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Hocnioxncenns ma ananiz ounamiMHux npoyecie
Y KOJIUBANbHUX CUCMeMAX MICHO 368°A3aHi 31 6cma-
HOBJIEHHAM MOYHUX A00 HAOMUICEHUX anaimuy-
HUX po36’a3kie 3adauw mamemamuunoi Qizuxu, aKi
Modenroroms maxi cucmemu. Mamemamuuni mooeni
NOWUP EHHA X6 UL Y KOJUBATLHUX CUCMEMAX 3A Ne6-
HUX NOYAmMK08UX YMO8 Y (hixcosanuii momenm uacy
€ doope eidomumu ¢ nimepamypi. Oonax x6uUnbLOGI
npouecu y 00820 MIpHUX KOHCMPYKUIAX 3a YMOBU
0ii e 308HIMHBOT CUNU T 3a0AHUX CMAHiE npoye-
cy y 0ea momenmu wacy € mauao sueuenumu. Taxi
npouecu 3mo0enb08aHO 0B80MOUK0B0I0 34 UACOM
3adauero 01 HeOOHOPIOH020 XBUNLOBOZO PIBHANH-
Ha 6 HeoOMmedcenin obnacmi t>0, xER®. Y mooeni
eépaxoeaio 3adamnsa AiHilnoi Komoinauii neeioo-
MOi amnaimyou Koausanv ma weuoxocmi ii Iminu
Yy 0ea momenmu uacy. /[eomouxosa zadana 3aza-
JIOM € HEKOPeKmHO Kpauosoro 3adauero, 0CKiib-
Ku 6i0no6iona 00Hopiona 3adaua mae Hempueiaio-
Hi po3e’asxu. Bcmanosneno xanac xeasinoninomis
AIK KJAC iCHY8anHs €0unozo po3e’asky 3adaui. Ilei
KJac He MICIMumos HempueiaibHux ejlemMeHmis 10pa
3adaui, wo 3abe3neuye eounicmv po3e’a3xy saoa-
4i. Y 6Kazanomy KaAci 3anponoHo8aHO MOUHUI
Memoo nodydosu pose’asxy. Cymv memody nons-
2ae 6 momy, wio po36’a30x 3adaui 300paicacmoca y
6uzna0i 0ii Judepenuianvrozo eupasy, CUMBOIOM
AK020 € NPABa HACMUHA PIBHAHHSA, HA 0eAKY PYHK-
uiro napamempie. DyHuxuyisa cneuiarbHUM UYUHOM
KOHCMPYIOEMbCS 3 PIBHAHHAM MA 080MOUK0BU-
Mu ymoeamu i mae 0cobaueocmi, noe’a3ami 3 Hya-
MU 3HAMEHHUKA — XAPAKMEPUCUYHO20 6USHAUHU-
Ka 3adaui.

Memoo npoinrocmposano 0ns onucy Koaueav-
HUX npouecie HeckinuenHoi cmpynu ma memopanu.

Tonosnum npaxmuvnum 3acmocy8anHim po3-
PoONEH020 MeMOOY € MOINCIUBICML AOEKBAMIHO020
Mamemamuunozo M00eN08AHHS KOIUBATLHUX CUC-
mem, sKe 6PAX06Y€ MOIHCAUBICMb KePYBAHHS napa-
mempamu cucmemu. Taxe Kepysanns napamempa-
Mu 003607151€ 30iliCHIOBAMU ONMUMATLHUN CUHMES
ma npoexmyseanns napamempis ionoGiOHUX mex-
HIMHUX cucmem 3 Memor aHaii3y ma 6pPaxyeanus
0co0UBOCMEl QUHAMIMHUX PENCUMIE KOTTUBAHD

Knwuosi crosa: xoausanvhi cucmemu, mame-
Mamuuni MoOeni X6Unvo8ux npouecie, oudepen-
UilAIbHO-CUMBOILHUU Memod, 060mouK06a 3ada4a,
X6UTIbOBE PIBHAHHSL

