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1. Introduction

In order to explain complex processes occurring in na-
ture, pictorial mechanical interpretations are often used. 

Specifically, pendulum analogs are used as models of oscil-
latory processes [1].

A model of inverse pendulum with oscillating fixing 
point is a classic example. Physical model of this pendulum 

DEVELOPMENT OF A 
METHOD FOR COMPUTER 

SIMULATION OF A 
SWINGING SPRING LOAD 

MOVEMENT PATH
L .  K u t s e n k o

Doctor of Technical Sciences, Professor
Department of Engineering and Rescue Technology*

E-mail: leokuts@i.ua
O .  S e m k i v

Doctor of Technical Sciences, Vice-Rector
Department of Prevention Activities and Monitoring*

A .  K a l y n o v s k y
PhD, Associate Professor

Department of Engineering and Rescue Technology*
L .  Z a p o l s k i y

PhD, Senior Researcher
Department of Scientific and Organizational 
Ukrainian Civil Protection Research Institute

Rybalska str., 18, Kyiv, Ukraine, 01011
O .  S h o m a n

Doctor of Technical Sciences,  
Professor, Head of Department**

G .  V i r c h e n k o
Doctor of Technical Sciences, Associate Professor

Department of Descriptive Geometry, 
 Engineering and Computer Graphics

National Technical University of Ukraine «Igor Sikorsky 
Kyiv Polytechnic Institute»

Peremohy ave., 37, Kyiv, Ukraine, 03056
V .  M a r t y n o v

Doctor of Technical Sciences, Associate Professor
Department of Architectural Constructions

Kyiv National University of Сonstruction and Architecture
Povitroflotskyi ave., 31, Kyiv, Ukraine, 03037 

M .  Z h u r a v s k i j
PhD

Department of educational and methodical*
V .  D a n y l e n k o

Associate Professor**
N .  I s m a i l o v a

Doctor of Technical Sciences, Associate Professor
Department of Engineering Mechanics

Military Academy 
Fontanska doroha str., 10, OdesSa, Ukraine, 65009

*National University of Civil Defense of Ukraine
Chernyshevska str., 94, Kharkiv, Ukraine, 61023

**Department of Geometrical Modeling  
and Computer Graphics

National Technical University "Kharkiv Polytechnic Institute"
Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Продовжено дослiдження геометричного моделювання 
нехаотичних перiодичних траєкторiй руху вантажiв рiз-
новидiв математичних маятникiв. Розглядаються маят-
никовi коливання у вертикальнiй площинi пiдвiшеної нева-
гомої пружини, зберiгаючої при цьому прямолiнiйнiсть 
своєї осi. В лiтературi такий вид маятника називають 
хитною пружиною (swinging spring). Шукана траєк-
торiя вантажу хитної пружини за допомогою комп’юте-
ра моделюється з використанням значень маси вантажу, 
жорсткостi пружини та її довжини в ненавантажено-
му станi. Крiм того, використовуються такi початковi 
величини параметрiв iнiцiювання коливань хитної пружи-
ни: кут вiдхилення осi пружини вiд вертикалi, швидкiсть 
змiни величини цього кута, а також параметр подовжен-
ня пружини та швидкiсть змiни подовження. Розрахунки 
виконано за допомогою рiвняння Лагранжа другого роду. 
Також розглянуто варiанти знаходження перiодичних 
траєкторiй точкового вантажу хитної пружини з рухо-
мою (вздовж координатних осей) точкою крiплення.

Актуальнiсть теми визначається необхiднiстю 
дослiдження та удосконалення нових технологiчних 
схем механiчних пристроїв, до складу яких входять пру-
жини. Зокрема, дослiдження умов вiдмежування вiд хао-
тичних коливань елементiв механiчних конструкцiй та 
визначення рацiональних значень параметрiв для забез-
печення перiодичних траєкторiй їх коливань.

Наведено спосiб знаходження значень набору пара-
метрiв для забезпечення нехаотичної перiодичної траєк-
торiї руху точкового вантажу хитної пружини. Iдею 
способу пояснено на прикладi знаходження перiодичної 
траєкторiї руху другого вантажу подвiйного маятника.

Наведено варiанти розрахункiв для одержання перiо-
дичних траєкторiї руху вантажу, коли заданi параметри:

– жорсткiсть пружини та її довжина без наванта-
ження, але невiдома величина маси вантажу;

– величина маси вантажу та довжина пружини без 
навантаження, але невiдома жорсткiсть пружини;

– величина маси вантажу та жорсткiсть пружини, 
але невiдома довжина пружини без навантаження.

Також розглянуто знаходження значень набору пара-
метрiв для забезпечення умовно перiодичної траєкторiї 
руху точкового вантажу хитної пружини з рухомою 
точкою крiплення.

Побудовано фазовi траєкторiї функцiй узагальнених 
координат (значень кутiв вiдхилення осi пружини вiд 
вертикалi та подовження хитної пружини) за допомо-
гою яких можна оцiнити дiапазони зазначених величин 
та швидкостей їх змiни.

Результати можна використати як парадигму для 
вивчення нелiнiйних зв'язаних систем, а також при роз-
рахунках варiантiв механiчних пристроїв, де пружи-
ни впливають на коливання їх елементiв. Коли в тех-
нологiях використання механiчних пристроїв необхiдно 
вiдмежуватися вiд хаотичних перемiщень вантажiв, а 
забезпечити перiодичнi траєкторiї їх руху

Ключовi слова: маятниковi коливання, перiодичної 
траєкторiї руху, хитна пружина, рiвняння Лагранжа 
другого роду
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is the basis of theory of dynamic stabilization. The key idea 
of the theory consists in the need of dividing movement into 
“fast” and “slow” components, which was reflected in the 
concept of effective potential. With the help of the method of 
effective potential, the principle of stability of high-frequen-
cy generator, “nigotroneum”, was explained [2]. Apropos, in 
order to have no confidentiality problems when publishing 
the method, a physical model of a pendulum with oscillating 
suspension was taken, which would illustrate the principle 
of generator stability. This has served as a starting point 
for mathematical study of the pendulum with an oscillating 
suspension.

No less impressive mechanical interpretations are associ-
ated with a pendulum of another kind. In an idealized form, 
pendulum is a vertically suspended weightless spring with 
a point load attached at its end. In addition to longitudinal 
oscillations, spring oscillates like pendulum in a vertical 
plane while maintaining straightness of its axis. It was noted 
that if the load simultaneously performs oscillations along 
the spring axis and pendulum oscillations, then this action 
demonstrates the phenomenon of spring oscillations from 
a completely unexpected side. Behavior of such vibratory 
system has revealed interesting and deep physical laws [3].

