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IIpodossicero docnidicenns eeomempunozo Mo0ear08aHHs
HexaomuuHux nepioouuHUx mpacKkmopii pyxy 6anmaicie pis-
HOGU0i6 Mamemamuunux masmuuxie. Pozensdaromvcs masm-
HUKO06I KOIUBAHHA Y 6epMUKAIbHIL naouuni nidéiuenoi neea-
20M0i npyscunu, 30epizaronoi Npu ULOMY NPAMONIHIUHICMD
c80€i oci. B nimepamypi maxuii 6ud mMasmHuKa HA3UBAIOMb
xumnoro npyxcunoro (swinging spring). Illyxana mpaex-
Mopisn 6anmaicy Xumnoi npYxHcUnU 3a 00NOM02010 KOMN tome-
Pa MOOENI0EMBCS 3 BUKOPUCMAHHAM 3HAMEHb MACU 6AHMAINCY,
JHcopecmrocmi npyxcunu ma i 006XHCUHU 68 HEHABAHMANCEHO-
my cmani. Kpim moeo, euxopucmosyromovca maxi nouamxoei
BeJIUMUHU NAPAMEMPIE THIUII06AHHA KOIUBAHD XUMHOT nPYHCU-
HU: KYym 6I0XUNIEHHS OCi NPYHCUHU 810 6ePMUKAIL, WEUOKICMD
3MIHU BEUMUHU UbOZ20 KYMA, A MAKONC NApamemp noooemiceH-
HSA NPYIHCUHU Ma WEUOKICIb 3MiHU n0006cenns. Pospaxynxu
6UKOHAHO 3a 00noMmoezoto pieusnus Jlazpansica opyzozo pody.
Taxooxc posensnymo eapianmu 3HAX00NCEHHS NEPIOOUUHUX
MpacKmopisi MouK06020 6AHMANCY XUMHOT NPYHCUHU 3 PYXO-
MO10 (8300691C KOOPOUHAMHUX 0Cell) MOUKO0IO KPINIEHHS.

Axmyanvnicmv memu 6UHAUMAEMbCA HeOOXiOHICMIO
docnidrcennss ma Y0oCKOHAIEHHS HOBUX MEXHOJOZIMHUX
cXeM MexaniMHux npucmpoie, 00 CkAAdY AKUX 6X00AmMb NPy -
acunu. 3okpema, 00CaI0NCEHHA YMO8 810MEINCYBANHA 610 XAO-
MUMHUX KONUBAHD eSleMEHMI6 MEeXAHIUHUX KOHCMPYKUIL ma
BU3HAUEHHA PAUIOHATILHUX 3HAYMEHb napamempie 05 3a6e3-
neuenns nepioourHuUx mpacKmopiil ix KoaAUBaHs.

Haesedeno cnocio 3naxooixcenns 3nauenv naéopy napa-
Mempie 01a 3a6e3nenenns Hexaomuunoi nepioouunoi mpaex-
mopii pyxy mouxo60z0 eanmascy xumnoi npyyxcunu. loeto
CnoOCcody NOsICHEHO HA NPUKAADi 3HAX00HCEHHS NepiouUHOi
mpaexmopii pyxy 0py2020 6aHmasicy no0GiUHO20 MASIMHUKA.

Hageoeno eapianmu pospaxyuxie oas odepicanns nepio-
QuMHUX MPAEKMOPIT PYXY 6AHMANCY, KOJIU 3A0AHT NAPAMEMPU:

— sicopcmricmo npydscunu ma i 0oexcuna 6e3 Hasanma-
JHCEHHS, ale Hedi0oMAa BeSIUMUHA MACU 6AHMANCY;

— GeUMUNA MACU 8AHMAlCY Ma 008ICUHA NPYHCUHU Ge3
HABAHMANCEHHS, Alle HEeBI00MA HCOPCMKICMb NPYHCUHU;

— BEJIUMUHA MACU BAHMANCY MA HCOPCMKICMb NPYHCUHU,
ane negidoma 0062CUHA NPYHCUHU 0e3 HABAHMANCEHHSL.

Taxosc pozensnymo 3Hax00x4ceHHs 3HAMEHb HAOOPY napa-
Mempie 03 3abe3nenenns Ymo6Ho nepioduunoi mpaexmopii
PYXY MOUK06020 GAHMANCY XUMHOI NPYHCUHU 3 PYXOMONO
MOUKO10 KPinieHHs.

Hooyodosano ¢aszosi mpaekmopii Ppynxuiii ysazanvienux
Koopounam (3nauenv Kymie GiOXUJIEHHA OCI NPYIHCUHU 610
eepmukani ma no006I’CEHHS XUMHOI NPYHCUHU) 3a 00NOMO-
2010 AKUX MONCHA OUiHUMU OIANA3OHU 3AZHAUEHUX GETUMUH
ma weudxocmeil ix 3Minu.

Pesynvmamu moxcna suxopucmamu sk napaouzmy 0s
6UBUEHHS HENTHIUHUX 36 A3AHUX CUCMEM, A MAKOXNC NPU PO3-
paxyukax eapianmie MexaniuHux npucmpoie, O0e npyicu-
HU 6NAU6AIOMb HA KOJUBAHHS ix enemenmis. Koau 6 mex-
HON02iAX BUKOPUCMAHHA MEXAHIUHUX NPUCMPOiE HeOOXIOHO
sioMesicyeamucs 6i0 xaomuunux nepemiugenv eanmaicie, a
3a0e3neuumu nepioduuni mpaexmopii ix pyxy

Kmouoei cnoea: maamuuxosi xoausanns, nepioouunoi
mpaexmopii pyxy, xumna npyxcuna, pienanus Jlazpanxca
opy2020 pody
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Specifically, pendulum analogs are used as models of oscil-

latory processes [1].

In order to explain complex processes occurring in na-
ture, pictorial mechanical interpretations are often used.

A model of inverse pendulum with oscillating fixing

point is a classic example. Physical model of this pendulum




is the basis of theory of dynamic stabilization. The key idea
of the theory consists in the need of dividing movement into
“fast” and “slow” components, which was reflected in the
concept of effective potential. With the help of the method of
effective potential, the principle of stability of high-frequen-
cy generator, “nigotroneum”, was explained [2]. Apropos, in
order to have no confidentiality problems when publishing
the method, a physical model of a pendulum with oscillating
suspension was taken, which would illustrate the principle
of generator stability. This has served as a starting point
for mathematical study of the pendulum with an oscillating
suspension.