0 =,

1. Introduction

Adequate mathematical modeling of wave processes
in oscillatory systems plays an important role in modern
approaches to solving a series of scientific and engineering
tasks, which arise in the problems on analysis, synthesis, and
optimization of parameters for machine-building structures.
Mathematical and numerical modelling are important in
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understanding the essence of phenomena and processes that
are studied in modern mechanics and physics. Considering
the adequacy of mathematical models and methods of anal-
ysis contributes to the interpretation of existing, as well as
prediction and discovery of new, phenomena. Modern indus-
trial equipment is operated in a wide range of parameters,
particularly at high speeds, high pressures and energies,
etc. The specified reasons necessitate the study and analysis




of complex enough problems from the point of view of the
present status of the development of mechanical theory of
oscillations and general approaches of mathematical physics
[1, 2]. Studying oscillatory and wave phenomena in elastic
structures under the action of different kinds of perturba-
tions (force, inertial, and kinematic) is one of the classic
tasks of applied mechanics [3—5]. Increased attention to the
theoretical research into this field is predetermined not only
by the logic in the development of basics of the dynamics of
deformed systems, but also by interests of a wide variety of
practical applications of oscillatory systems in engineering,
construction, and other sectors of national economy.

A relevant problem of the current state of research re-
lated to applied mechanics is the development of new, as
well as the extension of existing, asymptotic approaches for
studying the mathematical models of oscillatory systems.
The specified models are described by the problems from
mathematical physics for the case of one-dimensional and
two-dimensional equations with partial derivatives [6, 7].
Note, on the one hand, the non-perturbed (linear) analogs to
such equations do not make it possible to apply a well-known
method of separation of variables. On the other hand, the
specified approaches to many classes of problems have been,
up to now, the only possible analytical method to study
complex systems. The asymptotic methods from nonlinear
mechanics have made it possible to explore a wide class of
mechanical oscillatory systems for the case of a nonlinear
dependence of oscillation amplitude on elastic forces and the
forces of resistance.

However, in most cases, only if one has precise analyt-
ical solutions to linear (non-perturbed) problems [8, 9] it
becomes possible to further apply the asymptotic methods
from nonlinear mechanics. The task on searching for such
solutions has remained relevant.

Among the problems in mathematical physics for partial
differential equations of the following form

L(at, Bx)U(t,x) =
=[97+¢,9,)9, +¢,0) |U (t.x) = £ (t.x), 1)

in which the coefficients of equation are differential polyno-
mials with complex coefficients,

9,=9%, 9,=(0,,..), a%:%xj’

x=(x1,...,xs)eR"', seN,

J(t, x) is the assigned function, the Cauchy problem has been
most fully explored for the time being [8, 9], that is, the task
on finding a solution to equation (1) in a domain (0,00) xR’,
which satisfies initial conditions

U(0,x)=¢,(x), 0,U(0,x)=0,(x), (2)

where @,(x) and @,(x) are the determined functions.

If magnitude U(¢,x)and its derivative 9,U(t,x) were
determined not at the same time (z=0), but at two moments
(for example, when ¢£=0 and =1, where 1>0), possibly
very close moments, we would then obtain the problem
on finding a solution to equation (1), which, in domain
t>0, x eR’, satisfies such two-point conditions for time

UO0,x)=y,(x), 9 U(T,x)=y,(x) 3

or

0,U0,x)=y,(x), U(t,x)=y,(x). €9

In addition to conditions (3) and (4), other conditions
are considered as well, which combine a first condition (3)
and a second condition (4) or a first condition (4) and a sec-
ond condition (3). All these conditions are obviously a par-
ticular case of the more general local two-point conditions

A(ar)U(tvx)ltzo =V, (JC), B(az )U(trx)L:T =Y, (X), (5)
where
A@d,)=a,+a,0,, B(d,)=b,+b0,,

and complex coefficients a,, a,, b,, b, satisfy obvious con-
ditions: |a, |+|a, >0, |5, |+|b, > 0.