The model of a spring oscillating like a pendulum (it is 
called a swinging spring in literature) is widely used as a 
mechanical model of more complex processes in nature and 
technology. These are processes with internal, nonlinearly 
coupled systems providing various oscillating components. 
What is essential in this process is the fact that the system 
components perform energy exchange with each other. Anal-
ysis of such energy exchange processes is presented in [1] in 
order to find out how all this depends on the system control 
parameters. To illustrate this, authors use a swinging spring 
as a paradigm for studying nonlinear coupled systems. Three 
energy components are identified for a swinging spring. 
They are similar to the movements of a spring, a pendulum 
and a link between them. The presented procedure can, in 
principle, be applied to arbitrary nonlinear coupled systems 
to show how the link mediates internal energy exchange 
processes and how energy distribution varies according to 
the system parameters.

The feature of the swinging spring phenomenon can 
be illustrated graphically. To this end, compare movement 
paths of the point load for two cases: a swinging spring  
(Fig. 1, a) and a parametric pendulum (Fig. 1, b).

а                   b 

Fig. 1. Analogy between angular oscillations:  
swinging spring (a); mathematical parametric pendulum (b)

For a parametric pendulum, parameter effect is manifest-
ed by the change of the pendulum length due to an external 
energy source. There is an interesting case when length is to 
be slightly increased in a low position and slightly reduced in 
extreme positions. Then maximum swaying will be achieved 
when frequency of the system parameter change (suspension 
length) is twice that of the system’s own oscillation frequen-

cy, for example, swinging of a children’s swing. To maintain 
its swinging for a long time, it is necessary to squat quickly 
at the moment of the greatest deviation of the swing from the 
position of equilibrium and stand up quickly when passing 
the lower position.

However, there is a fundamental difference between the 
“swinging spring” pendulum and the “swing” pendulum. 
There is no external energy source in the swinging spring 
and pendulums of this kind must themselves “provide” ex-
istence of such oscillations. It follows from experiments that 
growth of angular oscillations of the swinging spring is ac-
companied by attenuation of longitudinal oscillations. Then 
a reverse phenomenon takes place: swinging of longitudinal 
oscillations by means of reducing energy of angular oscil-
lations. Further, the whole process is constantly repeating. 
Repetitive sequential energy pumping from one oscillation 
to another occurs until all oscillations extinguish because 
of friction.

Nonlinear coupled systems with interacting subsystems 
are present in many fields: from physics and engineering to 
biology and social sciences. Examples of coupled systems 
include wave unification in plasma physics, laser pumping, 
biological oscillatory nets, neural nets, and genetic chains 
(corresponding references are given in [1]).

Study of features of the swinging spring oscillations is 
of interest for practical applications. For example, study of 
atmospheric balance of the planet is carried out with the help 
of a swinging spring model in [4], carbon dioxide molecule 
oscillation is studied in [5], oscillation of high-voltage wires 
is considered in [6] and helicopter vibration is modeled in 
[7]. Description of spring oscillation is similar to equations 
from “predator-prey” problems [8]. The list can be continued. 
At the same time, seaming disparate at first glance imple-
mentations have a common feature: possibility of their study 
on the basis of the swinging spring model. At the same time, 
the key point is determination of conditions for ensuring 
non-chaotic periodic paths of the swinging spring load. Such 
studies make it possible to isolate from chaotic movements 
of elements of mechanical devices which include spring ele-
ments. Periodic path of movement of a swinging spring load 
illustrates solution of corresponding differential equations 
describing its oscillations. After all, these equations have a 
nature similar to that of differential equations of adjacent 
(by their subject matter) implementations. The resulting 
geometrical form of the periodic path of movement of a 
swinging spring load in the space of parameters of a specific 
task will help illustrate solutions to this problem. That is, 
consideration of the model of a swinging spring will allow 
one to analyze nature of solutions in adjacent by their subject 
matter tasks and identify optimal in a certain sense options 
among them, just like Lissage figures are used in mechanics 
for analysis of oscillatory processes in mechanisms.

Consequently, the relevance of the chosen topic indicates 
necessity of developing an engineering method for finding 
values of a set of parameters to provide non-chaotic periodic 
path of movement of a swinging spring point load.

2. Literature review and problem statement

History of the studies dedicated to oscillation of a swing-
ing spring began with the quantum-mechanical explanation 
of the effect of line splitting in the spectrum of Raman scat-
tering on C2 molecule. At the same time, it was suggested 
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that the effect is of not quantum but classical mechanical 
oscillation nature. Namely, the effect is due to internal pe-
culiarities of the molecule oscillation where frequency of 
oscillations of one type is approximately twice frequency of 
oscillations of another type. Scientists have decided to test 
it on a swinging spring model. Calculated movement of such 
a system has shown that complete energy pumping from 
vertical oscillation to horizontal one and backward should 
periodically occur at a frequency ratio of 2:1.

Expediency of the swinging spring studies has arisen in 
a connection with the revealed possibility of their “non-stan-
dard” use both in theory and practice. However, most studies 
are focused on analytic approximations for weakly coupled 
systems and energy exchanges arising when subsystems 
resonate. Parametric mechanism is an effective mechanism 
of energy exchanges [9]. Specifically, a swinging spring with 
two degrees of freedom is an auto-parametric system being 
the basis for studying nonlinear coupled systems. In addi-
tion, swinging spring is important due to the possibility of 
qualitative presentation of many nonlinear coupled systems. 
Among these presentations, classical analog of vibrational 
modes of triatomic molecules can be mentioned. It realizes 
Fermi resonance in infrared and combinatorial spectra [1].

Oscillations of swinging springs are directly related to 
plane and ship dynamics. Effects of impairment of stability 
and controllability of high-speed ships and supersonic aircraft 
were revealed. It turned out that the most intense swinging of 
lateral oscillation occurs when incidence oscillation occurs at 
twice the frequency of lateral oscillation [10]. Flexible thread 
model as a modified swinging spring model plays an import-
ant role in building mechanics. Flexible thread is a kind of 
spring acting only in stretching. In a typical two-dimensional 
model, flexible thread can simultaneously perform transverse 
oscillations in its plane (analogous to angular oscillations of 
a swinging spring with a load attached) and pendulum oscil-
lations that connect supports (analogous to vertical oscilla-
tions) [6, 11]. Loss of dynamic stability occurs at a ratio of fre-
quencies of these oscillations 1:2 when transverse oscillation 
of the thread at amplitudes reaching rather large values arises. 
The possibility of occurrence of such phenomena must be 
taken into consideration in calculation of various structures 
(suspension bridges, cable-and-beam systems, cable-ways, 
power lines, various spaceship cable systems for holding ob-
jects, flexible hoses, various antennas, etc.) [3].