No less impressive mechanical interpretations are associ-
ated with a pendulum of another kind. In an idealized form,
pendulum is a vertically suspended weightless spring with
a point load attached at its end. In addition to longitudinal
oscillations, spring oscillates like pendulum in a vertical
plane while maintaining straightness of its axis. It was noted
that if the load simultaneously performs oscillations along
the spring axis and pendulum oscillations, then this action
demonstrates the phenomenon of spring oscillations from
a completely unexpected side. Behavior of such vibratory
system has revealed interesting and deep physical laws [3].

The model of a spring oscillating like a pendulum (it is
called a swinging spring in literature) is widely used as a
mechanical model of more complex processes in nature and
technology. These are processes with internal, nonlinearly
coupled systems providing various oscillating components.
What is essential in this process is the fact that the system
components perform energy exchange with each other. Anal-
ysis of such energy exchange processes is presented in [1] in
order to find out how all this depends on the system control
parameters. To illustrate this, authors use a swinging spring
as a paradigm for studying nonlinear coupled systems. Three
energy components are identified for a swinging spring.
They are similar to the movements of a spring, a pendulum
and a link between them. The presented procedure can, in
principle, be applied to arbitrary nonlinear coupled systems
to show how the link mediates internal energy exchange
processes and how energy distribution varies according to
the system parameters.

The feature of the swinging spring phenomenon can
be illustrated graphically. To this end, compare movement
paths of the point load for two cases: a swinging spring
(Fig. 1, a) and a parametric pendulum (Fig. 1, b).
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Fig. 1. Analogy between angular oscillations:
swinging spring (a); mathematical parametric pendulum (6)

For a parametric pendulum, parameter effect is manifest-
ed by the change of the pendulum length due to an external
energy source. There is an interesting case when length is to
be slightly increased in a low position and slightly reduced in
extreme positions. Then maximum swaying will be achieved
when frequency of the system parameter change (suspension
length) is twice that of the system’s own oscillation frequen-

cy, for example, swinging of a children’s swing. To maintain
its swinging for a long time, it is necessary to squat quickly
at the moment of the greatest deviation of the swing from the
position of equilibrium and stand up quickly when passing
the lower position.

However, there is a fundamental difference between the
“swinging spring” pendulum and the “swing” pendulum.
There is no external energy source in the swinging spring
and pendulums of this kind must themselves “provide” ex-
istence of such oscillations. It follows from experiments that
growth of angular oscillations of the swinging spring is ac-
companied by attenuation of longitudinal oscillations. Then
a reverse phenomenon takes place: swinging of longitudinal
oscillations by means of reducing energy of angular oscil-
lations. Further, the whole process is constantly repeating.
Repetitive sequential energy pumping from one oscillation
to another occurs until all oscillations extinguish because
of friction.

Nonlinear coupled systems with interacting subsystems
are present in many fields: from physics and engineering to
biology and social sciences. Examples of coupled systems
include wave unification in plasma physics, laser pumping,
biological oscillatory nets, neural nets, and genetic chains
(corresponding references are given in [1]).

Study of features of the swinging spring oscillations is
of interest for practical applications. For example, study of
atmospheric balance of the planet is carried out with the help
of a swinging spring model in [4], carbon dioxide molecule
oscillation is studied in [5], oscillation of high-voltage wires
is considered in [6] and helicopter vibration is modeled in
[7]. Description of spring oscillation is similar to equations
from “predator-prey” problems [8]. The list can be continued.
At the same time, seaming disparate at first glance imple-
mentations have a common feature: possibility of their study
on the basis of the swinging spring model. At the same time,
the key point is determination of conditions for ensuring
non-chaotic periodic paths of the swinging spring load. Such
studies make it possible to isolate from chaotic movements
of elements of mechanical devices which include spring ele-
ments. Periodic path of movement of a swinging spring load
illustrates solution of corresponding differential equations
describing its oscillations. After all, these equations have a
nature similar to that of differential equations of adjacent
(by their subject matter) implementations. The resulting
geometrical form of the periodic path of movement of a
swinging spring load in the space of parameters of a specific
task will help illustrate solutions to this problem. That is,
consideration of the model of a swinging spring will allow
one to analyze nature of solutions in adjacent by their subject
matter tasks and identify optimal in a certain sense options
among them, just like Lissage figures are used in mechanics
for analysis of oscillatory processes in mechanisms.

Consequently, the relevance of the chosen topic indicates
necessity of developing an engineering method for finding
values of a set of parameters to provide non-chaotic periodic
path of movement of a swinging spring point load.

2. Literature review and problem statement

History of the studies dedicated to oscillation of a swing-
ing spring began with the quantum-mechanical explanation
of the effect of line splitting in the spectrum of Raman scat-
tering on Cy molecule. At the same time, it was suggested



that the effect is of not quantum but classical mechanical
oscillation nature. Namely, the effect is due to internal pe-
culiarities of the molecule oscillation where frequency of
oscillations of one type is approximately twice frequency of
oscillations of another type. Scientists have decided to test
it on a swinging spring model. Calculated movement of such
a system has shown that complete energy pumping from
vertical oscillation to horizontal one and backward should
periodically occur at a frequency ratio of 2:1.

Expediency of the swinging spring studies has arisen in
a connection with the revealed possibility of their “non-stan-
dard” use both in theory and practice. However, most studies
are focused on analytic approximations for weakly coupled
systems and energy exchanges arising when subsystems
resonate. Parametric mechanism is an effective mechanism
of energy exchanges [9]. Specifically, a swinging spring with
two degrees of freedom is an auto-parametric system being
the basis for studying nonlinear coupled systems. In addi-
tion, swinging spring is important due to the possibility of
qualitative presentation of many nonlinear coupled systems.
Among these presentations, classical analog of vibrational
modes of triatomic molecules can be mentioned. It realizes
Fermi resonance in infrared and combinatorial spectra [1].