Two-point conditions (5) at a,=b,=1, a,=b,=0 have
a simple physical interpretation — the observation of magni-
tude U(¢,x) at moments ¢t=0 and ¢=1.

Two-point problem (1), (5), in contrast to the Cauchy
problem (1), (2), possesses new properties. If a homogeneous
Cauchy problem

L(9,,0,)U(t,x)=0, (©6)
U(0,x)=0,U(0,x)=0

has only a trivial solution U(¢,x4)=0, then the correspond-
ing homogeneous problem for equation (6) with homoge-
neous conditions

AQ@)U(t,x)|,_, =0, BO)U(x)|,_ =0 )

t=0

has in general the non-trivial solutions.
Consider, for example, a homogeneous two-point prob-
lem for the following wave equation

[97—v’A, JU(t,x)=0, ®)

U(0,x)=0, U(t,x)=0, )]
where A =07 +..+0] is the s-dimensional Laplace opera-
tor, and v is the speed of a wave propagation. Problem (8), (9)
is derived from problem (6), (7) at

¢(9,)=0, ¢,(,)==v'A,, a,=b,=1, a,=b=0

and it has, for s=1 and s=2, the non-trivial solutions of the
following form

.M. X
U(t,xststm?,

U(t,x,,x,)=x, {Sin mx + ) —sin (¥, _'Yt)}
g T

Note, however, that some homogeneous two-point prob-
lems, similarly to the Cauchy problem, have only a trivial
kernel. For example, a two-point problem for the bicaloric
equation



[0,-AJU(t,x)=0

under condition (9), which is also a particular case of prob-
lem (6), (9) at ¢,(9,)==-2A,, ¢,(d,)=A? has only the trivial
solution.

Studying a set of non-trivial solutions to the homoge-
neous problem (6), (7) was addressed in paper [10] for s=1,
in work [11] for s=1 and conditions (9), as well as in article
[12] for s>1.

Thus, the task on enlarging a circle of oscillatory sys-
tems, whose mathematical models allow the possibility to
apply precise analytical approaches to study, is relevant at
the present stage of the development of mechanical theory
of oscillations. The indicated relevance grows in propor-
tion to the emergence of new complex mechanical systems
with different structures and the need to synthesize and
optimize parameters for appropriate industrial equipment.
Construction of a differential-symbol method to study the
wave process, carried out in this work, is a pressing issue in
the applied mechanics.

2. Literature review and problem statement

Two-point problems for partial differential equations
are in general the ill-posed boundary value problems. Such
two-point, and the more general n-point, problems with
known values U(t,x) at n times for a partial differential
equation of order n for time were first examined in papers
[13, 14]. In these studies, as well as in subsequent works
[15—17] addressing isotropic, and in [18, 19] — anisotropic,
partial differential equation, regarding the well-posedness of
n-point (multipoint) problems, their authors imposed addi-
tional conditions for the 2n-periodicity of solution based on
spatial coordinates and used the small denominators lower
estimates, inherent to these problems.

The establishment of classes for correct solvability of
n-point problems in unbounded domains (without additional
constraints for spatial variables) for individual partial dif-
ferential equation was addressed in papers [20, 21], and for
systems of partial differential equation — in [22, 23].

Note that problems with multi-point conditions for
partial differential equations are the generalization of
n-point problems for ordinary differential equations — the
Vallée-Poussin problems [24, 25]. These problems were dealt
with, specifically, in studies [26, 27] for a linear case, and in
[28, 29] for a nonlinear case.