Theoretical study of small planar nonlinear oscillations 
of a swinging spring with a nonlinear dependence of its 
tension on lengthening is given in [12, 13]. The method of 
a Hamiltonian normal form was used. Solution of Hamilto-
nian equations of normal form has shown that periodic re-
organization of oscillations between vertical and horizontal 
modes occurs only in the case of resonance ratios of 1:1 and 
2:1. In all other cases, both in presence of resonance and in 
its absence, oscillations occur at two constant frequencies.

Changes in behavior of a swinging spring when one re-
sponse under parameter checkout becomes unstable and is 
replaced by another are studied in [14]. Poincare sampling 
is used to reduce the problem of describing the limit-cycle 
stability to a simpler problem of determining stability of a 
fixed point by the Poincaré mapping. Connection of normal 
modes of a swinging pendulum oscillation is considered in 
[15]. Comments on experiments related to violation of normal 
modes are given. of a Swinging spring systems near resonance 
are investigated in [16] with the help of “slow fluctuation” 
approximation which consists in application of trigonometric 

polynomials and preservation of only a member with the slow-
est frequency. It was shown in [17] that integral approximation 
of a spatial swinging spring adjusted to a resonance of 1:1:2 has 
monochromium and a stepwise angle of precession of the plane 
of oscillation of the resonant spring pendulum is the number of 
revolution of integral approximation. Paper [18] is devoted to 
oscillation of a swinging pendulum with its suspension point 
moving along vertical line. Periodic solutions of the equation 
are obtained with the use of Hill’s determinants. The devel-
oped computational procedure is used to determine combina-
tions of those system parameters for which periodic solutions 
are possible. A spatial swinging spring with resonance of 2:1:1 
approximately described by Lagrangian is studied in [19]. 
Hamiltonian abbreviations and sampling methods are used 
in descriptions. The resulting formula describes stepwise az-
imuthal angle precession. Energy flow between longitudinal 
and pendulum oscillations is considered in [20] as pulsation. 
Pulsation and stepped precession are characteristic features 
of the swinging spring dynamics. Hamiltonian reduction was 
used to find complete analytical solution. Dynamics of a spring 
pendulum is investigated in [21] with the use of asymptotic 
methods. Methods of the theory of nonlinear normal forms of 
oscillation have enabled study of pendulum dynamics both for 
significant and small oscillation amplitudes.

However, all of these studies are mostly theoretical. For 
engineering practice, methods are needed to construct real 
non-chaotic periodic paths of the swinging spring loads. 
Some of them are also described in [22] where examples of 
periodic paths are given as well as in [23] where conditions for 
constructing periodic paths are studied. A program written in 
Mathematics language by means of which periodic paths of a 
double pendulum can be constructed is presented in [24]. The 
study [25] is devoted to a connection of a possible spring load 
path with Lissage figures. A maple program for constructing 
spring load paths is presented in [26]. Another method of 
constructing spring load paths is proposed in [27]. Examples 
of periodic paths of swinging springs are given in [28]. Oscil-
lation of a swinging spring with a moving suspension point 
is studied in [29]. However, there is no universal approach 
to construction of periodic paths of spring load in the known 
studies. Also, there is no oscillation analysis using phase paths 
of the functions included in description of generalized coordi-
nates of a corresponding oscillatory system.

A method of projection focusing is presented in [30] for 
construction of periodic paths of loads of a variety of math-
ematical pendulums. Examples of implementation of this 
method are considered in [31].

As a result of the review of published sources [1–29], 
issues that have not yet been investigated by other authors 
were identified. They have enabled formulation of the fol-
lowing study problem: develop a method for finding values 
of a set of parameters that would provide a non-chaotic 
periodic path of a point load of a swinging spring, that is, a 
load attached to a vertically suspended spring performing 
pendulum oscillations.

3. The aim and objectives of the study

The study objective was to develop a method for comput-
er modeling of a periodic path of movement of a point load 
attached to a swinging spring.

To achieve this objective, the following tasks had to be 
solved:
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– explain the method idea on an example of a test task: 
construct periodic path of movement of the second load of a 
double pendulum;

– provide variants of calculation for obtaining periodic 
paths of movement of a swinging spring load when the fol-
lowing is given:

   – length without load and stiffness at unknown load 
weight;

   – spring length without load and the load weight at 
unknown spring stiffness;

   – load weight and spring stiffness at unknown length 
of nonloaded spring;

– define a set of parameters for provision of a condition-
ally periodic path of movement of a point load attached to a 
swinging spring with a moving fixing point;

– construct phase paths of functions of generalized coor-
dinates of the swinging spring (values of angles of the spring 
axis deviation from the vertical and elongation) in order to 
assess the range of variation of above quantities and the rate 
of this variation;

– illustrate the results obtained by computer animation 
of oscillation of corresponding swinging springs.

4. Developing a geometric model of periodic paths of  
a swinging spring load

4. 1. Constructing periodic paths of movement of a 
double pendulum load by the method of projection focusing

The method of “projection focusing” intended for con-
struction of periodic paths of loads of a variety of pendulums 
is considered in [30]. Hereinafter, an explanation of the 
method is given by the example of determining non-chaotic 
path of movement of the second load attached to a double 
pendulum. This example is considered in most textbooks on 
theoretical mechanics. Namely double pendulum is so often 
used to illustrate chaotic oscillations. Therefore, solution to 
the problem of periodic paths of the second load on a double 
pendulum will be of particular interest.

Let us set conditions of idealization of oscillations of a 
double pendulum:

– both links are weightless and nondeforming;
– weight of the loads is concentrated in corresponding 

points at the ends of the links;
– there are no nodal supports and air resistance during 

oscillation;
– oscillation proceeds in a vertical plane enveloping the 

suspension point;
– the process of energy dissipation is slow in comparison 

with characteristic time scales (the oscillatory system is 
conservative);

– parameters and initial conditions are set in conven-
tional numerical units.

The double pendulum diagram is shown in Fig. 2.

