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Y cucmemax asemomamuunozo Kepyeanus icHYe
HazaavHa nompeda GUMIPIOGAHHS WEUOKOIMIHHUX HeC-
mayionapnux QizuMnux eeaunun y peansHomy, wu 6auU3no-
K0 00 Ubozo, uaci. B uil eany3i oxpemoro epynoro eupis-
HAIOMbCS 3a0a4i UMIPIO6AHHS HECMAUIOHAPHO20 MUCKY
piodun uu 2asie.

Hoxazyemovcs, wo 6uMipr08anns HeCMAUIOHAPHOZO
MucKy y peanvHomy, wu OaU3bKO 00 Ub020, 4ACi npeo-
cmaense co6010 3adauy 6i0HOGAEHHS 6Xi0HO20 CuzHAlY,
AKA 3 N02NA0Y MAMeMamuKu 6i0HOCUMbCSL 00 KIAACY HEKO-
pexmio nocmasaenux npoéaem (3ziono K. Adamapa).
Ompumano po3e’s3ox obeprnenoi 3adaui 6uMipro6anms,
wo 6a3yemvCs Ha MameMamuyHii Mooei 6UMIPIOBAILHO-
20 nepemeopenns, sxe 30ilcHtoe cencop mucky. Ha ocnosi
Yb020 po36°a3Ky nobydosanuii Memoo SUMIPIOBAHHI, WO
nepedbauac eetigiem ONpaulo6anHs 6UXIOHO20 CUZHAILY
cencopa. Ipu yvomy 6 saxocmi 6asucnux Qynryii eeiis-
Jlem nepemeopenus 3anponoHoeano odupamu maxi, aKi €
Moouirxauiero imnyavcnoi nepexionoi pynxuii cencopa.

Iodaemvcs excnepumenmanvie 0ocaidncenns 0ie3-
dammnocmi po3podienozo memooy, axe 6a3yEMvCs HA BUMI-
PrOGaHHI IMiIM08an020 imnyavcy mucky. Imnyavc mucky
iMimyemvca nadinnam KYyavKu 3 Kaai6poeamoro macoro
Ha memOpany cencopa. 3anpononosana GuMmiproganvha
cxema, 0711 6UBHAMEHHS MPUBANOCMI MOPKAHHS KYb-
xu 0o membpanu. Ilepesipxa mounocmi memody nonszae
HA NOPIBHAHHI PeanvHOi MACU KYAbKU 3 6UIHAYEHHOI 34
BUXIOHUM CUZHATIOM CeHCopa. 3anponoHo8aHuii mMemoo
noKazas 6uUCOKYy MOUHICMb, OCKINbKU MAKCUMATLHA 610-
HOCHA NOXUOKA 6U3HAYMEHHA MACU NAOAIOUOT KYNbKU Cma-
noeuna quwe 0,65 %.

3anpononosanuii Memoo 6UMIpIOGAHHA HeCMAUioHap-
H020 MUCKY MOdCe OYymu GUKOPUCMAHUI 6 CUCMeMax
Kepyeanns 6 axux neoOxione weudrxooiroue Kopuzyeai-
HA Ounamiunoi noxubxu eumiprosanns. Ceped inwux ue
cucmemu Kepyeanns 6 AepoOKOCMIMHIU MeXHiui, 6uUnpo-
OyeanvHUX KOMNAEKCAX, GIUCLKO6Il MmexHiyi, HAYKoeux
docaidxcennax

Kntouosi cnosa: eumiproanHs HecmauioHapHozo
mucky, odepHena 3a0aua 6UMIpIOBAHH, PEATILHOUACOBUT
Memoo 8UMIPIO6aAHHSL, 8el6Ien NePemeopeHHs
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1. Introduction

At present, numerous highly technological automated con-
trol systems face a pressing issue to measure the fast-changing
non-stationary physical quantities in real time, or close to
that. Among these tasks, there is a separate group of tasks
on measuring the non-stationary mechanical magnitudes,
namely the pressure of liquids or gases. Such problems are es-
pecially relevant in aerospace engineering, testing complexes,
military engineering, scientific research [1-4].