Understudied as yet is a two-point problem for equation

[0 7', U= f(t.2), (10)
under conditions (9), which models wave processes of differ-
ent nature that occur under the influence of external force
(¢, x), when the process states are assigned at two moments.
In addition to conditions (9), of interest are conditions (7)
when at two points of time =0 and =t one assigns linear
combinations U(¢, x) and 0,U(z, x), which will be identical
and equal to zero.

Note that equation (10) has a wide range of applications.
This equation describes the propagation of the forced oscilla-
tions of a string and a membrane [30, 31], the propagation of
electromagnetic waves [32], waves at sea [33], seismic waves
[34, 35]. In medicine, equation (10) describes the propaga-
tion of a pulsating wave [36, 37], as well as the process of

change in blood pressure [38]. The potential of velocities in
an acoustic model of plasma motion [39] is also described by
equation (10).

For the problem (10), (7), which is non-correct, we
shall establish a class of quasi-polynomials as a class of the
existence and uniqueness of solution to the problem. In this
class, we shall resolve the problem of small denominators,
characteristic of these problems. To solve the problem, it
is appropriate to apply a differential-symbol method. Note
that a given method has been effectively used earlier to solve
similar problems with linear conditions based on the selected
time variable (under initial conditions in [40, 41], integral
conditions in [42], the Dirichlet conditions in [43], and local
two-point conditions in [44, 45]).

Therefore, application of the new differential-symbol
method in order to solve problem (10), (7) would make it
possible to derive exact solutions to the problem and to
establish the character of wave processes. It should be not-
ed that it is the exact solutions that enable the analysis of
parameters for the specified systems and control over them.
To implement this task, we had to modify the mathematical
model of the process taking into consideration the lengthy
character of structures and to devise a procedure for adapt-
ing the differential-symbol method to respective modified
models. Note that an analysis of the scientific literature, giv-
en above, reveals the following: such an approach to studying
the mathematical models of wave processes is a novelty.

The disadvantage of the method constructed is the
impossibility of its application for cases when the spatial
dimensions of a respective body are commensurate with
the magnitude of an oscillation amplitude. As shown by the
conducted numerical experiments, it is possible to effectively
and adequately explore the dynamic processes in cases when
the spatial dimensions of a body are the quantities that are
several orders of magnitude larger than the magnitude of an
oscillation amplitude.

3. The aim and objectives of the study

The aim of this study was to model a behavior of wave
processes occurring under the influence of an external force,
at any time in any point of space, if one knows data on the
process at two moments of time. To construct a solution to
the modelled two-point time problem, we shall apply a differ-
ential-symbol method. That would make it possible to derive
an explicit solution to the respective two-point problem and
to control parameters in a mathematical model in order to
detect and avoid dynamic modes of oscillations, which, are
impossible or dangerous for a given technological process
(resonance modes, an oscillation beat mode, etc.).

To achieve the set aim, the following tasks have been
solved:

— to propose a method to construct a precise analytical
solution to the respective two-point problem and the analy-
sis of parameters for the dynamic processes in mathematical
models within a wide class of oscillatory systems;

—to illustrate the method for constructing a solution
and analysis of oscillatory processes in linear systems for the
cases of an infinite string and a membrane.

In combination, the study conducted significantly en-
large the circle of mathematical models of wave processes,
which allow a precise analytical description. The differen-
tial-symbol method, convenient from the point of view of



practical engineering applications, would make it possible to
analyze and synthesize parameters for a wide range of tech-
nological systems that are described by the specified models.