Fig. 2. The double pendulum diagram

Take the angles formed by the pendulum links with the 
vertical axis Oy as generalized coordinates u(t) and v(t). 
Then virtual coordinates of the nodal points can be calcu-
lated by formulas:

1 1 sin ;x d u=  1 1 cos ;y d u= − 	  (1)

2 1 2sin sin ;x d u d v= +  2 1 2cos cos .y d u d v= − −

Set Lagrangian as a difference between kinetic and po-
tential energies (g=9.81):

2 2

1 1
1

2 2

2 2
2 1 1 2 2

0.5

0.5 .

dx dy
L m

dt dt

dx dy
m m gy m gy

dt dt

   = + +      

   + − −      
	  (2)

To compile a system of Lagrange differential equations of 
the second kind, use the following relations (the point here 
means time derivative):

0;
d L L
dt u u

∂ ∂  − =  ∂ ∂�
 0.

d L L
dt v v

∂ ∂  − =  ∂ ∂�
 	 (3)

As a result, the system of Lagrange equations of the sec-
ond kind is obtained in the form:

( )
2 2

1 2 1 2 22 2

2

2 2 1 2

cos( )

sin( ) ( ) sin 0;

d u d v
m m d m d u v

dt dt

dv
m d u v m m g u

dt

+ + − +

  − + + =  
	  (4)

2 2

2 12 2

2

1

cos( )

sin( ) sin 0.

d v d u
d d u v

dt dt

du
d u v g v

dt

+ − −

 − − + =  

To illustrate possibilities of the method of projection fo-
cusing, consider construction of a periodic path of the second 
load of a double pendulum in a form of the following problem.

Problem statement. Construct a periodic path of a double 
pendulum with link lengths d1 and d2 and weights m1 and 
m2 as loads at the ends of the links. In the initial position, all 
links are vertical, that is, u(0)=0 and v(0)=0. Oscillations 
are initiated using impulses applied to the pendulum loads 
in two mutually antithetic directions along the Ox axis  
(Fig. 3). That is, du(0)=–F and dv(0)=F where F is a quantity 
that can be characterized as the initial rate of change in time 
of the corresponding angle magnitude.

Fig. 3. Initiation of a double pendulum oscillations 

Problem solution with simultaneous explanation of the 
method of projection focusing. For determination of the val-
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ue of parameter F which would provide periodic movement 
path of the second load of the double pendulum, apply the 
method of projection focusing [30]. To do this, solve the sys-
tem of equations (3) with chosen initial conditions u(0)=0; 
du(0)=–F; v(0)=0; dv(0)=F and parameters using numerical 
Runge-Kutta method. “Assign” the variable F as a control 
parameter of oscillation of the double pendulum.

Next, construct image of the integral curve in the phase 
space {u, Du, t} depending on the value of the control param-
eter F. At arbitrary values of F in the phase space, a “tangled” 
integral curve will more likely be formed (Fig. 4, a). In the 
algorithmic implementation, this will be a multi-link curved 
line which will connect N adjacent points with coordinates 
(ui, Dui, ti) (where i=1…N). Points in the phase space are 
obtained as a result of numerical solution of the system of 
Lagrange equations of the second kind.

Project the resulting integral curve to the phase plane 
{u, Du} where the phase path of the generalized coordi-
nate function u(t) will be its projection (the same can be 
done for the coordinate function v(t)). When the control 
parameter F changes, character of the phase path also 
changes. At a certain critical value of F=F0, character of 
the phase path will change at a qualitative level: it will 
turn into a “focused” curve. In the process of movement 
of the parameter F to the critical value F0 in a mode of 
computer animation, one can observe an optical effect of 
“sharpening” of the “tangled” phase paths in the phase 
plane (Fig. 4, b).

а                                b 

Fig. 4. Phase paths as projections of integral curves: for an 
arbitrary value of the control parameter F (a); for a critical 

value F0 of the control parameter (b)

To correlate graphic properties of the phase curves 
with numerical ones, the concept of saturation (or densi-
ty) of a line image was used. The property of saturation 
of the line image is characterized by the number of con-
ditional plane points (pixels) built by means of computer 
graphics. The number of pixels to make line pictorial 
with an acceptable for practice error will be the degree of 
saturation. The value of the control parameter F is sought 
so that the image of the phase paths was of a minimum 
saturation which can be compared with the above-men-
tioned focusing in the sense of sharpening. This approach 
was implemented in practice with application of the Im-
ageTools graphical information processing library of the 
Maple package [31].

According to the conditions of the problem, dependence 
of the number of pixels Np in the phase path image on the 
value of the control parameter F was plotted (Fig. 5). It 

follows from the graph that the minimum number of pixels 
of the image is achieved at a critical value of the control pa-
rameter F0=2.556. This value was clarified by reducing the 
interval containing F0.

 
Fig. 5. Dependence of the number of pixels Np in the phase 
path image on F value: for 1.9≤F≤2.9 (a); for 2.5≤F≤2.6 (b)

After calculation of F0, it is necessary to substitute its 
value instead of F in the system of Lagrange equations of 
the second kind (3) and numerically solve this system by 
Runge-Kutta method with respect to the functions u(t) and 
v(t). A sequence of values (ui, vi) at t=ti (where i=1... S) is ob-
tained. To construct the path of movement of the second load 
in Oxy plane, it is necessary to put sequence of values (ui, vi) 
in expression (1) of virtual coordinates (x2, y2). The resulting 
adjacent points should be connected to a broken line. As a 
result, an approximate image of the path of movement of the 
second load in Oxy plane is found.

To implement this idea, a program was developed for 
building a phase path as an orthogonal projection of an 
integral line from a phase space to a phase coordinate 
plane with simultaneous computation of critical value of 
the control parameter with further definition of the path of 
the second load movement. The time of integration of the 
system of equations was determined. It will correspond to 
the minimum time in which the second load returns to its 
original position.

Obtained solutions to the problem. Let the lengths of the 
dual pendulum links be d1=1.5 and d2=1. Then, periodic 
paths of the second load of the pendulum will depend on 
the ratio of weight values of loads according to the follow-
ing cases.

Case 1. For arbitrary identical values of weights m1=m2 
at F=2.556, periodic paths of the second load close by 
their geometric forms are obtained. Their view is shown 
in Fig. 6.

Fig. 6. The view of path of the second load at a value of 
F=2.556 in cases when m1=m2

The phase paths of the functions of generalized coordi-
nates are shown in Fig. 7. Integration time T»3.
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а                             b 

Fig. 7. The view of phase paths of the functions of 
generalized coordinates for case 1 at m1=m2 and F=2.556: 

for u(t) (a); for v(t) (b)

Case 2. When m1=km2, then periodic paths of the second 
load close in their geometric form are obtained. They are 
shown in Fig. 8. In this case, F values are taken from Table 1.

Table 1

Parameter values to provide a periodic path in the case of 
m1=km2

Value of k 2 3 4 5 6

Value of F 3.752 3.388 3.188 3.052 2.964

Fig. 8. The view of path of the second load in the case when 
m1=km2

The view of phase paths of the functions of generalized 
coordinates for case 2 is shown in Fig. 9. Integration time 
T»5.4.

а                              b 

Fig. 9. The view of phase paths of functions of generalized 
coordinates for the case at m1=km2 and the value of F taken 

from Table 1: for u(t) (a); for v(t) (b)

Case 3. When km1=m2, periodic paths of the second load 
close by their geometric form are obtained. They are shown 
in Fig. 10. The values of F are taken from Table 2.

