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1. Intr oduction

Adequate mathematical modeling of wave processes 
in oscillatory systems plays an important role in modern 
approaches to solving a series of scientific and engineering 
tasks, which arise in the problems on analysis, synthesis, and 
optimization of parameters for machine-building structures. 
Mathematical and numerical modelling are important in 

understanding the essence of phenomena and processes that 
are studied in modern mechanics and physics. Considering 
the adequacy of mathematical models and methods of anal-
ysis contributes to the interpretation of existing, as well as 
prediction and discovery of new, phenomena. Modern indus-
trial equipment is operated in a wide range of parameters, 
particularly at high speeds, high pressures and energies, 
etc. The specified reasons necessitate the study and analysis 
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Дослiдження та аналiз динамiчних процесiв 
у коливальних системах тiсно зв’язанi зi вста-
новленням точних або наближених аналiтич-
них розв’язкiв задач математичної фiзики, якi 
моделюють такi системи. Математичнi моделi 
поширення хвиль у коливальних системах за пев-
них початкових умов у фiксований момент часу 
є добре вiдомими в лiтературi. Однак хвильовi 
процеси у довгомiрних конструкцiях за умови 
дiї лише зовнiшньої сили i заданих станiв проце-
су у два моменти часу є мало вивченими. Такi 
процеси змодельовано двоточковою за часом 
задачею для неоднорiдного хвильового рiвнян-
ня в необмеженiй областi t>0, x∈ℝs. У моделi 
враховано задання лiнiйної комбiнацiї невiдо-
мої амплiтуди коливань та швидкостi її змiни 
у два моменти часу. Двоточкова задача зага-
лом є некоректною крайовою задачею, оскiль-
ки вiдповiдна однорiдна задача має нетривiаль-
нi розв’язки. Встановлено клас квазiполiномiв 
як клас iснування єдиного розв’язку задачi. Цей 
клас не мiстить нетривiальних елементiв ядра 
задачi, що забезпечує єдинiсть розв’язку зада-
чi. У вказаному класi запропоновано точний 
метод побудови розв’язку. Суть методу поля-
гає в тому, що розв’язок задачi зображається у 
виглядi дiї диференцiального виразу, символом 
якого є права частина рiвняння, на деяку функ-
цiю параметрiв. Функцiя спецiальним чином 
конструююється за рiвнянням та двоточкови-
ми умовами i має особливостi, пов’язанi з нуля-
ми знаменника – характеристичного визначни-
ка задачi. 

Метод проiлюстровано для опису коливаль-
них процесiв нескiнченної струни та мембрани. 

Головним практичним застосуванням роз-
робленого методу є можливiсть адекватного 
математичного моделювання коливальних сис-
тем, яке враховує можливiсть керування пара-
метрами системи. Таке керування параметра-
ми дозволяє здiйснювати оптимальний синтез 
та проектування параметрiв вiдповiдних тех-
нiчних систем з метою аналiзу та врахування 
особливостей динамiчних режимiв коливань

Ключовi слова: коливальнi системи, мате-
матичнi моделi хвильових процесiв, диферен-
цiально-символьний метод, двоточкова задача, 
хвильове рiвняння
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of complex enough problems from the point of view of the 
present status of the development of mechanical theory of 
oscillations and general approaches of mathematical physics 
[1, 2]. Studying oscillatory and wave phenomena in elastic 
structures under the action of different kinds of perturba-
tions (force, inertial, and kinematic) is one of the classic 
tasks of applied mechanics [3–5]. Increased attention to the 
theoretical research into this field is predetermined not only 
by the logic in the development of basics of the dynamics of 
deformed systems, but also by interests of a wide variety of 
practical applications of oscillatory systems in engineering, 
construction, and other sectors of national economy.

A relevant problem of the current state of research re-
lated to applied mechanics is the development of new, as 
well as the extension of existing, asymptotic approaches for 
studying the mathematical models of oscillatory systems. 
The specified models are described by the problems from 
mathematical physics for the case of one-dimensional and 
two-dimensional equations with partial derivatives [6, 7]. 
Note, on the one hand, the non-perturbed (linear) analogs to 
such equations do not make it possible to apply a well-known 
method of separation of variables. On the other hand, the 
specified approaches to many classes of problems have been, 
up to now, the only possible analytical method to study 
complex systems. The asymptotic methods from nonlinear 
mechanics have made it possible to explore a wide class of 
mechanical oscillatory systems for the case of a nonlinear 
dependence of oscillation amplitude on elastic forces and the 
forces of resistance.