4. The unique solvability of a two-point problem in the
class of quasi-polynomials

For non-empty sets M cC* and C’\ M, consider the
class of quasi-polynomials K, that is the class of func-
tions of the following form

gltx)=3y

m
k=1 j=1

M=

ij (t’ X) eBJHO‘k'x,

m,NeN, xeR’, teR, 11)
where B,,..,B, €C and are pairwise different, vectors

0y = (0 Oly ) vy Oy = (001,08, )
are also pairwise different and belong to the set M,

Qs (t’x)""’QmN (t’x)

are the polynomials
with complex coef-

[0 -va, JU(t,2)=[ 37 -v*a, [{Q@,,0,)F (.21, V)]

[97=vA, Je¥ ™ =B [ 37 -v*A, |(H, (t,v)e™ ) - AM)[ 0! =v°A, |(H, (t.v)e™)

We show that for function f(¢,) of form (13) from class
K¢, problem (10), (7) has only one solution which belongs
to the same class. This solution can be derived from formula

U(t,x)=Q(d,,d,)F(t, 2, \, V) | (14)

A=B,v=0."
where Q(9,,9,) is the differential polynomial that is derived
from Q(¢,) by replacing ¢ with 9, and x with 9, and

e’ —B(\)eH, (t,v)— A(MH,(t,v)

F(t,x,\, V)= -
(62hv) ey ]

e, (15)

sinh[y"v"t]
¥[vl

H, (t,v):[a0 -a, cosh[y"v"t]]A%v),

H (1) [,,0 Smh[ymr‘fﬂ +bcosh[y|V](1- t)]JA-1<v).

Function (14) as a result of the action of differential
expression Q(d,,9,) on (15) and putting A=0 and v=o,
is the quasi-polynomial from class K ,,. We show first that
this quasi-polynomial satisfies equation (10). Indeed,

=Q@,,0)[9 -v'A JF(tary)| =

A=B,v=a A=B,v=0 N

ficients,
= Q(apav)

o, x=

=0y X+ 0 X (Xz—Y2||V||2)€M+V'x—0—0|
=0Q(9;,9,)

Set M is to be se-
lected so that class
K., is the class of
unique solvability of
problem (10), (7).
Similarly to papers [45, 46], we consider an entire function
of vector-parameter v= (v1,...,vs) eC® of the following form

s\

— Q(tyx)e?uﬁv-x

sinh| y|lv|t
A(v)= Y["V"""](aobo -y "V"2 a,b, ) +

+cosh|:y||v||1:](aob1 —ab,). (12)
Note that

[V[=+/Vi+v;+...+V: and A(V)=a,b,t+a,b, —ab,

for ||v|=0, as well as the fact that function (12) is a quasi-
polynomial with respect to t for any veC®.
Let L be the set of zeros of function (12), then put

M=C\L,

A(a[)U(t,x)LZU = A(9,)Q(9,,0,)F (t,,, V)|

A=y M

A=B,v=0

A=B, v=0.

=Q(9,,9,)e""™

A=B,v=at

2, v=t = Q(t,x)eﬁtﬂx.x — f(t,x)

In the chain of expressions, we applied the commutativi-
ty of differentiation operators, as well as equalities

[af —YZAs]eM” _ (7»2 —y ||V||2)e7\.t+v-x,

Q(awav )e}\zw-x — Q(t,x)eMw-x,

[07=7°A, |(H, (t.v)e)=[0] =v*A, |(H, (t.v)e**) =0,
which is easily checked via direct differentiation.

Function (14) also satisfies conditions (7). Based on
equalities

A@)H, (V)| =0, AQ@)H,(tv)|_ =1

we obtain

A=B,v=0.,t=0 -

and force f(t,x) in equation (10), which prede-

termines a wave process, is to be considered a =Q(awav)A(a[)F(ﬂx%VﬂHi’v:ul:o=

quasi-polynomial, which belongs to K,, and N .

takes the form =0@,,9 )A(k)e = B(Me"A@)H, (t,v) - A(M) AQ@)H, (1,V) R —

. o0 vy M ”

/(t,x)=Q(t,x)e ", (13) =0

where Q(t,x) is the polynomial with complex =Q(ax,av)w =0.

coefficients, peC, oe M. A =y* v AP =



By analogy, using equalities

BQ)H,(t,v)| _ =1, B@)H,(t,v)|_ =0,
we thus prove that a second condition from two-point condi-
tions (7) is satisfied.