Table 2

Values of parameters to provide a periodic path in the case 
of km1=m2

Value of k 2 3 4 5 6

Value of F 4.844 6.32 7.36 8.3 9.2

Fig. 10. The view of the second load path in the case when 
km1=m2

The view of phase paths of functions of generalized coor-
dinates for case 3 is shown in Fig. 11. Integration time T»3.4.

а                         b 

Fig. 11. The view of phase paths of the functions of 
generalized coordinates for the case when km1=m2 and  
the value of F taken from Table 2: for u(t) (a); for v(t) (b)

The obtained phase paths enable determination of the 
ranges of change in the angle values as well as rates of this 
change in the values of angles.

4. 2. Calculation of periodic paths of movement of a 
swinging spring load

Here is a way to determine path of movement of the 
swinging spring load in vertical plane Oxy depending on 
the load weight, initial length of the spring in the unloaded 
state, stiffness of the spring and initial conditions for occur-
rence of oscillations.

Conditions set for idealization of oscillations of the 
swinging spring:

– oscillation takes place in a vertical plane enveloping 
the fixing (suspension) point;

– the load weight is concentrated in one point located in 
the spring axis from the nonfixed end;

– the spring is weightless and its axis remains straight 
during oscillation;

– supports in the nodes and the air resistance are absent 
during oscillation;

– the process of energy dissipation is slow in comparison 
with the characteristic time scales (the oscillatory system is 
conservative);

– parameters and initial conditions are given in condi-
tional numerical units.

The swinging spring diagram is shown in Fig. 12.

Fig. 12. The swinging spring diagram
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Take the value of the angle formed by the axis of the 
swinging spring with the vertical axis Oy as the first gen-
eralized coordinate function u(t). Relate the second gen-
eralized coordinate function v(t) to longitudinal variation 
of the spring length in time; denote length of the swinging 
spring in unloaded state through h. Then virtual coordinates 
of the moving point load can be calculated according to the 
formulas:

( )sin ;x h v u= +  

( )cos .y h v u= − +  	 (5)

Set Lagrangian as a difference between kinetic and po-
tential energies (g=9.81):

2 2

2

0.5 ( )

0.5 ( )(1 cos ) .

dv du
L m h v

dt dt

kv mg h v u mgv

    = + + −        

− + − − 	  (6)

To form a system of Lagrange differential equations of 
the second kind, use the following relation (the point means 
time derivative):

0;
d L L
dt u u

∂ ∂  − =  ∂ ∂�  

0.
d L L
dt v v

∂ ∂  − =  ∂ ∂�
 	 (7)

As a result, the system of Lagrange equations of the sec-
ond kind is obtained in the form:

2

2( ) 2 sin 0;
d u dv du

v h g u
dt dt dt

+ + + =  	 (8)

22

2 ( ) cos 0.
d v du kv

v h g u
dt dt m

 − + + − =  

The problem statement. Determine the value of weight 
m which would provide a periodic path of movement of 
load of the swinging spring with stiffness k and length h in 
unloaded state. In its initial position, the swinging spring 
is positioned vertically, that is, u(0)=0. Oscillation is initi-
ated by means of an impulse applied to the spring load in 
direction of the Ох axis: du(0)=1.5. The value of 1.5 can be 
considered the initial rate of change in time of the angle u. 
Take initial values for parameter v of the spring extension 
as v(0)=1; dv(0)=0.

Solve the system of equations (8) with initial condi-
tions u(0)=0; du(0)=1.5; v(0)=1; dv(0)=0 by applying 
numerical Runge-Kutta method. Choice of parameters 
m, k, and h ensures periodicity of the swinging spring  
load path.

Example 1. Let k=30 and h=1. Take weight m as con-
trolling parameter of the swinging spring oscillation. Fig. 13 
shows integral curves in phase spaces {u, Du, t} and {v, Dv, t} 
for the found critical value m=3.332. As a result, phase 
paths in {u, Du} and {v, Dv} planes are obtained (Fig. 14). 
With their help, it is possible to determine ranges of angle 
variation and rate of this variation (coordinate function 
u(t)) during oscillation of the swinging spring as well as 

elongation of the spring and elongation rate (coordinate 
function v(t)).

а                              b 

Fig. 13. Integral curves for critical value m=3.332 in phase 
spaces: {u, Du, t} (a); {v, Dv, t} (b)

а                         b 

Fig. 14. Phase paths in planes {u, Du} and {u, Dv}  
for: coordinate function u(t) (a); 

 coordinate function v(t) (b)

To confirm value of the critical value m=3.332 found, 
use the graph of saturation of the phase path line image. 
Fig. 15 shows the graph of dependence of the number of 
pixels Np in the image of the phase path on the value of 
the control parameter m. Minimum number of image pix-
els is achieved at a critical value of the control parameter 
m0=3.332.

Fig. 15. The graph of dependence of the number of pixels Np 
in the image of the phase path on the m value 

Following calculation of m0, it is necessary to put 
its value into the place of m in the system of Lagrange 
equations of the second kind (8) and numerically solve it 
by the Runge-Kutta method with respect to u(t) and v(t) 
functions. A sequence of values of (ui, vi) at t=ti (where  
i=1... S) is obtained. To construct the path of movement 
of the second load in Oxy plane, it is necessary to put 
sequence of values (ui, vi). in expressions (5) of virtual co-
ordinates (x, y). The resulting points should be connected 
to a broken line. As a result, an approximated image of 
the path of movement of the swinging spring load in Oxy 
plane is found (Fig. 16).
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Fig. 16. The path of movement the swinging spring load for 
example 1

Example 2. Let m=1 and h=1. Select the value of stiffness 
k as a control parameter. Fig. 17 shows integral curves in 
phase spaces {u, Du, t} and {v, Dv, t} for the found critical 
value k=14.4. Fig. 18 shows phase paths of the correspond-
ing generalized coordinate functions by means of which it is 
possible to determine ranges of their changes.

a                             b 

Fig. 17. Integral curves for the critical value of k=14.4 in 
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)

а                           b 

Fig. 18. The phase paths in planes {u, Du} and {v, Dv}: 
coordinate function u(t); coordinate function v (t) (b)

To confirm the value of k=14.4, use the saturation graph 
of the phase path line (Fig. 19). Minimum number of image 
pixels is achieved at critical value of the control parameter 
k0=14.4.