Oscillations of swinging springs are directly related to
plane and ship dynamics. Effects of impairment of stability
and controllability of high-speed ships and supersonic aircraft
were revealed. It turned out that the most intense swinging of
lateral oscillation occurs when incidence oscillation occurs at
twice the frequency of lateral oscillation [10]. Flexible thread
model as a modified swinging spring model plays an import-
ant role in building mechanics. Flexible thread is a kind of
spring acting only in stretching. In a typical two-dimensional
model, flexible thread can simultaneously perform transverse
oscillations in its plane (analogous to angular oscillations of
a swinging spring with a load attached) and pendulum oscil-
lations that connect supports (analogous to vertical oscilla-
tions) [6, 11]. Loss of dynamic stability occurs at a ratio of fre-
quencies of these oscillations 1:2 when transverse oscillation
of the thread at amplitudes reaching rather large values arises.
The possibility of occurrence of such phenomena must be
taken into consideration in calculation of various structures
(suspension bridges, cable-and-beam systems, cable-ways,
power lines, various spaceship cable systems for holding ob-
jects, flexible hoses, various antennas, etc.) [3].

Theoretical study of small planar nonlinear oscillations
of a swinging spring with a nonlinear dependence of its
tension on lengthening is given in [12, 13]. The method of
a Hamiltonian normal form was used. Solution of Hamilto-
nian equations of normal form has shown that periodic re-
organization of oscillations between vertical and horizontal
modes occurs only in the case of resonance ratios of 1:1 and
2:1. In all other cases, both in presence of resonance and in
its absence, oscillations occur at two constant frequencies.

Changes in behavior of a swinging spring when one re-
sponse under parameter checkout becomes unstable and is
replaced by another are studied in [14]. Poincare sampling
is used to reduce the problem of describing the limit-cycle
stability to a simpler problem of determining stability of a
fixed point by the Poincaré mapping. Connection of normal
modes of a swinging pendulum oscillation is considered in
[15]. Comments on experiments related to violation of normal
modes are given. of a Swinging spring systems near resonance
are investigated in [16] with the help of “slow fluctuation”
approximation which consists in application of trigonometric

polynomials and preservation of only a member with the slow-
est frequency. It was shown in [17] that integral approximation
of a spatial swinging spring adjusted to a resonance of 1:1:2 has
monochromium and a stepwise angle of precession of the plane
of oscillation of the resonant spring pendulum is the number of
revolution of integral approximation. Paper [18] is devoted to
oscillation of a swinging pendulum with its suspension point
moving along vertical line. Periodic solutions of the equation
are obtained with the use of Hill’s determinants. The devel-
oped computational procedure is used to determine combina-
tions of those system parameters for which periodic solutions
are possible. A spatial swinging spring with resonance of 2:1:1
approximately described by Lagrangian is studied in [19].
Hamiltonian abbreviations and sampling methods are used
in descriptions. The resulting formula describes stepwise az-
imuthal angle precession. Energy flow between longitudinal
and pendulum oscillations is considered in [20] as pulsation.
Pulsation and stepped precession are characteristic features
of the swinging spring dynamics. Hamiltonian reduction was
used to find complete analytical solution. Dynamics of a spring
pendulum is investigated in [21] with the use of asymptotic
methods. Methods of the theory of nonlinear normal forms of
oscillation have enabled study of pendulum dynamics both for
significant and small oscillation amplitudes.

However, all of these studies are mostly theoretical. For
engineering practice, methods are needed to construct real
non-chaotic periodic paths of the swinging spring loads.
Some of them are also described in [22] where examples of
periodic paths are given as well as in [23] where conditions for
constructing periodic paths are studied. A program written in
Mathematics language by means of which periodic paths of a
double pendulum can be constructed is presented in [24]. The
study [25] is devoted to a connection of a possible spring load
path with Lissage figures. A maple program for constructing
spring load paths is presented in [26]. Another method of
constructing spring load paths is proposed in [27]. Examples
of periodic paths of swinging springs are given in [28]. Oscil-
lation of a swinging spring with a moving suspension point
is studied in [29]. However, there is no universal approach
to construction of periodic paths of spring load in the known
studies. Also, there is no oscillation analysis using phase paths
of the functions included in description of generalized coordi-
nates of a corresponding oscillatory system.

A method of projection focusing is presented in [30] for
construction of periodic paths of loads of a variety of math-
ematical pendulums. Examples of implementation of this
method are considered in [31].

As a result of the review of published sources [1-29],
issues that have not yet been investigated by other authors
were identified. They have enabled formulation of the fol-
lowing study problem: develop a method for finding values
of a set of parameters that would provide a non-chaotic
periodic path of a point load of a swinging spring, that is, a
load attached to a vertically suspended spring performing
pendulum oscillations.

3. The aim and objectives of the study

The study objective was to develop a method for comput-
er modeling of a periodic path of movement of a point load
attached to a swinging spring.

To achieve this objective, the following tasks had to be
solved:



— explain the method idea on an example of a test task:
construct periodic path of movement of the second load of a
double pendulum;

— provide variants of calculation for obtaining periodic
paths of movement of a swinging spring load when the fol-
lowing is given:

— length without load and stiffness at unknown load
weight;

—spring length without load and the load weight at
unknown spring stiffness;

— load weight and spring stiffness at unknown length
of nonloaded spring;

— define a set of parameters for provision of a condition-
ally periodic path of movement of a point load attached to a
swinging spring with a moving fixing point;

— construct phase paths of functions of generalized coor-
dinates of the swinging spring (values of angles of the spring
axis deviation from the vertical and elongation) in order to
assess the range of variation of above quantities and the rate
of this variation;

— illustrate the results obtained by computer animation
of oscillation of corresponding swinging springs.

4. Developing a geometric model of periodic paths of
a swinging spring load

4.1. Constructing periodic paths of movement of a
double pendulum load by the method of projection focusing

The method of “projection focusing” intended for con-
struction of periodic paths of loads of a variety of pendulums
is considered in [30]. Hereinafter, an explanation of the
method is given by the example of determining non-chaotic
path of movement of the second load attached to a double
pendulum. This example is considered in most textbooks on
theoretical mechanics. Namely double pendulum is so often
used to illustrate chaotic oscillations. Therefore, solution to
the problem of periodic paths of the second load on a double
pendulum will be of particular interest.

Let us set conditions of idealization of oscillations of a
double pendulum:

— both links are weightless and nondeforming;

— weight of the loads is concentrated in corresponding
points at the ends of the links;

— there are no nodal supports and air resistance during
oscillation;

— oscillation proceeds in a vertical plane enveloping the
suspension point;

— the process of energy dissipation is slow in comparison
with characteristic time scales (the oscillatory system is
conservative);

— parameters and initial conditions are set in conven-
tional numerical units.

The double pendulum diagram is shown in Fig. 2.