However, in most cases, only if one has precise analyt-
ical solutions to linear (non-perturbed) problems [8, 9] it 
becomes possible to further apply the asymptotic methods 
from nonlinear mechanics. The task on searching for such 
solutions has remained relevant. 

Among the problems in mathematical physics for partial 
differential equations of the following form

( ) ( )
( ) ( )2

1 2

, ,

( ) ( ) , , ,

t x

t x t x

L U t x

c c U t x f t x

∂ ∂ ≡

 ≡ ∂ + ∂ ∂ + ∂ =  	 (1)

in which the coefficients of equation are differential polyno-
mials with complex coefficients, 

,t t
∂∂ = ∂  ( )

1
, , ,

sx x x∂ = ∂ ∂…  ,
jx

jx
∂∂ = ∂  

( )1,..., ,s
sx x x= ∈R  s ∈N,

f(t, x) is the assigned function, the Cauchy problem has been 
most fully explored for the time being [8, 9], that is, the task 
on finding a solution to equation (1) in a domain (0, ) ,s∞ ×R  
which satisfies initial conditions

1(0, ) ( ),U x x= ϕ  2(0, ) ( ),t U x x= ϕ∂ 	 (2)

where 1( )xϕ  and 2( )xϕ are the determined functions. 
If magnitude ( ),U t x and its derivative ( , )t U t x∂  were 

determined not at the same time ( 0),t =  but at two moments 
(for example, when 0t =  and ,t = τ  where 0τ > ), possibly 
very close moments, we would then obtain the problem 
on finding a solution to equation (1), which, in domain 

0, st x> ∈R , satisfies such two-point conditions for time

1(0, ) ( ),U x x= ψ  2( , ) ( )t xU xτ = ψ∂ 	 (3)

or

1(0, ) ( ),tU x x∂ = ψ  2( , ) ( ).xU xτ = ψ 	 (4)

In addition to conditions (3) and (4), other conditions 
are considered as well, which combine a first condition (3) 
and a second condition (4) or a first condition (4) and a sec-
ond condition (3). All these conditions are obviously a par-
ticular case of the more general local two-point conditions

( )10
( ) ( , ) ,t t

A U t x x
=

∂ = ψ  ( )2( ) ( , ) ,t t
B U t x x

=τ
∂ = ψ 	 (5)

where 

0 1( ) ,t tA a a∂ = + ∂ 0 1( ) ,t tB b b∂ = + ∂

and complex coefficients 0,a  1,a  0,b  1b  satisfy obvious con-
ditions: 0 1 0 1| | | | 0, | | | | 0.a a b b+ > + >  

Two-point conditions (5) at 0 0 1,a b= =  1 1 0a b= =  have 
a simple physical interpretation – the observation of magni-
tude ( , )U t x  at moments 0t =  and .t = τ  

Two-point problem (1), (5), in contrast to the Cauchy 
problem (1), (2), possesses new properties. If a homogeneous 
Cauchy problem

( ) ( ), , 0,t xL U t x∂ ∂ = 	 (6)

(0, ) (0, ) 0tU x U x= ∂ =

has only a trivial solution ( , ) 0,U t x ≡  then the correspond-
ing homogeneous problem for equation (6) with homoge-
neous conditions

0
( ) ( , ) 0,t t

A U t x
=

∂ =  ( ) ( , ) 0t t
B U t x

=τ
∂ = 	 (7)

has in general the non-trivial solutions. 
Consider, for example, a homogeneous two-point prob-

lem for the following wave equation

( )2 2 , 0,t s U t x ∂ − γ ∆ =  	 (8)

(0, ) 0,U x =  ( , ) 0,xU τ = 	 (9)

where 
1

2 2...
ss x x∆ = ∂ + + ∂  is the s-dimensional Laplace opera-

tor, and γ is the speed of a wave propagation. Problem (8), (9) 
is derived from problem (6), (7) at

1( ) 0,xc ∂ =  2
2( ) ,x sc ∂ = −γ ∆  0 0 1,a b= =  1 1 0a b= =  

and it has, for s 1=  and s 2,=  the non-trivial solutions of the 
following form 

( ) 1
1, sin sin ,

xt
U t x

ππ
=

τ γτ

Note, however, that some homogeneous two-point prob-
lems, similarly to the Cauchy problem, have only a trivial 
kernel. For example, a two-point problem for the bicaloric 
equation

1 1
1 2 2

( ) ( )
( , , ) sin sin .

x t x t
U t x x x

 π + γ π − γ
= − γτ γτ 
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[ ] ( )2
, 0t s U t x∂ − ∆ =

under condition (9), which is also a particular case of prob-
lem (6), (9) at 1( ) 2x sc ∂ = − ∆ , 2

2( )x sc ∂ = ∆  has only the trivial 
solution. 