Proving the uniqueness of solution to problem (10), (7)
in class K, using a method from the opposite is reduced to
proving the trivialness in this class of solution to problem (8),
(7). The latter property follows from results of paper [46].

Comment 1. 1f in equation (10) quasi-polynomial f(¢, x)
has a more general form (11), then, according to the principle
of linear superposition, a solution to problem (10), (7) takes
the form of the following sum:

U(t’x)= ZZij(awav)F(t,xth”

m
k=1 j=1

(16)

A=B; =0y

Comment 2. Solutions to problems (10), (7) in the form
of (14) and (16) are the quasi-polynomials. Construction of
sets of polynomial and quasi-polynomial solutions to partial
differential equations and respective boundary problems has
been addressed in numerous studies [47—-49].

5. Forced oscillations of an infinite string with its two
assigned profiles

Consider the oscillations of an infinite thin string under
the action of external force f(¢, x) when the profiles of the
string at moments ¢=0 and ¢=1 are the same (zero). This
process is modeled by a two-point problem

[0/ -v22Ut.x)=f(t.x), t>0, x€eR,

U0,x)=U(L,x)=0, xeR. A7)
For problem (17) as problem (10), (7), we obtain
ay=b,=1, a,=b=0,
sinh[yv]

A(V)= . A(0)=1,

WV

Tk,
L=Jv=+i—, i*=-1, keNy, 18)

Y

inh
i, (1) = Sl

sinh[yv]

H,(t,0)=¢, H,(t,v)=H,(1-t,v).
If f(t,x) takes the form of (13) where s=1 and e M =
=C\ L, where L is set (18), then the solution to problem (17)

is found from formula (14), where

e’ —e"H,(t,v)-H,(t,v)

F(t,x,?k,v)z 7\‘2 _szz eV =
.. ¢ sinh[yv¢]+sinh[w(1-¢)]
¢ sinh[yv] .
= 22 _szz €.

If an oscillatory process occurs at the expense of a linear
external influence, that is

f(tx)=Q(t,x)=at+bx+c,

where a,b,ceR and a®+b*+c¢*>0, then p=0,
0=0eM=C\L,

and a solution to problem (17) is derived from formula
U(t,x):(aax +b0, +c)F(t,x,7u,v)|x:V:0 =
=aF,(t,x,0,0)+bF/ (¢,2,0,0)+cF(t,x,0,0)=

=—(t-1)t(at +3bx+3c+a).
é b

In particular, the solution to problem (17) for a=5,b=3,
c=2 takes the form

U(t,x):ét(t—i)(5t+9x+11).

The graph of this function (dependence of the magnitude
of an oscillation amplitude on time for each point at the
string) is shown in Fig. 1.

Fig. 1. Graph of function U(¢, x) for the case when
a=5, b=3, c=2

Therefore, under the action of a linear external force the
amplitude of the string has a cubic dependence on time for
fixed x and a linear dependence for variable x at any point
in time ¢>0.

6. Forced oscillations of an infinite membrane with two
assigned profiles

Consider a two-point problem (17) if s=2, that is the
following problem

[Bf —Y2A2:|U(t,x)= f(tx), t>0, x=(x,x,)eR?,

U0,x)=U(1,x)=0, xeR?, 19)

which is a mathematical model of the process of oscillations
of an infinite membrane under the action of external force
f(t,x) with the same known (zero) positions of the mem-
brane at time t=0 and ¢=1. For problem (19), we obtain

sinh[y A +v§]
TV +V)

(A(v,,v,)=1 for v} +Vv:=0),

A(vy,v,) =



L={v=(v1,v2)eC2: 72(vf+v§)+n2k2 =0, keN},

e’ —e"H,(t,v)-H,(t,v)
A=y (vf +v§)

VX +Vy Xy
)

F(t,x,\v)=

sinh [y v +v§t:|

H,(t,v,v,)=——————r,
e sinh[y vf+v§:|

H,(t,v)= H, (1-1,v).