Take the angles formed by the pendulum links with the
vertical axis Oy as generalized coordinates u(t) and v(¢).
Then virtual coordinates of the nodal points can be calcu-
lated by formulas:

x,=d, sinu; y,=—d, cosu; €))
x,=d,sinu+d,sinv;, y,=-d cosu—d,cosv.

Set Lagrangian as a difference between kinetic and po-
tential energies (g=9.81):

2 2
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To compile a system of Lagrange differential equations of
the second kind, use the following relations (the point here
means time derivative):

d (oL oL d(dL) oL
—|=|-—=0, —| =—|-—=0. 3
o) a5 ®
As a result, the system of Lagrange equations of the sec-
ond kind is obtained in the form:
d’u d’v
(m, +m2)d1ﬁ+ mdeECOS(u—U)+

2
myd, (%) sin(u—v)+(m, +m,)gsinu =0, 4)

do,, du

W+a’

<, dt?
duY’
—d, (—) sin(u—v)+ gsino=0.

cos(u—v)—

dt

To illustrate possibilities of the method of projection fo-
cusing, consider construction of a periodic path of the second
load of a double pendulum in a form of the following problem.

Problem statement. Construct a periodic path of a double
pendulum with link lengths d; and d5 and weights m; and
my as loads at the ends of the links. In the initial position, all
links are vertical, that is, #(0)=0 and v(0)=0. Oscillations
are initiated using impulses applied to the pendulum loads
in two mutually antithetic directions along the Ox axis
(Fig. 3). That is, du(0)=-F and dv(0)=F where Fis a quantity
that can be characterized as the initial rate of change in time
of the corresponding angle magnitude.

Fig. 3. Initiation of a double pendulum oscillations

Problem solution with simultaneous explanation of the
method of projection focusing. For determination of the val-



ue of parameter F which would provide periodic movement
path of the second load of the double pendulum, apply the
method of projection focusing [30]. To do this, solve the sys-
tem of equations (3) with chosen initial conditions «(0)=0;
du(0)=-F; v(0)=0; dv(0)=F and parameters using numerical
Runge-Kutta method. “Assign” the variable F as a control
parameter of oscillation of the double pendulum.

Next, construct image of the integral curve in the phase
space {u, Du, t} depending on the value of the control param-
eter F. At arbitrary values of Fin the phase space, a “tangled”
integral curve will more likely be formed (Fig. 4, ). In the
algorithmic implementation, this will be a multi-link curved
line which will connect N adjacent points with coordinates
(u;, Duj, t;) (where i=1..N). Points in the phase space are
obtained as a result of numerical solution of the system of
Lagrange equations of the second kind.

Project the resulting integral curve to the phase plane
{u, Du} where the phase path of the generalized coordi-
nate function u(t) will be its projection (the same can be
done for the coordinate function v(t)). When the control
parameter F changes, character of the phase path also
changes. At a certain critical value of F=F,, character of
the phase path will change at a qualitative level: it will
turn into a “focused” curve. In the process of movement
of the parameter F to the critical value Fy in a mode of
computer animation, one can observe an optical effect of
“sharpening” of the “tangled” phase paths in the phase
plane (Fig. 4, b).

Fig. 4. Phase paths as projections of integral curves: for an
arbitrary value of the control parameter F (a); for a critical
value Fj of the control parameter (b)

To correlate graphic properties of the phase curves
with numerical ones, the concept of saturation (or densi-
ty) of a line image was used. The property of saturation
of the line image is characterized by the number of con-
ditional plane points (pixels) built by means of computer
graphics. The number of pixels to make line pictorial
with an acceptable for practice error will be the degree of
saturation. The value of the control parameter Fis sought
so that the image of the phase paths was of a minimum
saturation which can be compared with the above-men-
tioned focusing in the sense of sharpening. This approach
was implemented in practice with application of the Im-
ageTools graphical information processing library of the
Maple package [31].

According to the conditions of the problem, dependence
of the number of pixels Np in the phase path image on the
value of the control parameter F was plotted (Fig. 5). It

follows from the graph that the minimum number of pixels
of the image is achieved at a critical value of the control pa-
rameter Fp=2.556. This value was clarified by reducing the
interval containing F.
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Fig. 5. Dependence of the number of pixels Ap in the phase
path image on Fvalue: for 1.9<f<2.9 (a); for 2.5<F<2.6 (b)

After calculation of Fy, it is necessary to substitute its
value instead of F in the system of Lagrange equations of
the second kind (3) and numerically solve this system by
Runge-Kutta method with respect to the functions u(¢) and
o(t). A sequence of values (u;, v;) at t=t; (where i=1... ) is ob-
tained. To construct the path of movement of the second load
in Oxy plane, it is necessary to put sequence of values (u;, v;)
in expression (1) of virtual coordinates (x, y»). The resulting
adjacent points should be connected to a broken line. As a
result, an approximate image of the path of movement of the
second load in Oxy plane is found.

To implement this idea, a program was developed for
building a phase path as an orthogonal projection of an
integral line from a phase space to a phase coordinate
plane with simultaneous computation of critical value of
the control parameter with further definition of the path of
the second load movement. The time of integration of the
system of equations was determined. It will correspond to
the minimum time in which the second load returns to its
original position.

Obtained solutions to the problem. Let the lengths of the
dual pendulum links be d;=1.5 and d»=1. Then, periodic
paths of the second load of the pendulum will depend on
the ratio of weight values of loads according to the follow-
ing cases.

Case 1. For arbitrary identical values of weights m{=m,
at F=2.556, periodic paths of the second load close by
their geometric forms are obtained. Their view is shown
in Fig. 6.
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Fig. 6. The view of path of the second load at a value of
F=2.556 in cases when my=m;

The phase paths of the functions of generalized coordi-
nates are shown in Fig. 7. Integration time T=3.
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Fig. 7. The view of phase paths of the functions of

generalized coordinates for case 1 at my=m, and F=2.556:
for u(?) (a); for v(7) (b)
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Case 2. When my=kms, then periodic paths of the second
load close in their geometric form are obtained. They are
shown in Fig. 8. In this case, F values are taken from Table 1.