Studying a set of non-trivial solutions to the homoge-
neous problem (6), (7) was addressed in paper [10] for s=1, 
in work [11] for s=1 and conditions (9), as well as in article 
[12] for s≥1.

Thus, the task on enlarging a circle of oscillatory sys-
tems, whose mathematical models allow the possibility to 
apply precise analytical approaches to study, is relevant at 
the present stage of the development of mechanical theory 
of oscillations. The indicated relevance grows in propor-
tion to the emergence of new complex mechanical systems 
with different structures and the need to synthesize and 
optimize parameters for appropriate industrial equipment. 
Construction of a differential-symbol method to study the 
wave process, carried out in this work, is a pressing issue in 
the applied mechanics.

2. Literature review and problem statement 

Two-point problems for partial differential equations 
are in general the ill-posed boundary value problems. Such 
two-point, and the more general n-point, problems with 
known values U(t, x) at n times for a partial differential 
equation of order n for time were first examined in papers 
[13, 14]. In these studies, as well as in subsequent works 
[15–17] addressing isotropic, and in [18, 19] – anisotropic, 
partial differential equation, regarding the well-posedness of 
n-point (multipoint) problems, their authors imposed addi-
tional conditions for the 2π-periodicity of solution based on 
spatial coordinates and used the small denominators lower 
estimates, inherent to these problems.

The establishment of classes for correct solvability of 
n-point problems in unbounded domains (without additional 
constraints for spatial variables) for individual partial dif-
ferential equation was addressed in papers [20, 21], and for 
systems of partial differential equation – in [22, 23]. 

Note that problems with multi-point conditions for 
partial differential equations are the generalization of 
n-point problems for ordinary differential equations – the 
Vallée-Poussin problems [24, 25]. These problems were dealt 
with, specifically, in studies [26, 27] for a linear case, and in 
[28, 29] for a nonlinear case. 

Understudied as yet is a two-point problem for equation

2 2 ( , ) ( , ),t s U t x f t x ∂ − γ ∆ =   	 (10)

under conditions (9), which models wave processes of differ-
ent nature that occur under the influence of external force 
f(t, x), when the process states are assigned at two moments. 
In addition to conditions (9), of interest are conditions (7) 
when at two points of time t=0 and t=τ one assigns linear 
combinations U(t, x) and t∂ U(t, x), which will be identical 
and equal to zero.

Note that equation (10) has a wide range of applications. 
This equation describes the propagation of the forced oscilla-
tions of a string and a membrane [30, 31], the propagation of 
electromagnetic waves [32], waves at sea [33], seismic waves 
[34, 35]. In medicine, equation (10) describes the propaga-
tion of a pulsating wave [36, 37], as well as the process of 

change in blood pressure [38]. The potential of velocities in 
an acoustic model of plasma motion [39] is also described by 
equation (10).

For the problem (10), (7), which is non-correct, we 
shall establish a class of quasi-polynomials as a class of the 
existence and uniqueness of solution to the problem. In this 
class, we shall resolve the problem of small denominators, 
characteristic of these problems. To solve the problem, it 
is appropriate to apply a differential-symbol method. Note 
that a given method has been effectively used earlier to solve 
similar problems with linear conditions based on the selected 
time variable (under initial conditions in [40, 41], integral 
conditions in [42], the Dirichlet conditions in [43], and local 
two-point conditions in [44, 45]).

Therefore, application of the new differential-symbol 
method in order to solve problem (10), (7) would make it 
possible to derive exact solutions to the problem and to 
establish the character of wave processes. It should be not-
ed that it is the exact solutions that enable the analysis of 
parameters for the specified systems and control over them. 
To implement this task, we had to modify the mathematical 
model of the process taking into consideration the lengthy 
character of structures and to devise a procedure for adapt-
ing the differential-symbol method to respective modified 
models. Note that an analysis of the scientific literature, giv-
en above, reveals the following: such an approach to studying 
the mathematical models of wave processes is a novelty.

