYBAHHA NePeCaHMANCYBAILHUX MePMIHANiE Heo0Xio-
HUM € YOOCKOHANICHHS MEeXHOJI02iMH020 npouecy pobomu mepminany. 3oxpema,
3a yMoeu 3a0060.1eHHA OCHOBHUX 6UMO2—De3nepepeHicmb, pumminHicmv, napa-
JIEIbHICMb Ma NOMOUHICMb YCIX Onepauiii, MaKcumanivbhe CYMiWeHHs npu
eucoxiil saxocmi 6esymoerozo suxopucmansi. /Joeedeno, wo 0ocsenenns 6io-
N0GIOHUX YMOB MONCTUBE NPU BUKOPUCIAHHI OCKPUNMUBHOT MOOETT 060XNOP-
MAALHOZ0 MEPMIHANY, PYHKUIOHYBAHHS K020 3a0e3neuyemvCs npouecamu
CAMOCUHXPOHI3AUTT PYXY ABMOMAMUI08AHUX NAAMPOPM, 30HICHIOIOUUX Nepese-
3eHHA KoHmelinepie Midc a6moMoOiIbHUM MA 3ANIZHUMHUM NOPMANAMU.

Bcmanosneno, wo cmeopenns 00CKOHANUX KOMNIOMepHUX Moldeneil 0
nomped opeanizayii 63aemo0ii pizHux 6udie Mparcnopmy Ha HMEPMOOANb-
HUX MEPMIHANAX K NPOEKMHO-KOHCMPYKMOPCyKY 3adauy mpeba eupiuyea-
MU Yy nocOHanHi OeCKpUnmueHux ma ananimuvnux mooenei. B danux mooe-
JIAX 6UOLIAIOMBCA NPOPAMHI MA ANAPAMHI KOMNOHEHMU, 3a0e3newyoni YyMoeu
301iCHeHNs KOHUenuii camocunxponizauii pyxy nasawmaxcyeadis. 3oxpema
6CMAHO06ICHO, WO CAMOCUHXPOHHUL Ni0XI0 YnpaeainHsa 3abe3newye 6eauxy
cmynine Y32000ceHHs npU PYHKUIOHYBAHHI KOHMEUHEPHO20 mepMminany ma
00360.715€ 30iMVUUMU NAPaALETLHICMb NPOUeEcie, Mmodmo ooHouacHe 30ilicHenHs
nooiu y cucmemi.

Toxazana moxcausicmv popmanizauii npoyecie camocunxponisauii 3acooa-
mu mepedxc Ilempi. Ileii mamemamuunuil anapam oysice 3pyuHuil O M00eo-
annsa OuHAMIMHUX OUCKPEMHUX cucmem ma 00360J5€ 00Caioumu nocaioosme
BUKOHAHHSL 6CIX NPOUECIB, WO 6i00Y6AIOMBCA HA THMEPMOOAILHOMY MEPMIHAT.
Ha ocnosi modenosanis 0oeedero, wo cepeoniii npocmiii Konmetinepa Ha mep-
MiHani 3mMeHumYemvCs, wo 00360J15€ 30LTLUUMU NEPEPOOHY CNPOMONCHICMb MA
3MeHWUMU NUMoMi 6UMpamu Ha nepepooxy KoHmeliHepa Ha MePMIHAI.

Taxum wunom, € niocmasu cmeepoN’cyeamu, wo UIIKOM MONCIUBOIO € PO3-
POGKA MeXHON02IMHO 3A6EPULEHUX MEPMIHATILHUX CIPYKMYP "MOPCLKUTL nopm—
3aiBHUMHUT NOPMAL—aemomoGinbHull nopman” y pisnux xondisypauisx. Tun
KoHizypauii 3anexcumn 6i0 00paHUX JIOZICMUMHUX MAPUPYNIE 00CMABKU BaAH-
maoicie, 3acmocyeasuu 0 Ub020 HAGedeHy Memoouxy opeawizauii podomu
060XN0PMANBLHO20 MEPMIHALY

Kntouoei crosa: camocunxponizauis, mepesca Ilempi, inmepmooanvii nepe-

8e3eHM S, KOHMEeUHEePHUL MePMIHA
u| o
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1. Introduction ternational transport corridors and which correspond to the
norms and standards of the European Union, provide condi-
tions for attraction of additional volumes of transportation.

The XXI century challenges the development of relations in

The most important direction of the transport policy of
countries in the context of the globalization of international

relations is the search for an optimal combination of con-
ditions for functioning of the main international transport
corridors. The development of a national network of inter-
national transport corridors, which are parts of the Crete in-

the field of continental transport in the new Europe-Asia for-
mat. The main modern trend in the world transport system
is the development of mixed freight transportation. Inter-
national practice suggests that two thirds of international