However, measuring the non-stationary pressure in real
time represents a problem on recovering an input signal,
which, from the standpoint of mathematics, refers to the
class of ill-posed problems (according to J. Hadamard) [5]. In
general, there are methods to solve ill-posed problems [6, 7],
or methods to adjust a dynamic measurement error [8,9].
However, these methods are not applicable to measuring in
real time, or close to that, because they are associated with
an unacceptably high time cost, or are not precise enough.

Therefore, it is relevant task to construct precise and
high-speed real-time methods for measuring the non-sta-
tionary pressure.

2. Literature review and problem statement

Measuring the non-stationary pressure poses a specific
task, especially if it is a fast-occurring process and mea-
surements must be performed in real time. The methods for
measuring the non-stationary pressure that are known at
present can be combined into two groups, namely: hardware
methods (methods that employ specialized sensors) and meth-
ods that involve specialized processing of the output signal
(the application of filtering, using the decomposition of the
sensor’s signal, etc.). Thus, there is a method for measuring the
non-stationary pressure that implies the use of a specialized
sensor [10], whose structure includes an accelerometer mount-
ed on the membrane to measure its acceleration. A significant




disadvantage of this method is the need for a very precise syn-
chronization between the work of the channels that measure
the deformation of a sensor’s membrane and the measurement
of its acceleration using an accelerometer. In addition, such a
combined sensor has sophisticated metrological software and
requires specialized tools to acquire the metrological charac-
teristics, especially dynamic. In addition, when in operation,
the sensor would require proper positioning in order to pre-
vent the parasite components under side fluctuations in the
mass of the accelerometer. The above disadvantages are the
cause of the method’s low precision, which rules out its use for
highly technological control systems.

Paper [11] suggests using, to measure the fast-changing
pressure, a piezoelectric pressure sensor. Indeed, the piezoelec-
tric sensors that have a high frequency of natural oscillations
are suitable for measuring the fast-changing pulse pressure,
however, they are not applicable to measure the pressure that
exhibits static or slow-changing regions. And this is common
for the non-stationary processes. Therefore, it is still a relevant
task to devise a method of measurement that could be used at
arbitrary non-stationarity of the measured pressure.

There is a known method for measuring the non-sta-
tionary pressure [12], which is based on a mixed algorithm
applying a wavelet transformation and a variational de-
composition. The main disadvantage of this method is the
significant duration of the procedure for signal processing
and low accuracy, since it does not imply the procedure for
recovering an input signal, only “denoising” it. Therefore, the
task to measure the non-stationary pressure in real time, or
close to that, remains relevant.

There is another method to process a non-stationary
signal [13], which is based on the application of wavelet
transforms. However, this method, similarly to the previous
one, focuses on “cleaning” the signal from noise; its accuracy
in the measuring procedure has not been determined. These
shortcomings do not make it possible to use this method for
measuring procedures, especially those in real time.

At present, there are methods to process signals that
exploit a Kalman filter [14, 15]. In this case, the procedure is
implemented at the rate of measurement and it does not re-
quire the stationarity of the measured signal. However, when
employing a Kalman filter, it may face discrepancies as a re-
sult of inaccuracies in the source data. This situation makes
it impossible to use the methods, which is not acceptable at
actual measurements in high-speed systems of automation.

In general, it is obvious that the shortcomings in existing
measurement methods do not allow their use in precision
high-speed systems; therefore, it is necessary to construct
new, more effective methods.

3. The aim and objectives of the study

The aim of this work is to develop a fast method for mea-
suring the non-stationary pressure.