The disadvantage of the method constructed is the 
impossibility of its application for cases when the spatial 
dimensions of a respective body are commensurate with 
the magnitude of an oscillation amplitude. As shown by the 
conducted numerical experiments, it is possible to effectively 
and adequately explore the dynamic processes in cases when 
the spatial dimensions of a body are the quantities that are 
several orders of magnitude larger than the magnitude of an 
oscillation amplitude.

3. The aim and objectives of the study

The aim of this study was to model a behavior of wave 
processes occurring under the influence of an external force, 
at any time in any point of space, if one knows data on the 
process at two moments of time. To construct a solution to 
the modelled two-point time problem, we shall apply a differ-
ential-symbol method. That would make it possible to derive 
an explicit solution to the respective two-point problem and 
to control parameters in a mathematical model in order to 
detect and avoid dynamic modes of oscillations, which, are 
impossible or dangerous for a given technological process 
(resonance modes, an oscillation beat mode, etc.).

To achieve the set aim, the following tasks have been 
solved:

– to propose a method to construct a precise analytical 
solution to the respective two-point problem and the analy-
sis of parameters for the dynamic processes in mathematical 
models within a wide class of oscillatory systems; 

– to illustrate the method for constructing a solution 
and analysis of oscillatory processes in linear systems for the 
cases of an infinite string and a membrane.

In combination, the study conducted significantly en-
large the circle of mathematical models of wave processes, 
which allow a precise analytical description. The differen-
tial-symbol method, convenient from the point of view of 
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practical engineering applications, would make it possible to 
analyze and synthesize parameters for a wide range of tech-
nological systems that are described by the specified models.

4. The unique solvability of a two-point problem in the 
class of quasi-polynomials

For non-empty sets sM ⊆C  and \ ,s MC  consider the 
class of quasi-polynomials , ,MKC  that is the class of func-
tions of the following form

( ) ( )
1 1

, , ,j k

m N
t x

kj
k j

g t x Q t x eβ +α ⋅

= =

= ∑∑

, ,m N ∈N  ,sx ∈R  ,t ∈R 	 (11)

where 1,..., Nβ β ∈C  and are pairwise different, vectors 

( )1 11 1,... ,...,sα = α α ( )1,...m m msα = α α  

are also pairwise different and belong to the set M, 

( ) ( )11 , ,..., ,mNQ t x Q t x  

are the polynomials 
with complex coef-
ficients, 

1 1 ... .
k

k ks s

x

x x

α ⋅ =
= α + + α

 

Set M  is to be se-
lected so that class 

,MKC  is the class of 
unique solvability of 
problem (10), (7). 

Similarly to papers [45, 46], we consider an entire function 
of vector-parameter ( )1,..., s

sν = ν ν ∈C  of the following form

( )
( )

22
0 0 1 1

0 1 1 0

sinh
( )

cosh .

a b a b

a b a b

 γ ν τ ∆ ν = − γ ν +
γ ν

 + γ ν τ −  		  (12)

Note that 

2 2 2
1 2 sν = ν + ν + + ν…  and 0 0 0 1 1 0( ) a b a b a b∆ ν = τ + −  

for 0,ν =  as well as the fact that function (12) is a quasi- 
polynomial with respect to τ  for any .sν ∈C

Let L be the set of zeros of function (12), then put 

\ ,sM L=C  

and force ( ),f t x  in equation (10), which prede-
termines a wave process, is to be considered a 
quasi-polynomial, which belongs to , ,MKC  and 
takes the form

( ) ( ), , ,t xf t x Q t x eβ +α⋅= 	 (13)

where ( ),Q t x  is the polynomial with complex 
coefficients, ,β ∈C  .Mα ∈

We show that for function ( ),f t x  of form (13) from class 

,MKC  problem (10), (7) has only one solution which belongs 
to the same class. This solution can be derived from formula

,
( , ) ( , ) ( , , , ) ,U t x Q F t xλ ν λ=β ν=α

= ∂ ∂ λ ν 	 (14)

where ( , )Q λ ν∂ ∂  is the differential polynomial that is derived 
from ( ),Q t x  by replacing t with λ∂  and x with ,ν∂  and