Fig. 19. The graph of dependence of the number of pixels Np 
in the phase path image on the m value

Following calculation of k0=14.4, it is necessary to 
substitute its value for k in the system of Lagrange equa-
tions of the second kind (8) and numerically solve it by 

Runge-Kutta method with respect to the functions u(t) 
and v(t). A sequence of values of (ui, vi) is obtained at t=ti 
(where i=1... S). To construct the path of movement of the 
swinging spring load in the Oxy plane, it is necessary to 
put the sequence of values (ui, vi) into expressions (5) of 
virtual coordinates (x, y). The resulting points should be 
connected to a broken line. As a result, an approximated 
image of the path of movement of the swinging spring load 
in the Oxy plane is found (Fig. 20).

Fig. 20. The path of movement of the swinging spring load 
for example 2

Example 3. Let m=1 and k=10. Take the length h of the 
swinging spring without load as a control parameter. Fig. 21 
shows integral curves in the phase spaces {u, Du, t} and 
{v, Dv, t} for the found critical value of h=0.39. Fig. 22 shows 
the phase paths of the corresponding generalized coordinate 
functions. With their help, it is possible to determine varia-
tion ranges.

а                             b 

Fig. 21. Integral curves for the critical value of h=0.39 in 
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)

a                            b 

Fig. 22. The phase paths in planes {u, Du} and {v, Dv}: 
coordinate function u(t); coordinate function v(t)

To confirm value of h=0.39, use the graph of saturation 
of the phase path line image (Fig. 23). Minimum number of 
the image pixels is achieved at a critical value of the control 
parameter h0=0.39.

Following calculation of h0=0.39, it is necessary to 
substitute its value in place of h in the system of Lagrange 
equations of the second kind (8) and numerically solve it by 
Runge-Kutta method with respect to the functions u(t) and 
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v(t). A sequence of values of (ui, vi) at t=ti (where i=1... S) is 
obtained. To construct the path of movement of the swing-
ing spring load in the Oxy plane, it is necessary to put the 
sequence of values of (ui, vi) into expressions (5) of virtual 
coordinates (x, y), The resulting points should be connected 
to a broken line. As a result, an approximate image of period-
ic path of movement of the swinging spring load in the Oxy 
plane is found (Fig. 24).

Fig. 23. The graph of dependence of the number of pixels Np 
in the phase path image on the value of h

Fig. 24. The paths of the spring load movement for example 3

Consequently, the critical values of the control param-
eter found by the method of projection focusing can be 
confirmed using the graph of saturation of the image of the 
phase path line, that is, the graph of dependence of the num-
ber of pixels Np in the image of the phase path on the control 
parameter value.

4. 3. Calculation of periodic paths of movement of a 
load attached to a swinging spring with a moving suspen-
sion point

The method of determining the path of movement of a 
swinging spring load in a vertical plane was presented for the 
case when the point of its suspension is movable. Next, a de-
scription of the law of suspension point movement in a form 
of function f(t) should be added to previously considered 
parameters (load weight, initial length of the spring in un-
loaded condition, spring stiffness and initial conditions for 
occurrence of oscillation). Note that in the case of movable 
point of suspension, one can expect not only strict periodic 
paths of the swinging spring load but also conditionally pe-
riodic paths because of significant nonlinearity of the oscil-
latory system, that is, such paths of load movement that will 
not go beyond boundaries of a certain band in the Oxy plane.

To describe oscillations of the swinging spring, take the 
value of the angle formed by the axis of the swinging spring 
and vertical Oy axis as the first generalized coordinate 
function u(t). Relate another generalized coordinate func-
tion v(t) to longitudinal variation of the spring in time and 
denote the length of the swinging spring in unloaded state 
through h (Fig. 2).

This study considers two cases of movement of the sus-
pension point: along Ox and Oy axes.

Case 1. Let the point of suspension of the swinging 
spring move along the Ox axis according to law x=f(t). Then 
virtual coordinates of the moving point load can be calcu-
lated by formulas (5). Lagrangian is taken as a difference 
between kinetic and potential energies (g=9.81):

2 2 2

2

0.5 ( )

sin ( ) sin

0.5 ( )cos .

d f dv du
L m h v

dt dt dt

d f dv du
m u h v u

dt dt dt

kv mg h v u

      = + + + +            

 + + + −  

− + +  	 (9)

To set up a system of differential Lagrange equations of 
the second kind, use relation (7). As a result, the system of La-
grange equations of the second kind is obtained in this form:

2 2

2 2

2

sin

( ) cos 0;

d v d f
u

dt dt

du
h u kv g u

dt

+ −

 − + + − =  
 	 (10)

22

2( ) cos

2 sin 0.

d u d f
h v u

dt dt

du dv
g u

dt dt

 + − +  

+ + =

Example 4. Determine the value of weight m which would 
provide a periodic path of movement of the load of the swing-
ing spring with stiffness k and length h in unloaded state. In 
initial position, the swinging spring is positioned vertically, 
that is, u(0)=0. Oscillation is initiated by means of an impulse 
applied to the spring load in the direction of Ох axis: du(0)=1. 
This value can be considered as initial rate of variation in 
time of the angle u. Initial values for the v parameter of the 
spring extension have form v(0)=2; dv(0)=0. Let k=50 and 
h=2. Set the law of movement of the fixing point by function 
f(t)=sin(2t). Take the value of load weight m as a controlling 
parameter of the swinging spring oscillation.

Solve the system of equations (8) with initial conditions 
u(0)=0; du(0)=1; v(0)=2; dv(0)=0 using numerical Run-
ge-Kutta method. Fig. 25 shows integral curves in phase 
spaces {u, Du, t} and {v, Dv, t} for the found critical value of 
m=5.142. Integration time T=16. Fig. 26 shows phase paths 
of corresponding generalized coordinate functions. With 
their help, it is possible to determine variation ranges. It can 
be seen that the phase paths cannot be “focused” as in the 
previous examples. Therefore, to maintain correctness, the 
further obtained paths of movement of the swinging spring 
load will be considered conditionally periodic.

а                            b 
 

Fig. 25. Integral curves for a critical value of m=5.142 in 
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)
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а                              b 
 

Fig. 26. Phase paths in planes {u, Du} and {v, Dv}: coordinate 
function u(t) (a); coordinate function v(t) (b)

To confirm the value of m=5.142, use the graph of satura-
tion of image of the phase path line (Fig. 27). The minimum 
number of image pixels is achieved at a critical value of the 
control parameter, m0=5.148.

Fig. 27. The graph of dependence of the number of pixels Np 
in the image of the phase path on the m value 

Following calculation of m0=5.142, it is necessary to sub-
stitute its value into the place of m in the system of Lagrange 
equations of the second kind (8) and numerically solve it 
by Runge-Kutta method with respect to the functions u(t) 
and v(t). A sequence of values of (ui, vi) is obtained at t=ti 
(where i=1... S). To construct the path of movement of the 
swinging spring load in the Oxy plane, it is necessary to put 
the sequence of values (ui, vi) into expressions (5) of virtual 
coordinates (x, y). The resulting points should be connected 
to a broken line. As a result, an approximated image of the 
periodic path of the swinging spring load movement in the 
Oxy plane is found for case 1 (Fig. 28). Since the phase paths 
have failed to be “focused” as in the previous examples, the 
resulting path of movement of the swinging spring load will 
be considered conditionally periodic. Visual analyzer has 
confirmed naturality of oscillations of the swinging spring 
with a moving suspension point which can be seen from the 
computer animations on the web site [32].