To accomplish the aim, the following tasks have been set:

— to examine correctness of the problem on measuring
the non-stationary pressure;

— to solve the inverse measurement problem;

— to investigate a possibility of applying a wavelet trans-
formation of the sensor’s output signal to the inverse mea-
surement problem;

— to test the feasibility of the method when measuring
the simulated pressure pulse.

4. Theoretical aspects of measurement method

4.1. Measurement of the non-stationary pressure as
an ill-posed problem

When measuring the non-stationary pressure, the piezo-
electric or piezoresistive sensors are commonly used [1-4,
16-19]. A transformative function of such sensors can be
represented in the form of the convolution integral

Ut)= kj p(1)-e PV sin(n(¢ - 1))d, 1)

where U(t) is the sensor’s output signal, k is the static factor
of sensor transformation, p(t) is the measured pressure, n
and B are the frequency of own oscillations and a damping
coefficient of fluctuations of the sensor’s mechanical part.

Thus, during measurement, we observe signal U(t), and,
based on this signal, we need to find the value accepted by
pressure p(t). From the standpoint of mathematics, that
means solving equation (1). We shall show that, during mea-
surements, it can be an ill-posed procedure.

Write down equation (1) in the following form

U(t)=k[gt-v)p(t)d, )

where g(t—t)=e P Isin(n(¢—1)) is the sensor’s pulse transi-
tion function.

Equation (2) is an integral equation by Volterra with a
symmetric kernel in class Ly[0, ¢].

Assign function

PO= PO+ X0, (0) ®

where p(7) is the solution to equation (2), or the true value of
the measured pressure, a; is the arbitrary constant, and some
functions that are not equal to zero almost everywhere, as

well as y(1)..yn(v)
j‘g(t—r)wi(r)dT:O; i=1 2,.,n 4)
0
Substitute equation (3) in equation (2), we obtain:
Ig(t—r)[mmgai ~wi<r>]dr - ig(t—r)p(r)dw
+‘Ig(t_1)ifai Y, (1)ET=

= [ge-Dp@pes Yo fg-Dw,@de )

In expression (5), the second term, based on the assump-
tion made (4), is equal to zero, and, therefore, the entire
expression (5) equals U(t). That is, p;(r) can also be treated
as the solution to equation (2), that is, as the value for the
measured pressure. This means that the input signal can be
represented by an infinite number of combinations of the
true and external components, which would produce the
same output signal, which is observed during measurement.

Therefore, if difference

(D) - p(1)=A(1),



can be represented as a series of Zai -y, (1), then, based
i=1

on the obtained actual output signal, the input signal (the
purpose of measurement) would be defined ambiguously;
hence the measurements are incorrect.

On the other hand, according to the Borel’s theorem on
convolution [20], equation (2) can be represented, by using a
Fourier transform, in the following form

H(®)-P(0)=U(w), ©6)

where U(w), H(w), P(®) are the Fourier images of functions
U(t), g(t—7), p(x), that is, the spectrum an of output signal,
the sensor’s transfer function, and the spectrum of the input
signal, respectively.

Therefore, using a reverse Fourier transform, the solution
to equation (2) takes the form

U(w)
H(w)

p(t)=ﬂ exp(jto)do. 7

However, function H(w) can be equal to zero at certain
points ®=w;, or it could prove to be finite and, beyond a
certain interval ®;<o<wj, can be identical to zero H(®)=0.

Then the solution to (2) can be obtained both from
function

P(w)=U(w)/H(w); oo, (8)
and from function

P(0)=P(0)+Y a,-5(0-w,), )

and the desired input signal p(¢) will be equal to

13U . 1 )
p(t)zﬂl (((:)))cxp(]tw)dw+%Zai-cxp(]twi), 10)

H

where a; are the arbitrary constants.