( ) ( ) ( )1 2
22 2

( ) , ( ) ,
, , , ,

t
xe B e H t A H t

F t x e
λ λτ

ν⋅− λ ν − λ

λ − γ ν

ν
λ ν = 	 (15)

( ) 1
1 0 1

sinh
, cosh ( ),

t
H t a a t −

  γ ν   ν = − γ ν ∆ ν  γ ν 

( ) ( ) ( ) 1
2 0 1

sinh 1
, cosh 1 ( ).

t
H t b b t −

  γ ν −   ν = + γ ν − ∆ ν  γ ν 

Function (14) as a result of the action of differential 
expression ( , )Q λ ν∂ ∂  on (15) and putting λ = β  and ,ν = α  
is the quasi-polynomial from class , .MKC  We show first that 
this quasi-polynomial satisfies equation (10). Indeed,

In the chain of expressions, we applied the commutativi-
ty of differentiation operators, as well as equalities

( )22 2 2 2 ,t x t x
t s e eλ +ν⋅ λ +ν⋅ ∂ − γ ∆ = λ − γ ν 

( , ) ( , ) ,t x t xQ e Q t x eλ +ν⋅ λ +ν⋅
λ ν∂ ∂ =

( )( ) ( )( )2 2 2 2
1 2, , 0,x x

t s t sH t e H t eν⋅ ν⋅   ∂ − γ ∆ ν = ∂ − γ ∆ ν =   

which is easily checked via direct differentiation. 
Function (14) also satisfies conditions (7). Based on 

equalities

( )1 0
( ) , 0,t t

A H t
=

∂ ν =  ( )2 0
( ) , 1t t

A H t
=

∂ ν =

we obtain

( ) ( ){ } ( )

( )( ) ( )( )

2 2 2 2 2 2

2 2

,

2 2 2 2
1 2

22 2

2

,

,

, , , , , ,( , ) ( , )

( ) ( )
( , )

(

,

, )

,

,

t s t s t s

t s t
x

s
x

t s
t x

Q Q

B A
Q

Q

U t x F t x F t x

e e H t e H t e

λ=β ν=α λ=β ν=α

λ +ν⋅ λτ ν⋅ ν⋅

λ=β ν=α

λ ν λ ν

λ ν

λ ν

     ∂ − γ ∆ ∂ − γ ∆ ∂ ∂ ∂ ∂ ∂ − γ ∆ =     

     ∂ − γ ∆ λ ∂ − γ ∆ λ ∂ − γ ∆     ∂ ∂ =
λ − γ ν

λ − γ
= ∂ ∂

= λ ν = λ ν

− ν − ν
=

( )
,

22

22 2

,

,

0 0

( , ) ( ,

(

)

, )

( , ).

t x

t x

t x t x

e
e

Q t x e Q t x

Q

x e f t

λ +ν⋅

λ +ν⋅

λ=β ν=α

λ=β ν=α

λ +ν⋅ β +α⋅

λ=β ν

λ ν

=α

ν
= ∂ ∂

λ − γ ν

− −
=

= = =

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0 , , 0

, , 0

1 2
22 2 ,

,
0

22 2

,

( ) , ( ) ( , ) , , ,

( , ) ( ) , , ,

( ) , ( ) ,
( , )

0
( , ) 0.

t tt t

t t

t
t t x

t

A U t x A Q F t x

Q A F t x

A e B e A H t A A H t
Q e

A A
Q

λ ν= λ=β ν=α =

λ ν λ=β ν=α =

λ λτ
ν⋅

λ ν
λ=β
ν=α
=

λ ν

λ=β ν=α

∂ = ∂ ∂ ∂ λ ν =

= ∂ ∂ ∂ λ ν =

λ − λ ∂ ν − λ ∂ ν
= ∂ ∂ =

λ − γ ν

λ − − λ
= ∂ ∂ =

λ − γ ν
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By analogy, using equalities

( )1( ) , 1,t t
B H t

=τ
∂ ν =  ( )2( ) , 0,t t

B H t
=τ

∂ ν =

we thus prove that a second condition from two-point condi-
tions (7) is satisfied. 

Proving the uniqueness of solution to problem (10), (7) 
in class ,MKC  using a method from the opposite is reduced to 
proving the trivialness in this class of solution to problem (8), 
(7). The latter property follows from results of paper [46]. 