Table 1
Parameter values to provide a periodic path in the case of
m=km,
Value of & 2 3 4 5 6

Value of F 3.752 3.388 3.188 3.052 2.964
04
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Fig. 8. The view of path of the second load in the case when
M1=kﬂ72

The view of phase paths of the functions of generalized
coordinates for case 2 is shown in Fig. 9. Integration time
T=5.4.
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Fig. 9. The view of phase paths of functions of generalized
coordinates for the case at my=km, and the value of F taken
from Table 1: for u(?) (a); for V(1) (b)

Case 3. When kmy=mj, periodic paths of the second load
close by their geometric form are obtained. They are shown
in Fig. 10. The values of F are taken from Table 2.

Table 2
Values of parameters to provide a periodic path in the case
of km=m;
Value of & 2 3 4 5 6
Value of F 4.844 6.32 7.36 8.3 9.2

2 -1 0 1 2

Fig. 10. The view of the second load path in the case when
km=my

The view of phase paths of functions of generalized coor-
dinates for case 3 is shown in Fig. 11. Integration time T=3.4.
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Fig. 11. The view of phase paths of the functions of
generalized coordinates for the case when km=m, and
the value of Ftaken from Table 2: for u(#) (a); for V(1) (b)

The obtained phase paths enable determination of the
ranges of change in the angle values as well as rates of this
change in the values of angles.

4. 2. Calculation of periodic paths of movement of a
swinging spring load

Here is a way to determine path of movement of the
swinging spring load in vertical plane Oxy depending on
the load weight, initial length of the spring in the unloaded
state, stiffness of the spring and initial conditions for occur-
rence of oscillations.

Conditions set for idealization of oscillations of the
swinging spring:

— oscillation takes place in a vertical plane enveloping
the fixing (suspension) point;

— the load weight is concentrated in one point located in
the spring axis from the nonfixed end,;

— the spring is weightless and its axis remains straight
during oscillation;

— supports in the nodes and the air resistance are absent
during oscillation;

— the process of energy dissipation is slow in comparison
with the characteristic time scales (the oscillatory system is
conservative);

— parameters and initial conditions are given in condi-
tional numerical units.

The swinging spring diagram is shown in Fig. 12.




Take the value of the angle formed by the axis of the
swinging spring with the vertical axis Oy as the first gen-
eralized coordinate function u(f). Relate the second gen-
eralized coordinate function o(¢) to longitudinal variation
of the spring length in time; denote length of the swinging
spring in unloaded state through 4. Then virtual coordinates
of the moving point load can be calculated according to the
formulas:

x=(h+0)sinu;
y=—(h+v)cosu. ®))

Set Lagrangian as a difference between kinetic and po-
tential energies (g=9.81):

doY du Y’
L=05m[(dt) +(h+U)(E) ]—

0.5k0* —mg(h+v)(1-cosu)—mgo. (6)
To form a system of Lagrange differential equations of

the second kind, use the following relation (the point means
time derivative):

i(ilj_ai_o.
dei\oi) ou

d(oL) oL
L&) o 7
dt(aéj v @

As aresult, the system of Lagrange equations of the sec-
ond kind is obtained in the form:

2
(v+h)§t?+2%%+gsinu=0; (©)
9 2
%—(zﬁh)(%) +%—gcosu=0.

The problem statement. Determine the value of weight
m which would provide a periodic path of movement of
load of the swinging spring with stiffness £ and length % in
unloaded state. In its initial position, the swinging spring
is positioned vertically, that is, #(0)=0. Oscillation is initi-
ated by means of an impulse applied to the spring load in
direction of the Ox axis: du(0)=1.5. The value of 1.5 can be
considered the initial rate of change in time of the angle w.
Take initial values for parameter v of the spring extension
as v(0)=1; dv(0)=0.

Solve the system of equations (8) with initial condi-
tions u(0)=0; du(0)=1.5; v(0)=1; dv(0)=0 by applying
numerical Runge-Kutta method. Choice of parameters
m, k, and & ensures periodicity of the swinging spring
load path.

Example 1. Let k=30 and h=1. Take weight m as con-
trolling parameter of the swinging spring oscillation. Fig. 13
shows integral curves in phase spaces {u, Du, t} and {o, Do, t}
for the found critical value m=3.332. As a result, phase
paths in {u, Du} and {0, Do} planes are obtained (Fig. 14).
With their help, it is possible to determine ranges of angle
variation and rate of this variation (coordinate function
u(t)) during oscillation of the swinging spring as well as

elongation of the spring and elongation rate (coordinate
function v(?)).

Fig. 13. Integral curves for critical value m=3.332 in phase
spaces: {u, Du, t} (a); {v, Dv, t} (b)
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Fig. 14. Phase paths in planes {v, Du} and {u, Dv}
for: coordinate function u(?) (a);
coordinate function V(1) (b)

To confirm value of the critical value m=3.332 found,
use the graph of saturation of the phase path line image.
Fig. 15 shows the graph of dependence of the number of
pixels Np in the image of the phase path on the value of
the control parameter m. Minimum number of image pix-
els is achieved at a critical value of the control parameter
mp=3.332.
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Fig. 15. The graph of dependence of the number of pixels Np
in the image of the phase path on the m value

Following calculation of m,, it is necessary to put
its value into the place of m in the system of Lagrange
equations of the second kind (8) and numerically solve it
by the Runge-Kutta method with respect to u(¢) and v(¢)
functions. A sequence of values of (u;, v;) at t=t; (where
i=1... §) is obtained. To construct the path of movement
of the second load in Oxy plane, it is necessary to put
sequence of values (u;, v;). in expressions (5) of virtual co-
ordinates (x, y). The resulting points should be connected
to a broken line. As a result, an approximated image of
the path of movement of the swinging spring load in Oxy
plane is found (Fig. 16).
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Fig. 16. The path of movement the swinging spring load for
example 1

Example 2. Let m=1 and h=1. Select the value of stiffness
k as a control parameter. Fig. 17 shows integral curves in
phase spaces {u, Du, t} and {v, Do, t} for the found critical
value k=14.4. Fig. 18 shows phase paths of the correspond-
ing generalized coordinate functions by means of which it is
possible to determine ranges of their changes.