Fig. 28. The path of movement of the swinging spring load 
for example 4

Example 5. Let us change direction of the impulse action 
to initiate movement of the swinging spring to the opposite, 

that is, take du(0)=–1. Solve the system of equations (8) 
with initial conditions u(0)=0; du(0)=–1; v(0)=2; dv(0)=0 
by numerical Runge-Kutta method.

Fig. 29 shows integral curves in phase spaces {u, Du, t} 
and {v, Dv, t} for the found critical value m=16.571. Inte-
gration time T=16.7. Fig. 30 shows phase paths of the corre-
sponding generalized coordinate functions with the help of 
which it is possible to determine their variation ranges.

а                          b 

Fig. 29. Integral curves for a critical value of m=16.571 in 
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)

a                             b 

Fig. 30. Phase paths in planes {u, Du} and {v, Dv}: coordinate 
function u(t); coordinate function v(t) (b)

To confirm the value of m=16.571, use the graph of sat-
uration of the phase path line image (Fig. 31). Minimum 
number of image pixels is achieved at a critical value of the 
control parameter m0=16.571.

Fig. 31. The graph of dependence of the number of pixels Np 
in the image of the phase path on the value of m

Following calculation of m0=16.571, it is necessary 
to substitute its value into the place of m in the system 
of Lagrange equations of the second kind (8) and nu-
merically solve it by Runge-Kutta method with respect 
to the functions u(t) and v(t). A sequence of values of 
(ui, vi) at t=ti (where i=1... S) is obtained. To construct 
the path of movement of the swinging spring load in the 
Oxy plane, put the sequence of values of (ui, vi) into ex-
pressions (5) of virtual coordinates (x, y). The resulting 
points should be connected to a broken line. As a result, 
an approximated image of the periodic path of movement 
of the swinging spring load in the Oxy plane was found for  
case 1 (Fig. 32).
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Fig. 32. The path of movement of the spring load for 
example 5

Thus, it can be stated that a periodic or conditionally pe-
riodic path can be obtained by changing direction of impulse 
action for initiating movement of the swinging spring from 
du(0)=1 to the opposite one: du(0)=–1.

Case 2. Let the point of suspension of the swinging 
spring move along the Oy axis by the law y=f(t). Then virtu-
al coordinates of the moving point load can be calculated by 
formulas (5). Set Lagrangian as a difference between kinetic 
and potential energies (g=9.81):

2 2
2

2
2

2

0.5

0.5 ( ) cos .

dv du
L m v

dt dt

d f
k v h m g v u

dt

    = + −        

 
− − − +  

 	 (11) 

To form a system of Lagrange differential equations of 
the second kind, relation (7) should be used. As a result, the 
system of Lagrange equations of the second kind is obtained 
in the form:

22 2

2 22 cos 2

( ) cos 0;

d v d f du
m m u mv

dt dt dt

k v h mg u

 + − +  
+ − + =  	 (12)

2 2

2 22 sin 4 sin 0.
d u d f du dv

v u g u
dt dt dt dt

− + − + =

Determine value of the weight m which would pro-
vide periodic path of movement of the load of the swing-
ing spring with stiffness k and length h in unloaded  
state.

Example 6. Let the initial position of the swinging spring 
be determined by the angle –π/4, that is, u(0)=–p/4. The 
rate of variation of the angle value du(0)=0. Initial values 
for the parameter v of the spring extension are of the form 
v(0)=2; dv(0)=0. Take k=450 and h=2.5. Set the law of 
movement of the fixing point by function y=0.5cos(4t). Take 
the value of the load weight as a controlling parameter of the 
swinging spring oscillation.

Solve the system of equations (12) by numerical 
Runge-Kutta method with initial conditions u(0)=–p/4; 
du(0)=0; v(0)=2; dv(0)=0. Fig. 33 shows integral curves 
in the phase spaces {u, Du, t} and {v, Dv, t} for the found 
critical value of m=22.57. Integration time T=17.2. Fig. 34  
shows the phase paths of corresponding generalized co-
ordinate functions. With their help, it is possible to 
determine their variation ranges. Phase paths cannot be 
“focused” like in the previous examples. Therefore, the 
path of movement of the spring load is considered condi-
tionally periodic.

а                             b  
Fig. 33. Integral curves for a critical value of m=22.57 in 

phase spaces: {u, Du, t} (a); {v, Dv, t} (b)

а                              b 

Fig. 34. Phase paths in {u, Du} and {v, Dv}: coordinate 
function u(t) (a); coordinate function v(t) (b)

To confirm the value of m=22.57, use the graph of sat-
uration of the phase path line image (Fig. 35). Minimum 
number of image pixels is achieved at a critical value of the 
control parameter m0=22.57.

Fig. 35. The graph of dependence of the number of pixels Np 
in the image of the phase path on the value of m

Following calculation of m0=22.57, it is necessary to put its 
value into the place of m in the system of Lagrange equations 
of the second kind (8) and numerically solve it by the Runge- 
Kutta method with respect to the functions u(t) and v(t). A 
sequence of values of (ui, vi) at t=ti (where i=1... S) is obtained. 
To construct the path of movement of the swinging spring 
load in the Oxy plane, put the sequence of values of (ui, vi) into 
expressions of (5) of virtual coordinates (x, y). The resulting 
points should be connected to a broken line. As a result, an ap-
proximated image of periodic path of movement of the swinging 
spring load in the Oxy plane is found for case 2 (Fig. 36).

Fig. 36. The path of movement of the swinging spring load 
for example 6
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Example 7. Let us consider another variant when the 
swinging spring is located at initial position at an angle 
p/3, that is, u(0)=p/3. The rate of angle variation: du(0)=0. 
Initial values for the parameter v of the spring extension: 
v(0)=2; dv(0)=0. Let k=50 and h=2.5. Set the law of move-
ment of the point of attachment by function y=cos(3t). Take 
the value of the load weight as a controlling parameter of 
oscillation of the swinging spring.