Comment 1. If in equation (10) quasi-polynomial f(t, x) 
has a more general form (11), then, according to the principle 
of linear superposition, a solution to problem (10), (7) takes 
the form of the following sum: 

( ) ( )
,

1 1

, ( , ) , , , .
j k

m N

kj
k j

U t x Q F t xλ ν λ=β ν=α
= =

= ∂ ∂ λ ν∑∑ 	 (16)

Comment 2. Solutions to problems (10), (7) in the form 
of (14) and (16) are the quasi-polynomials. Construction of 
sets of polynomial and quasi-polynomial solutions to partial 
differential equations and respective boundary problems has 
been addressed in numerous studies [47–49].

5. Forced oscillations of an infinite string with its two 
assigned profiles

Consider the oscillations of an infinite thin string under 
the action of external force f(t, x) when the profiles of the 
string at moments 0t =  and 1t =  are the same (zero). This 
process is modeled by a two-point problem

2 2 2 ( , ) ,

(0, )

(

(1, )

, ), 0,

0, ,

t x U t x f t x t

U

x

U x x x

  ∈

= =

∂ − γ ∂ = > 
∈

R

R 	 (17)

For problem (17) as problem (10), (7), we obtain 

0 0 1,a b= =  1 1 0,a b= =

[ ]sinh
( ) ,

γν
∆ ν =

γν
 (0) 1,∆ =

2, 1, ,
k

L i i k
 π

= ν = ± = − ∈ γ 
N 	 (18)

( ) [ ]
[ ]1

sinh
, ,

sinh

t
H t

γν
ν =

γν
 

( )1 ,0 ,H t t=  ( ) ( )2 1, 1 , .H t H tν = − ν

If ( ),f t x  takes the form of (13) where 1s =  and \ ,M Lα ∈ =C 
\ ,M Lα ∈ =C  where L is set (18), then the solution to problem (17) 

is found from formula (14), where

( ) ( ) ( )

[ ] ( )
[ ]

1 2
2 2 2

2 2 2

, ,
, , ,

sinh sinh 1

sinh
.

t
x

t

x

e e H t H t
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e

λ λ
ν

λ
λ

ν

− ν − ν
λ ν = =

λ − γ ν

 γν + γν − −
γν

=
λ − γ ν

If an oscillatory process occurs at the expense of a linear 
external influence, that is 

( ) ( ), , ,f t x Q t x at bx c= = + +

where , ,a b c ∈R  and 2 2 2 0,a b c+ + >  then 0,β =

0 \ ,M Lα = ∈ =C  

and a solution to problem (17) is derived from formula

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0
, , , ,

, ,0,0 , ,0,0 , ,0,0

1
1 3 3 .

6

U t x a b c F t x

a F t x b F t x c F t x

t t at bx c a

λ ν λ=ν=

λ ν

= ∂ + ∂ + λ ν =

′ ′= + + =

= − + + +

In particular, the solution to problem (17) for 5,a =  3,b =
2c =  takes the form

( ) 1
, ( 1)(5 9 11).

6
U t x t t t x= − + +

The graph of this function (dependence of the magnitude 
of an oscillation amplitude on time for each point at the 
string) is shown in Fig. 1.

Fig. 1. Graph of function U(t, x) for the case when  
a=5, b=3, c=2

Therefore, under the action of a linear external force the 
amplitude of the string has a cubic dependence on time for 
fixed x and a linear dependence for variable x at any point 
in time 0.t >

6. Forced oscillations of an infinite membrane with two 
assigned profiles

Consider a two-point problem (17) if 2,s =  that is the 
following problem

( ) ( ) ( )2 2 2
2 1 2

2

, , , 0, ,

(0, ) (1, )

,

,0,

t U t x f t x t x x x

Ux xU x

 ∂ − γ ∆ = > = ∈ 
= ∈=

R

R 	 (19)

which is a mathematical model of the process of oscillations 
of an infinite membrane under the action of external force 

( , )f t x  with the same known (zero) positions of the mem-
brane at time 0t =  and 1.t =  For problem (19), we obtain 

2 2
1 2

1 2 2 2
1 2

sinh
( , )

 γ ν + ν ∆ ν ν =
γ ν + ν

 

( 1 2( , ) 1∆ ν ν =  for 2 2
1 2 0ν + ν = ),

 

.
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( ){ }2 2 2 2 2 2
1 2 1 2( , ) : 0, ,L k k= ν = ν ν ∈ γ ν + ν + π = ∈C N

( ) ( ) ( )
( )