Fig. 17. Integral curves for the critical value of A~=14.4 in
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)

2 14
1 0.5
Du 0 Dv 04
-1 -0.57
- -1
02040608 1 1.2 04 00204
u v
a b

Fig. 18. The phase paths in planes {v, Du} and {v, Dv}:
coordinate function u(?); coordinate function v (7) (b)

To confirm the value of k=14.4, use the saturation graph
of the phase path line (Fig. 19). Minimum number of image
pixels is achieved at critical value of the control parameter
ko=14.4.
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Fig. 19. The graph of dependence of the number of pixels Np
in the phase path image on the m value

Following calculation of ky=14.4, it is necessary to
substitute its value for & in the system of Lagrange equa-
tions of the second kind (8) and numerically solve it by

Runge-Kutta method with respect to the functions u(¢)
and o(?). A sequence of values of (u;, v;) is obtained at t=¢;
(where i=1... 5). To construct the path of movement of the
swinging spring load in the Oxy plane, it is necessary to
put the sequence of values (u;, v;) into expressions (5) of
virtual coordinates (x, y). The resulting points should be
connected to a broken line. As a result, an approximated
image of the path of movement of the swinging spring load
in the Oxy plane is found (Fig. 20).
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Fig. 20. The path of movement of the swinging spring load
for example 2

Example 3. Let m=1 and k=10. Take the length % of the
swinging spring without load as a control parameter. Fig. 21
shows integral curves in the phase spaces {u, Du,t} and
{0, Do, t} for the found critical value of 2=0.39. Fig. 22 shows
the phase paths of the corresponding generalized coordinate
functions. With their help, it is possible to determine varia-
tion ranges.
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Fig. 21. Integral curves for the critical value of #/~0.39 in
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)
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Fig. 22. The phase paths in planes {u, Du} and {v, Dv}:
coordinate function u(#); coordinate function v({)

To confirm value of #=0.39, use the graph of saturation
of the phase path line image (Fig. 23). Minimum number of
the image pixels is achieved at a critical value of the control
parameter £p=0.39.

Following calculation of 4¢=0.39, it is necessary to
substitute its value in place of A in the system of Lagrange
equations of the second kind (8) and numerically solve it by
Runge-Kutta method with respect to the functions u(¢) and



o(t). A sequence of values of (u;, v;) at t=t; (where i=1... ) is
obtained. To construct the path of movement of the swing-
ing spring load in the Oxy plane, it is necessary to put the
sequence of values of (u;, v;) into expressions (5) of virtual
coordinates (x, y), The resulting points should be connected
to a broken line. As a result, an approximate image of period-
ic path of movement of the swinging spring load in the Oxy
plane is found (Fig. 24).
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Fig. 23. The graph of dependence of the number of pixels Np
in the phase path image on the value of A
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Fig. 24. The paths of the spring load movement for example 3

Consequently, the critical values of the control param-
eter found by the method of projection focusing can be
confirmed using the graph of saturation of the image of the
phase path line, that is, the graph of dependence of the num-
ber of pixels Np in the image of the phase path on the control
parameter value.

4. 3. Calculation of periodic paths of movement of a
load attached to a swinging spring with a moving suspen-
sion point

The method of determining the path of movement of a
swinging spring load in a vertical plane was presented for the
case when the point of its suspension is movable. Next, a de-
scription of the law of suspension point movement in a form
of function f(¢) should be added to previously considered
parameters (load weight, initial length of the spring in un-
loaded condition, spring stiffness and initial conditions for
occurrence of oscillation). Note that in the case of movable
point of suspension, one can expect not only strict periodic
paths of the swinging spring load but also conditionally pe-
riodic paths because of significant nonlinearity of the oscil-
latory system, that is, such paths of load movement that will
not go beyond boundaries of a certain band in the Oxy plane.

To describe oscillations of the swinging spring, take the
value of the angle formed by the axis of the swinging spring
and vertical Oy axis as the first generalized coordinate
function u(¢). Relate another generalized coordinate func-
tion v(¢) to longitudinal variation of the spring in time and
denote the length of the swinging spring in unloaded state
through A (Fig. 2).

This study considers two cases of movement of the sus-
pension point: along Ox and Oy axes.

Case 1. Let the point of suspension of the swinging
spring move along the Ox axis according to law x=/(¢). Then
virtual coordinates of the moving point load can be calcu-
lated by formulas (5). Lagrangian is taken as a difference
between kinetic and potential energies (g=9.81):

~ ﬂ 2 @ 2 (du)Z
L—O.Sm[(dt) +(dt) +(h+0) 7 +
df (do . du .
+mE(Esmu+(h+v)Esmu)
—0.5k0* + mg(h+v)cosu. ¢

To set up a system of differential Lagrange equations of
the second kind, use relation (7). As a result, the system of La-
grange equations of the second kind is obtained in this form:

dv d’f .

2
—(h+u)(%) +ko—gcosu=0; 10)

du (dfY
(h+v)ﬁ—(—) cosu+

dt
+Z%%+ gsinu=0.

Example 4. Determine the value of weight m which would
provide a periodic path of movement of the load of the swing-
ing spring with stiffness # and length # in unloaded state. In
initial position, the swinging spring is positioned vertically,
that is, #(0)=0. Oscillation is initiated by means of an impulse
applied to the spring load in the direction of Ox axis: du(0)=1.
This value can be considered as initial rate of variation in
time of the angle u. Initial values for the v parameter of the
spring extension have form v(0)=2; dv(0)=0. Let £2=50 and
h=2. Set the law of movement of the fixing point by function
J(®)=sin(2t). Take the value of load weight m as a controlling
parameter of the swinging spring oscillation.

Solve the system of equations (8) with initial conditions
u(0)=0; du(0)=1; v(0)=2; dov(0)=0 using numerical Run-
ge-Kutta method. Fig. 25 shows integral curves in phase
spaces {u, Du, t} and {v, Do, t} for the found critical value of
m=5.142. Integration time T=16. Fig. 26 shows phase paths
of corresponding generalized coordinate functions. With
their help, it is possible to determine variation ranges. It can
be seen that the phase paths cannot be “focused” as in the
previous examples. Therefore, to maintain correctness, the
further obtained paths of movement of the swinging spring
load will be considered conditionally periodic.