Thus, equation (2) will not accept a single solution if the
Fourier image of the sensor’s transfer function H(w) is finite,
or converts to zero at certain points. Therefore, if the spectrum
of input signal P(w) possesses harmonics with frequencies that
coincide with zeros in the transfer function H(w), then these
harmonics do not affect the output signal U(t) and, according-
ly, cannot be uniquely recovered from it. Because the transfer
functions of actual pressure sensors almost always include ze-
ros, and the length of the spectrum of the input signal, given its
non-stationarity, may be arbitrarily wide, then, in terms of this
standpoint, the measurements would be incorrect.

In general, it is obvious that an attempt to recover an
input signal when measuring the non-stationary pressure
may prove to be an incorrect procedure that would require
specialized methods to solve it.

4. 2. Solving the inverse measurement problem and
the wavelet transformation of the sensor’s output signal

To solve the inverse measurement problem, we shall per-
form a double differentiation of equation (1), we obtain

vy .,
a o=

=BU@)+ kjn . e’ﬁ("t)p(r)cos(n(t -1))d;

U
d*
: nB~e’B(”)p(t)cos(n~(t—t))+
—k I 2 (i) . _ de

o+’ p(1)sin(n(r-1))

=U"(t)=—-U@+ k-1 p(6)-

(12)

Taking into consideration (1) and (11), we have
U'(t)y=-2-B-U'(t)+
+k-m-p(6) - (" +B*)-U ().

We obtain from the last equation

_U@)+2-B- U0+ (" +B°)-U)

p(®) ko

(13)

Equation (13) is a solution to the inverse problem on
measuring the non-stationary pressure and is a basis to con-
struct a measurement method.

Note that the actual output signal is obtained with some
error, so its direct differentiation would be an incorrect
procedure.

Apply a direct discrete wavelet transform [21,22] to
output signal U(t)

C, (n,m)= i i Ut)a " *y(a "t —n)dt,

m=1 n=1

(14)

where m, neZ, Z is the set of real numbers, a is the parameter
scale; y(a™t—n) is the basis function.

In turn, the reverse discrete wavelet transformation is
carried out based on formula

U@t)= KwiiCu(m,n)a""/zw(a’"’t —n)dt, 5)
m=1 n=1
where K vy is the constant defined by basis function .
Then, derivatives from signal (15) are
di@) -
——==U'(t)=
0 ®)
=K iicu(m,n)a*m/z M7 (16)
Y m=1 n=1 dt
U@ -
—=U"(t)=
ar’ ©
o0 oo 2 —-my
= KWZZCu(m,n)a-m/z W_ 17)
m=1 n=1

That is, the differentiation of the signal derived via a wave-
let transform comes down to differentiating the basis function
and such a differentiation is robust because the basis function
is assigned analytically. Note that differentiating the Fourier
series yields the series with inadequately slow convergence.

However, the fundamental problem during wavelet trans-
formation of signals is the choice of a basis function [23]. Tt
is the rational choice of such a function that determines the
accuracy and rate of transformation. And when measuring
in real time, these settings are crucial. Thus, for the wavelet
transformation of measuring signals, we suggest that a base
function should be determined based on the physical essence
of measurement. When measuring the non-stationary pres-



sure, a sensor output signal can be represented as the inte-
gral of product of the input signal and the pulse transition
function. Therefore, it is logical to assume that the best basis
function for a wavelet transformation of the output signal is a
function close to the sensor’s pulse transition function.

In equation (1), expression g(t—t)=ePtDsin(n(t—1)) is
the pulse transition function. The pulse transition function
by itself is not a wavelet because

[ e sin(n(t—1)) 0.

However, if the pulse transition function is to be repre-
sented centrosymmetrically in the third quadrant, then we
obtain the modified function g(t) (Fig. 1).

N0

A\

A

\

Fig. 1. Modified pulse transition function of the pressure sensor
The n}odiﬁed pulse transition function becomes a wave-
let since j g(t)dt=0, and the kernel of the integral equation

by Volter_ra, which is the pulse transition function, belongs
in the class Ly[0, t] (a set of functions integrated in a square
it

by [ab]). That is, [[&(t)] d¢<eo.