Consider a process of oscillations of an infinite mem-
brane under conditions of a constant external force, that is
f(t,x)=Q(t,x)=b, b>0. Since constant b is a quasi-poly-
nomial, in which B=0, a=(0,0)e M =C?\ L, a solution to
problem (19) will be derived from formula

U(t,x)= bF(t,x,?»,V)|

A=0,v;=v,=0 =
e’ —(1-t)-e't
7\‘2

=bF(£,%,0,0,0)=b

= 0 :bM
0 2h

A=0

2
:[Q]:bt _t:lbt(t—i).
0 2 2

A=0

We thus obtained that an oscillation amplitude, the solu-
tion U(t,x) to problem (19), does not depend on spatial co-
ordinates and takes the form of a time quadratic dependence,
and the rate of change in the amplitude, derivative 9,U(¢,x),
is a linear dependence (refer to Fig. 2, a, b at b=5).

U(t)

1 L ! 1 L !
0.2 04 06 0.8 0 1.2 14 t

-05[

L 1 ! L s 1
00 02 04 06 08 10 12 t

Fig. 2. Graphs of functions:
a—for U=U(t,x); b—for V =|8[U(t,x)|

At different points in time >0 the magnitude of am-
plitude U(¢, x) is constant for any xeR?. Initial plane of

the membrane, while maintaining its shape, moves at rate
|t—0,5|b first downwards, reaching a minimum -b /8, and
then upwards, reaching value b at point ¢ =2 (Fig. 3).

1

Fig. 3. Graph of function U(t, x) at moment =2

Next, we consider an oscillatory process in a membrane
if the external force has an exponential type, namely;
f(t,x) =t that is, Q(t,x) =t, B=0, a=(3,4)eM.

We derive from formula (14)

A=0,v;=3,v,=4
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we obtain such states of square part of the membrane un-
der condition xe[01]" at times £=0, ¢=0.5, t=1, t=2
(Fig. 4-6).

Fig. 5. Graph of function U=U/t, x) at time =0.5




Fig. 6. Graph of function U=U[t, x) at time =2

The greatest speed and the largest deviation from the
equilibrium is demonstrated by an angular point with co-
ordinates x, =x,=1. An increase in time leads to that the
initial plane of the membrane deforms, moving downwards
to the minimum position, then moves up, coinciding with the
initial plane, and then deforms again, moving upwards. In
this case, for all x€[0,1]*, either U =0, or U>0, or U <0.

Consider oscillations of a membrane under the action of
external force

/(¢,)=sin(3x, +4x, +1),
which is a quasi-polynomial of form (11), that is

f(t,x) — %1 e(3x1+4x2+t)i _ %1 e—(3x1+4x2+L)i,

where

Q1(t’x):%ir Qz(t’x):_%iv Bi=1i, B,=—1,
o, =(3i,41), o,=(-3i,—4i), o, 0, eM.

According to comment 1, a solution to problem (19) is
derived from formula (16):
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where
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V(t,u)=sin [t + Su] -

Fig. 7. Graph of function V¢, u)

Function V(t,u), shown in Fig. 7, is a two-frequency
oscillation with a single frequency over time (phase 5u)
and frequency 5 (phase 0, amplitude —sin™[5]sin[5u+1]
and phase (-5) and amplitude sin™'[5]sin[5«]). In terms of
variable u, function V(¢,u) is a single-frequency oscillation
(frequency 5) with phases —, 1, 0 and amplitudes

1, (sin[5]) " sin[5¢], (sin[5]) " sin[5¢-5].

Comment 3. Note that the procedure described here en-
ables the accurate assessment of physical-mechanical parame-
ters of a body in the mathematical models of oscillations in or-
der to avoid, in particular, the resonance dynamic modes, etc.