Fig. 25. Integral curves for a critical value of m=5.142 in
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)
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Fig. 26. Phase paths in planes {u, Du} and {v, Dv}: coordinate
function u(?) (a); coordinate function v(?) (b)

To confirm the value of m=5.142, use the graph of satura-
tion of image of the phase path line (Fig. 27). The minimum
number of image pixels is achieved at a critical value of the

control parameter, my=5.148.
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Fig. 27. The graph of dependence of the number of pixels Np
in the image of the phase path on the m value

Following calculation of mo=5.142, it is necessary to sub-
stitute its value into the place of m in the system of Lagrange
equations of the second kind (8) and numerically solve it
by Runge-Kutta method with respect to the functions u(¢)
and o(?). A sequence of values of (u;, v;) is obtained at ¢=t;
(where i=1... §). To construct the path of movement of the
swinging spring load in the Oxy plane, it is necessary to put
the sequence of values (&;, v;) into expressions (5) of virtual
coordinates (x, ). The resulting points should be connected
to a broken line. As a result, an approximated image of the
periodic path of the swinging spring load movement in the
Oxy plane is found for case 1 (Fig. 28). Since the phase paths
have failed to be “focused” as in the previous examples, the
resulting path of movement of the swinging spring load will
be considered conditionally periodic. Visual analyzer has
confirmed naturality of oscillations of the swinging spring
with a moving suspension point which can be seen from the
computer animations on the web site [32].

Fig. 28. The path of movement of the swinging spring load
for example 4

Example 5. Let us change direction of the impulse action
to initiate movement of the swinging spring to the opposite,

that is, take du(0)=—1. Solve the system of equations (8)
with initial conditions #(0)=0; du(0)=-1; v(0)=2; dv(0)=0
by numerical Runge-Kutta method.

Fig. 29 shows integral curves in phase spaces {u, Du, t}
and {v, Do, t} for the found critical value m=16.571. Inte-
gration time 7=16.7. Fig. 30 shows phase paths of the corre-
sponding generalized coordinate functions with the help of
which it is possible to determine their variation ranges.
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Fig. 29. Integral curves for a critical value of m=16.571 in
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)
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Fig. 30. Phase paths in planes {u, Du} and {v, Dv}: coordinate
function u(1); coordinate function v(?) (b)

To confirm the value of m=16.571, use the graph of sat-
uration of the phase path line image (Fig. 31). Minimum
number of image pixels is achieved at a critical value of the
control parameter my=16.571.
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Fig. 31. The graph of dependence of the number of pixels Np
in the image of the phase path on the value of m

Following calculation of m=16.571, it is necessary
to substitute its value into the place of m in the system
of Lagrange equations of the second kind (8) and nu-
merically solve it by Runge-Kutta method with respect
to the functions u(z) and o(¢). A sequence of values of
(u;, v;) at t=t; (where i=1... ) is obtained. To construct
the path of movement of the swinging spring load in the
Oxy plane, put the sequence of values of (u;, v;) into ex-
pressions (5) of virtual coordinates (x, y). The resulting
points should be connected to a broken line. As a result,
an approximated image of the periodic path of movement
of the swinging spring load in the Oxy plane was found for
case 1 (Fig. 32).
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Fig. 32. The path of movement of the spring load for
example 5

Thus, it can be stated that a periodic or conditionally pe-
riodic path can be obtained by changing direction of impulse
action for initiating movement of the swinging spring from
du(0)=1 to the opposite one: du(0)=-1.

Case 2. Let the point of suspension of the swinging
spring move along the Oy axis by the law y=/(¢). Then virtu-
al coordinates of the moving point load can be calculated by
formulas (5). Set Lagrangian as a difference between kinetic
and potential energies (g=9.81):

o5 (5]

2
—0.5k(v—h)’ —m(g+ d vacosu.

dt? b

To form a system of Lagrange differential equations of
the second kind, relation (7) should be used. As a result, the
system of Lagrange equations of the second kind is obtained
in the form:

2 2 2
2mﬁ+md fcosu—2mv(@) +
t dt

(12)

+k(v—h)+mgcosu=0;

2 2
d u + d fsinu—4@@+gsinu =0.

_p 4
A e di dt

Determine value of the weight m which would pro-
vide periodic path of movement of the load of the swing-
ing spring with stiffness & and length % in unloaded
state.

Example 6. Let the initial position of the swinging spring
be determined by the angle —n/4, that is, u(0)=—n/4. The
rate of variation of the angle value du(0)=0. Initial values
for the parameter v of the spring extension are of the form
0(0)=2; do(0)=0. Take k=450 and A=2.5. Set the law of
movement of the fixing point by function y=0.5cos(4t). Take
the value of the load weight as a controlling parameter of the
swinging spring oscillation.

Solve the system of equations (12) by numerical
Runge-Kutta method with initial conditions u(0)=-n/4;
du(0)=0; v(0)=2; dv(0)=0. Fig. 33 shows integral curves
in the phase spaces {u, Du, t} and {v, Do, t} for the found
critical value of m=22.57. Integration time T=17.2. Fig. 34
shows the phase paths of corresponding generalized co-
ordinate functions. With their help, it is possible to
determine their variation ranges. Phase paths cannot be
“focused” like in the previous examples. Therefore, the
path of movement of the spring load is considered condi-
tionally periodic.

Fig. 33. Integral curves for a critical value of m=22.57 in
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)
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Fig. 34. Phase paths in {u, Du} and {v, Dv}: coordinate
function u(#) (a); coordinate function v() (b)

To confirm the value of m=22.57, use the graph of sat-
uration of the phase path line image (Fig. 35). Minimum
number of image pixels is achieved at a critical value of the
control parameter my=22.57.
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Fig. 35. The graph of dependence of the number of pixels Np
in the image of the phase path on the value of m

Following calculation of my=22.57, it is necessary to put its
value into the place of m in the system of Lagrange equations
of the second kind (8) and numerically solve it by the Runge-
Kutta method with respect to the functions u(t) and v(¥). A
sequence of values of (u;, v;) at t=t; (where i=1... S) is obtained.
To construct the path of movement of the swinging spring
load in the Oxy plane, put the sequence of values of (u;, v;) into
expressions of (5) of virtual coordinates (x, y). The resulting
points should be connected to a broken line. As a result, an ap-
proximated image of periodic path of movement of the swinging
spring load in the Oxy plane is found for case 2 (Fig. 36).
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Fig. 36. The path of movement of the swinging spring load
for example 6



Example 7. Let us consider another variant when the
swinging spring is located at initial position at an angle
n/3, that is, u(0)=n/3. The rate of angle variation: du(0)=0.
Initial values for the parameter v of the spring extension:
0(0)=2; dv(0)=0. Let k=50 and ~=2.5. Set the law of move-
ment of the point of attachment by function y=cos(3t). Take
the value of the load weight as a controlling parameter of
oscillation of the swinging spring.