5. Practical implementation and studying the
measurement method

Based on the obtained theoretical aspects, the method
for measuring the non-stationary pressure using a wavelet
transformation is as follows:

— the sensor’s output signal U(t) is treated with a direct
and reverse wavelet transformation in line with formulae
(14) and (15);

— the signal U(¢), resulting from a wavelet processing is
treated with a double differentiation in line with formulae
(16) and (17);

—a value for the measured pressure is determined from
formula

_Ur@+2:B- U@+ +B)-U@)

p(®) s

(18)

Note that it is possible to derive the first and second
derivatives from a wavelet-treated output signal in parallel.

5. 1. Experimental verification of the constructed
measurement method

To check the feasibility of the method we used a piezore-
sistive sensor (Fig. 2) while the test signal was generated by
a pulse pressure force simulator. That is, the dynamic signal
in the form of a short pulse was generated by the impact
of a metal ball of mass m, which falls freely from height H,
against the membrane.

Fig. 2. Piezoresistive sensor used to test
the feasibility of the method

The experimental set-up (Fig.3) includes clamper 1,
which strictly vertically holds examined sensor 2 with its
membraneup,guidingpipe 3,4istheinterfacemodule E14-140
for data processing and transferring them to monitor 5.

4

S
3

Fig. 3. Set-up of the pulse pressure force simulator

A guiding pipe of length 25 cm is screwed onto a thread
section of the sensor’s membrane part. At the top of the guiding
pipe there is an electromagnet, which keeps a ball of mass 2 g
and, when necessary, releases it for free fall on the membrane.

When using a pulse pressure force simulator, a validation
procedure of the feasibility of the constructed method for
measuring the non-stationary pressure implies determining
a value for the mass of a falling ball and comparing this value
to the actual one.

To establish the actual duration of contact between
the ball and the membrane at impact, the ball was engaged
through a flexible electric wire in a specialized circuit (Fig. 4),
whose signals were registered by a countdown system at the
interface module. As soon as the ball touched the membrane,
a line of communication was enabled and an electrical signal
from the power supply was registered by the same count-
down system. As soon as the ball bounced from membrane,
the communication was terminated, the signal disappeared
(subsequent impacts of the ball against the membrane were
disregarded). The duration of such a signal was equal to the
time of contact between the ball and the membrane. In a given
experiment, the duration of contact was ¢;=8x107 s. Since the
sensor’s natural frequency amounted to 1 kHz, the impact of
the ball against the membrane should be correctly interpreted
as a short rectangular pulse [24].

This procedure represents an indirect measuring tech-
nique. A ball that freely falls from height H simulates a
pressure pulse of amplitude

_ 4 my2gH
nR* ot

(19)



Time-interval count system

Membrane

Fig. 4. Schematic of the set-up for determining the duration
of contact between a ball and a membrane

If the input source were recovered based on the sensor’s
output signal, then the mass of the ball that simulated such a
pressure pulse would be

e PRt
42gH

A value for the amplitude of the simulated pressure pulse
p is to be derived in the course of implementation of the mea-
surement method from formula (18). Next, applying (20), we
obtain a value for the ball’s mass m.

Based on the research result, the sensor’s output signal
when its membrane was hit by the ball took the form shown
in Fig. 5, and the recovered signal from the simulated pres-
sure is shown in Fig. 6.
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Fig. 5. The sensor’s output signal when a ball hits its membrane
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Fig.6. The recovered input signal from
the simulated pressure pulse

Based on the results of test repeated 10 times, the simu-
lated pressure pulse amplitude was 0.864 MPa. Because the
pulse duration #; was 8x10s, mass of the falling ball was

m=1,987 g. Thus, the maximum relative error in determining
the mass of a falling ball was 0.65 %.

6. Analysis of the constructed measurement method

The measurement method that we developed based on
the application of the derived solution to inverse problem (13)
implies obtaining derivatives from the output signal U(¢) and
U(t). These magnitudes are derived from numerical differen-
tiation of the signal’s image wavelet U(¢).