Solve the system of equations (12) by numerical Run-
ge-Kutta method with initial conditions u(0)=p/3; du(0)=1; 
v(0)=2; dv(0)=0. Fig. 37 shows integral curves in phase 
spaces {u, Du, t} and {v, Dv, t} for the found critical value 
of m=5.7557. Integration time T=25.3. Fig. 38 shows phase 
paths of the corresponding generalized coordinate functions 
with the help of which it is possible to determine their vari-
ation ranges. It is seen that the phase paths cannot by “fo-
cused” as in the previous examples. Therefore, it is necessary 
to expect the path of movement of the swinging spring load 
to be conditionally periodic.

а                                 b 

Fig. 37. Integral curves for critical value of m=5.7557 in 
phase spaces: {u, Du, t} (a); {v, Dv, t} (b)

а                                b 

Fig. 38. The phase paths in planes {u, Du} and {v, Dv}: 
coordinate function u(t) (a); coordinate function v(t) (b)

To confirm value of m=5.7557, the graph of saturation of 
the phase path line image can be used (Fig. 39). Minimum 
number of image pixels is achieved at a critical value of the 
control parameter m0=5.7557.

Fig. 39. The graph of dependence of the number of pixels Np 
in the image of the phase path on the m value 

Following calculation of m0=5.7557, it is necessary to 
substitute its value into the place of m in the system of 
Lagrange equations of the second kind (12) and numeri-
cally solve it by Runge-Kutta method with respect to the 
functions u(t) and v(t). A sequence of values of (ui, vi) are 
obtained at t=ti (where i=1... S). To construct the path of 
movement of the swinging spring load in the Oxy plane, 
it is necessary to put the sequence of values of (ui, vi). in 
expressions (5) of virtual coordinates (x, y). The resulting 
points should be connected to a broken line. As a result, 
an approximated image of the periodic path of movement 
of the swinging spring load in the Oxy plane is found for 
example 7 (Fig. 40).

Fig. 40. The path of movement of the swinging spring load 
for example 7

The conditionally periodic paths obtained in this and 
preceding examples can be explained by substantial nonlin-
earity of the problem of oscillation of a swinging spring with 
a moving point of suspension. By involving visual analyzer 
in the process of visualization of oscillations through com-
puter animation, one can make sure of natural character of 
oscillation of the swinging spring with a moving point of 
suspension. Confirmation for this fact can be found on the 
web site [32] where computer animations of oscillation of 
various swinging springs are provided.

5. Discussion of results obtained in computer simulation 
of the paths of movement of the swinging spring loads

The obtained results can be explained by the possibility 
of applying Lagrange variational principle to calculation of 
mechanical oscillations of the type of swinging spring oscil-
lations. This has allowed us to use Lagrange equations of the 
second kind to describe movement of the spring load.

Consideration of the ratio 
1
4

mg
kl

=  for the cases of a wide  
 
range of variation of the parameter values belongs to the not 
yet realized possibilities of study of the swinging spring os-
cillation. Here, m is the load weight, k is the spring stiffness, 
l is the spring length in unloaded state, g=9.81.

Under the condition of fulfillment of this correlation be-
tween parameters of the vibrational system, angular swing-
ing of the spring is most effectively performed at the expense 
of this spring energy. Development of random transverse 
perturbation will continue to a definite value of amplitude 
since energy reserves of the spring are finite. After reaching 
such an amplitude, stretching (or compression) of the spring 
occurs again in the course of oscillation of the swinging 
spring. This periodic repumping of the spring energy into 
energy of transverse oscillation of the load and back appears 
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to be possible in a rather narrow range of variation of param-
eters with a maximum value corresponding to the indicated 
ratio. It is necessary to check under what conditions this 
relationship is executed with acceptable accuracy and how it 
affects the image of periodic paths of movement of the spring 
load. It is necessary to reveal number of possible periodic 
paths for a certain set of input parameters as well as classify 
images of periodic paths and perform their gradation taking 
into consideration growth of their lengths.

In addition, it is necessary to continue study in the di-
rection of using the swinging spring as a model for studying 
nonlinear coupled systems. Indeed, three energy compo-
nents similar to the spring and pendulum movements as well 
as the connection between them necessary for this process 
are identified for a swinging spring. This approach can be 
applied, in principle, to arbitrary nonlinear coupled systems 
to show how coupling mediates internal energy exchanges 
and how energy distribution varies according to the system 
parameters.

It will be interesting to investigate from these positions 
nonlinear coupled systems with interacting subsystems on 
examples of engineering problems. The first step to this goal 
will be the study of mechanical devices where springs will 
affect the path of oscillation of their loads. As examples, it 
is expedient to consider mechanisms with moving loads, the 
schemes having the form:

– two springs with a common load;
– a pendulum attached to a suspended spring;
– a pendulum has length influenced by the spring;
– a pendulum under a moving cart whose position is in-

fluenced by the spring;
– a load at the end of the spring suspended to a mov- 

ing cart.
Difficulties in development of the studies in this direc-

tion will arise when trying to solve an inverse problem in 
the following statement. Let there be a curve having shape 
belonging to figures of Lissage class. It is necessary to se-
lect values of the swinging spring parameters (load weight, 

spring stiffness and length in unloaded condition) so that the 
path of the load movement is similar to the selected curve.

7. Conclusions

1. Among the a priori chaotic oscillations of a double 
pendulum, such oscillation was found when the second load 
moves in a periodic path. This has made it possible to extend 
the method of problem solution to the problems of determin-
ing periodic paths of movement of the spring load.

2. Variants of calculation for obtaining of a periodic 
path of a swinging spring load were given when the spring 
parameters are set:

– stiffness of the spring and its length without load at 
an unknown load weight (for example, h=1; m=3.332; k=40; 
v0=1; Dv0=0: u0=0; Du0=1.5; T=8.4);

– weight of the spring load and the spring length without 
load at an unknown spring stiffness (for example, h=1; m=1; 
k=14.4; v0=1; Dv0=0: u0=0; Du0=1; T=8.4);

– weight of the spring load and the spring stiffness at an 
unknown spring length without load (for example, h=0.39; 
m=2; k=40; v0=1; Dv0=0: u0=0; Du0=1.5; T=6).

3. Values of the parameters for providing a conditionally 
periodic path of movement of the point load of a swinging 
spring with a movable fixing point (for example, m=16.571; 
k=50; h=2; u0=2; Du0=0; v0=0; Dv0=–1; x=sin(2*t); T=16.7).

4. For each variant of calculation of the swinging spring, 
phase paths of the functions of generalized coordinates (val-
ues of angles of deviation and elongation) were constructed 
which has made it possible to estimate the range of variation 
of these quantities and rates of this variation.

5. Reliability of the obtained results was illustrated by 
computer animation of oscillations of corresponding swing-
ing springs demonstrated at the Internet site [32], where, 
by involving visual analyzer, it is possible to verify natural 
character of oscillations of the swinging spring including 
moving point of suspension.
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