7. Discussion of results of modeling wave processes
under two-point time conditions

We have proposed a modified mathematical model for the
propagation of wave processes in one- and two-dimensional
lengthy structures. Exact analytical
solutions to the problems of mathemat-
ical physics have been obtained in this
work owing to the application of a dif-
ferential-symbol method, which makes
it possible to constructively evaluate
the effect of the parameters for an
oscillatory system on a wave process.

The benefit of studying the model
is that the construction of a solution
to the problem employed a differen-

(25y* -1)sin[5Y]

For y=1, the solution to problem (19) is the function of
form

sin[5]sin[3x, +4ux, +¢|+sin[ 5(¢—1) |sin[3x, +4x, | -sin[5¢]sin[3x, +4ax, + 1]

tial-symbol method, which is a new
and effective when solving problems in
unbounded domains under conditions
for a single selected variable. In this
work, the selected variable is a time
variable. Thus, in contrast to approx-

vGex)= 24sin[5]

Let Ouv be a coordinate system created by rotating
the coordinate axes Ox, and Ox, at angle ¢, for which
tg@=3 /4. Then 5u=3x,+4x, 5v=3x,—4x, and solution
U(t,x) to problem (19) does not depend on variable v, and
depends only on ¢ and u, in particular,

U(t,x)= 2—14V(t,u),

imating approaches that are based on

the application of numerical methods,

we have managed to analytically describe all the features in
the dynamic processes in the specified mathematical models
of oscillations. Specifically, we have substantiated a possi-
bility to accurately find the parameters at which the system
is under a resonance mode, an oscillation beat mode, etc.
The research procedure, devised in this work, has its
limitations and disadvantages. Specifically, it is not appli-



cable to the study of mathematical models of bodies, which
cannot be described by the term “lengthy”. Particularly, we
mean here those oscillations whose maximum values for the
amplitudes differ from the linear dimensions of an object by
less than an order of magnitude.

Our research into the two-point problems is illustrated
for the case of oscillations of an infinite string (s=1) and an
infinite membrane (s=2). Graphical and numerical analysis
of the respective oscillatory process has been performed,
and, which is extremely important, the exact solutions to the
examined problems have been constructed. The obtained
numerical results confirm a satisfactory, in terms of practical
applications, accuracy of the resulting solution and make it
possible to select parameters for technological oscillatory
systems. Such a selection of parameters, described by the
specified mathematical models, ensures the effective opera-
tion modes of respective equipment.

The proposed methodology could be used in the future to
study more complex mathematical models of oscillatory sys-
tems: a nonlinear (perturbed) model of string and membrane
oscillations, linear and nonlinear models of oscillations con-
sidering dissipative forces, etc.

8. Conclusions

1. The problem on finding a solution to the Poisson
equation, which would satisfy homogeneous conditions

at moments ¢t=0 and ¢=1 (problem (10), (7)), is a
mathematical model of the oscillatory processes at the
assigned states of the process at two points in time. By
providing the specified problem for consideration, we have
refined and modified the model of linear oscillations of
length bodies.

2. Problem (10), (7) is the ill-posed boundary value prob-
lem, since the corresponding homogeneous problem has the
non-trivial solutions. Therefore, for the unique solvability of
the problem, we have introduced a class of quasi-polynomial
functions of special form in which elements of the problem’s
kernel are missing. This was achieved by selecting the set
containing no zeros of the characteristic determinant. It is
shown that the specified class contains the unique solution
to the examined problem.

3. In this work, we have proposed, to study and an-
alyze dynamic processes in the mathematical models
of certain oscillatory systems, using such an analytical
differential-symbol method, which makes it possible to
build constructive solutions to the respective two-point
problems within the special classes of quasi-polynomial
functions.

4. The analytical, numerical, and graphical results,
reported in this paper, confirm the effectiveness of the
proposed method when studying wave processes in the
lengthy structures, as well as the adequacy of the modified
mathematical models to the actual prototypes of oscillato-
ry systems.
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