Solve the system of equations (12) by numerical Run-
ge-Kutta method with initial conditions u(0)=m/3; du(0)=1;
0(0)=2; do(0)=0. Fig. 37 shows integral curves in phase
spaces {u, Du, t} and {v, Do, t} for the found critical value
of m=5.7557. Integration time 7=25.3. Fig. 38 shows phase
paths of the corresponding generalized coordinate functions
with the help of which it is possible to determine their vari-
ation ranges. It is seen that the phase paths cannot by “fo-
cused” as in the previous examples. Therefore, it is necessary
to expect the path of movement of the swinging spring load
to be conditionally periodic.

Fig. 37. Integral curves for critical value of m=5.7557 in
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)
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Fig. 38. The phase paths in planes {v, Du} and {v, Dv}:
coordinate function u(?) (a); coordinate function v(#) (b)

To confirm value of m=5.7557, the graph of saturation of
the phase path line image can be used (Fig. 39). Minimum
number of image pixels is achieved at a critical value of the
control parameter my=5.7557.
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Fig. 39. The graph of dependence of the number of pixels Np
in the image of the phase path on the m value

Following calculation of m(=>5.7557, it is necessary to
substitute its value into the place of m in the system of
Lagrange equations of the second kind (12) and numeri-
cally solve it by Runge-Kutta method with respect to the
functions u(¢) and v(¢). A sequence of values of (u;, v;) are
obtained at ¢=t; (where i=1... S). To construct the path of
movement of the swinging spring load in the Oxy plane,
it is necessary to put the sequence of values of (u;, v;). in
expressions (5) of virtual coordinates (x, y). The resulting
points should be connected to a broken line. As a result,
an approximated image of the periodic path of movement
of the swinging spring load in the Oxy plane is found for
example 7 (Fig. 40).

Fig. 40. The path of movement of the swinging spring load
for example 7

The conditionally periodic paths obtained in this and
preceding examples can be explained by substantial nonlin-
earity of the problem of oscillation of a swinging spring with
a moving point of suspension. By involving visual analyzer
in the process of visualization of oscillations through com-
puter animation, one can make sure of natural character of
oscillation of the swinging spring with a moving point of
suspension. Confirmation for this fact can be found on the
web site [32] where computer animations of oscillation of
various swinging springs are provided.

5. Discussion of results obtained in computer simulation
of the paths of movement of the swinging spring loads

The obtained results can be explained by the possibility
of applying Lagrange variational principle to calculation of
mechanical oscillations of the type of swinging spring oscil-
lations. This has allowed us to use Lagrange equations of the
second kind to describe movement of the spring load.

Consideration of the ratio ig:% for the cases of a wide
range of variation of the parameter values belongs to the not
yet realized possibilities of study of the swinging spring os-
cillation. Here, m is the load weight, & is the spring stiffness,
[ is the spring length in unloaded state, g=9.81.

Under the condition of fulfillment of this correlation be-
tween parameters of the vibrational system, angular swing-
ing of the spring is most effectively performed at the expense
of this spring energy. Development of random transverse
perturbation will continue to a definite value of amplitude
since energy reserves of the spring are finite. After reaching
such an amplitude, stretching (or compression) of the spring
occurs again in the course of oscillation of the swinging
spring. This periodic repumping of the spring energy into
energy of transverse oscillation of the load and back appears



to be possible in a rather narrow range of variation of param-
eters with a maximum value corresponding to the indicated
ratio. It is necessary to check under what conditions this
relationship is executed with acceptable accuracy and how it
affects the image of periodic paths of movement of the spring
load. It is necessary to reveal number of possible periodic
paths for a certain set of input parameters as well as classify
images of periodic paths and perform their gradation taking
into consideration growth of their lengths.

In addition, it is necessary to continue study in the di-
rection of using the swinging spring as a model for studying
nonlinear coupled systems. Indeed, three energy compo-
nents similar to the spring and pendulum movements as well
as the connection between them necessary for this process
are identified for a swinging spring. This approach can be
applied, in principle, to arbitrary nonlinear coupled systems
to show how coupling mediates internal energy exchanges
and how energy distribution varies according to the system
parameters.

It will be interesting to investigate from these positions
nonlinear coupled systems with interacting subsystems on
examples of engineering problems. The first step to this goal
will be the study of mechanical devices where springs will
affect the path of oscillation of their loads. As examples, it
is expedient to consider mechanisms with moving loads, the
schemes having the form:

— two springs with a common load,;

— a pendulum attached to a suspended spring;

— a pendulum has length influenced by the spring;

— a pendulum under a moving cart whose position is in-
fluenced by the spring;

— a load at the end of the spring suspended to a mov-
ing cart.

Difficulties in development of the studies in this direc-
tion will arise when trying to solve an inverse problem in
the following statement. Let there be a curve having shape
belonging to figures of Lissage class. It is necessary to se-
lect values of the swinging spring parameters (load weight,

spring stiffness and length in unloaded condition) so that the
path of the load movement is similar to the selected curve.

7. Conclusions

1. Among the a priori chaotic oscillations of a double
pendulum, such oscillation was found when the second load
moves in a periodic path. This has made it possible to extend
the method of problem solution to the problems of determin-
ing periodic paths of movement of the spring load.

2. Variants of calculation for obtaining of a periodic
path of a swinging spring load were given when the spring
parameters are set:

— stiffness of the spring and its length without load at
an unknown load weight (for example, =1, m=3.332; k=40;
00=1; Dvy=0: uy=0; Duy=1.5; T=8.4);

— weight of the spring load and the spring length without
load at an unknown spring stiffness (for example, 2=1; m=1;
k=14.4; vy=1; Doy=0: uy=0; Duy=1; T=8.4);

— weight of the spring load and the spring stiffness at an
unknown spring length without load (for example, #=0.39;
m=2; k=40; vo=1; Dvy=0: uy=0; Duy=1.5; T=6).

3. Values of the parameters for providing a conditionally
periodic path of movement of the point load of a swinging
spring with a movable fixing point (for example, m=16.571;
k=50; h=2; 1u9=2; Duy=0; 09=0; Doy=—1; x=sin(2*t); T=16.7).

4. For each variant of calculation of the swinging spring,
phase paths of the functions of generalized coordinates (val-
ues of angles of deviation and elongation) were constructed
which has made it possible to estimate the range of variation
of these quantities and rates of this variation.

5. Reliability of the obtained results was illustrated by
computer animation of oscillations of corresponding swing-
ing springs demonstrated at the Internet site [32], where,
by involving visual analyzer, it is possible to verify natural
character of oscillations of the swinging spring including
moving point of suspension.
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