1 1 2 21 2

2 2 2 2
1 2

, ,
, , , ,

t
x xe e H t H t

F t x e
λ λ

ν +ν− ν − ν
λ ν =

λ − γ ν + ν

( )
2 2
1 2

1 1 2
2 2
1 2

sinh
, , ,

sinh

t
H t

 γ ν + ν ν ν =
 γ ν + ν 

 

( ) ( )2 1, 1 , .H t H tν = − ν

Consider a process of oscillations of an infinite mem-
brane under conditions of a constant external force, that is 

( ) ( ), , ,f t x Q t x b= =  0.b >  Since constant b is a quasi-poly-
nomial, in which 0,β =  2(0,0) \ ,M Lα = ∈ =C  a solution to 
problem (19) will be derived from formula

( ) ( )

( ) ( )

( )

1 20, 0

2

0

2

0

, , , ,

1
, ,0,0,0

0 0 1
1 .

0 2 0 2 2

t
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U t x b F t x

e t e t
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b b bt t

λ= ν =ν =
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= λ ν =

− − −
= = =

λ

− −   = = = = = −   λ   

We thus obtained that an oscillation amplitude, the solu-
tion ( ),U t x  to problem (19), does not depend on spatial co-
ordinates and takes the form of a time quadratic dependence, 
and the rate of change in the amplitude, derivative ( ),tU t x∂ , 
is a linear dependence (refer to Fig. 2, a, b at 5b = ).

a  

b 

Fig. 2. Graphs of functions:  
a – for ( , );U U t x=  b – for ( , )tV U t x= ∂

At different points in time 0t ≥  the magnitude of am-
plitude U(t, x) is constant for any 2.x ∈R  Initial plane of 

the membrane, while maintaining its shape, moves at rate 
0,5t b−  first downwards, reaching a minimum / 8,b−  and 

then upwards, reaching value b  at point 2t =  (Fig. 3).

Fig. 3. Graph of function U(t, x) at moment t=2

Next, we consider an oscillatory process in a membrane 
if the external force has an exponential type, namely; 

( ) 1 23 4, ,x xf t x te +=  that is, ( ), ,Q t x t=  0,β =  (3,4) .Mα = ∈
We derive from formula (14)

For 1γ =  and 

1 23 4sinh5
( , )

sinh
,

255

x xt
U t x

e
t

+ = −  
 

we obtain such states of square part of the membrane un-
der condition 2[0,1]x ∈  at times 0,t =  t=0.5, 1,t =  2t =   
(Fig. 4–6).

Fig. 4. Graph of function U=U(t, x) at moments t=0 and t=1

Fig. 5. Graph of function U=U(t, x) at time t=0.5
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Fig. 6. Graph of function U=U(t, x) at time t=2

The greatest speed and the largest deviation from the 
equilibrium is demonstrated by an angular point with co-
ordinates 1 2 1.x x= =  An increase in time leads to that the 
initial plane of the membrane deforms, moving downwards 
to the minimum position, then moves up, coinciding with the 
initial plane, and then deforms again, moving upwards. In 
this case, for all 2[0,1] ,x ∈  either 0,U =  or 0,U >  or 0.U <

Consider oscillations of a membrane under the action of 
external force

( ) ( )1 2, sin 3 4 ,f t x x x t= + +  

which is a quasi-polynomial of form (11), that is

( ) ( ) ( )1 2 1 23 4 3 41 1, ,2 2
x x t i x x t if t x e ei i

+ + − + += −  

where

( )1
1, ,2Q t x i=  ( )2

1, ,2Q t x i= −  1 ,iβ =  2 ,iβ = −  

1 (3 ,4 ),i iα =  2 ( 3 , 4 ),i iα = − −  1 2, .Mα α ∈

According to comment 1, a solution to problem (19) is 
derived from formula (16):

For 1,γ =  the solution to problem (19) is the function of 
form

Let Ouv  be a coordinate system created by rotating 
the coordinate axes 1Ox  and 2Ox  at angle φ, for which 

3 / 4.tg ϕ =  Then 1 25 3 4 ,u x x= +  1 25 3 4v x x= −  and solution 
( , )U t x  to problem (19) does not depend on variable ν, and 

depends only on t and u, in particular,

1
( , ) ( , ),

24
U t x V t u=  

where

[ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

sin 5 sin 5 1 sin 5 5 sin 5
( , ) sin 5 .

sin 5 sin 5

t u t u
V t u t u

+ −
= + − +

Fig. 7. Graph of function V(t, u) 

Function ( , ),V t u  shown in Fig. 7, is a two-frequency 
oscillation with a single frequency over time (phase 5u) 
and frequency 5 (phase 0, amplitude [ ] [ ]1sin 5 sin 5 1u−− +  
and phase (−5) and amplitude [ ] [ ]1sin 5 sin 5u− ). In terms of 
variable u, function ( , )V t u  is a single-frequency oscillation 
(frequency 5) with phases −t, 1, 0 and amplitudes  

1, (sin[5])–1 sin[5t], (sin[5])–1 sin[5t–5].

Comment 3. Note that the procedure described here en-
ables the accurate assessment of physical-mechanical parame-
ters of a body in the mathematical models of oscillations in or-
der to avoid, in particular, the resonance dynamic modes, etc.

7. Discussion of results of modeling wave processes 
under two-point time conditions

We have proposed a modified mathematical model for the 
propagation of wave processes in one- and two-dimensional 

lengthy structures. Exact analytical 
solutions to the problems of mathemat-
ical physics have been obtained in this 
work owing to the application of a dif-
ferential-symbol method, which makes 
it possible to constructively evaluate 
the effect of the parameters for an 
oscillatory system on a wave process.

The benefit of studying the model 
is that the construction of a solution 
to the problem employed a differen-
tial-symbol method, which is a new 
and effective when solving problems in 
unbounded domains under conditions 
for a single selected variable. In this 
work, the selected variable is a time 
variable. Thus, in contrast to approx-
imating approaches that are based on 
the application of numerical methods, 

we have managed to analytically describe all the features in 
the dynamic processes in the specified mathematical models 
of oscillations. Specifically, we have substantiated a possi-
bility to accurately find the parameters at which the system 
is under a resonance mode, an oscillation beat mode, etc.

The research procedure, devised in this work, has its 
limitations and disadvantages. Specifically, it is not appli-
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cable to the study of mathematical models of bodies, which 
cannot be described by the term “lengthy”. Particularly, we 
mean here those oscillations whose maximum values for the 
amplitudes differ from the linear dimensions of an object by 
less than an order of magnitude.

Our research into the two-point problems is illustrated 
for the case of oscillations of an infinite string (s=1) and an 
infinite membrane (s=2). Graphical and numerical analysis 
of the respective oscillatory process has been performed, 
and, which is extremely important, the exact solutions to the 
examined problems have been constructed. The obtained 
numerical results confirm a satisfactory, in terms of practical 
applications, accuracy of the resulting solution and make it 
possible to select parameters for technological oscillatory 
systems. Such a selection of parameters, described by the 
specified mathematical models, ensures the effective opera-
tion modes of respective equipment.

The proposed methodology could be used in the future to 
study more complex mathematical models of oscillatory sys-
tems: a nonlinear (perturbed) model of string and membrane 
oscillations, linear and nonlinear models of oscillations con-
sidering dissipative forces, etc.

8. Conclusions

1. The problem on finding a solution to the Poisson 
equation, which would satisfy homogeneous conditions 

at moments 0t =  and t = τ  (problem (10), (7)), is a 
mathematical model of the oscillatory processes at the 
assigned states of the process at two points in time. By 
providing the specified problem for consideration, we have 
refined and modified the model of linear oscillations of  
length bodies.

2. Problem (10), (7) is the ill-posed boundary value prob-
lem, since the corresponding homogeneous problem has the 
non-trivial solutions. Therefore, for the unique solvability of 
the problem, we have introduced a class of quasi-polynomial 
functions of special form in which elements of the problem’s 
kernel are missing. This was achieved by selecting the set 
containing no zeros of the characteristic determinant. It is 
shown that the specified class contains the unique solution 
to the examined problem.

3. In this work, we have proposed, to study and an-
alyze dynamic processes in the mathematical models 
of certain oscillatory systems, using such an analytical 
differential-symbol method, which makes it possible to 
build constructive solutions to the respective two-point 
problems within the special classes of quasi-polynomial 
functions.

4. The analytical, numerical, and graphical results, 
reported in this paper, confirm the effectiveness of the 
proposed method when studying wave processes in the 
lengthy structures, as well as the adequacy of the modified 
mathematical models to the actual prototypes of oscillato-
ry systems.
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