Based on the essence of numerical integration, we can
record that at time ¢; (where i=1...N)

U(t)+2-B- Ac (Ut )+ U(2,) / 2)+

+(ﬂ02 + Bz ) ) U(ti)
kM,

()= 1)

Thus, to calculate a value for the measured pressure in
line with (21), one must know the values for magnitudes
U(¢) and U(¢) at current moment t; and the value for mag-
nitude U(¢) at previous time t;.q.

In line with the developed method of measurement, signal
U(t) is obtained by numerical differentiation of the wavelet
image of signal U(¢)in accordance with (17). That is, by
computing the second derivative from the modified pulse
transition function (basis function) in advance, performance
speed of the method will be determined based on the imple-
mentation of arithmetic procedures according to expressions
(17), (21). All these procedures are easily implemented when
applying known software MathCad or MathLab, etc. There
are also techniques to process signals with the possibility of
specialized programming that focus on a specific task.

In addition, note that the infinite sums in expression (17)
should be replaced with the finite ones, which would affect
the accuracy of computing a value for the measured pressure.

7. Discussion of the method to measure the non-
stationary pressure

The constructed measurement method implies using a
wavelet transform of the sensor’s output signal. To improve
the accuracy of wavelet processing, we suggested using, as a
basis function of wavelet transformation, the sensor’s modi-
fied pulse transition function.

However, it is important to realize that one must have
the sensor’s pulse transition function in advance. It is pro-
duced by experimental methods. In addition, one experi-
mentally obtains values for the sensor’s static coefficient of
transformation k, for the frequency of natural oscillations
n and for a damping coefficient of the sensor’s mechanical
part oscillations B. However, it is necessary to understand
that the operation of the sensor can change the physical and
mechanical parameters of the membrane. This means that
it would be necessary to periodically check the value of the
frequency of its oscillations, as well as the static coefficient
of sensor transformation, and to test its pulse transition
function.

In addition, when applying the experimental method for
the force simulation of a pressure pulse, it is necessary to ensure
a one-time impact of a ball against a membrane, which would
require specialized technical solutions in the guiding pipe itself.



It should be noted that the implementation of the method
requires appropriate software.

8. Conclusions

1. The work shows that the fundamental equation of
measurement will not have a single solution if a Fourier im-
age of the sensor’s transfer function is finite, or is converted
to zero at certain points. Because transfer functions of actual
pressure sensors almost always include zeros, and the length
of spectrum of the input signal, given its non-stationarity,
can be arbitrarily wide, then measuring the non-stationary
pressure based on the derived actual output signal would
yield an ambiguous input signal (the purpose of measure-
ment) and therefore the measurements would be incorrect.

2. We have derived a solution to the inverse measure-
ment problem, which is an algebraic equation containing

derivatives from the sensor’s output signal. For the prac-
tical implementation of this equation, the wavelet trans-
forms of the output signal are applied. The work shows the
possibility to differentiate a wavelet image of the output
signal, which is the basis of the constructed method of
measurement. In this case, a proposed basis function of
the wavelet transformation is the sensor’s modified pulse
transition function.

3. When testing experimentally the feasibility of the
developed method of measuring using the set-up of a pulse
pressure force simulator, error in determining the mass of a
falling ball that simulated a pressure pulse was 0.65 %. This
result confirms the efficacy of the method.

The research results obtained show the feasibility of
the constructed measurement method using a wavelet
transformation of the signal, as well as a possibility of its
application for the high-speed automation systems that
operate in real time.
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Hocnidicerno po3nodin pisnie 36yKo6020 mucky 6 pesonamo-
pax Temomezonvuya 6 wupoxomy oianasoni wacmom. IIposederno
KoMn lomepHe M00eN108aHHS 36YK06020 NOJISL 6 PE3OHAMOPI Memo-
00M Kinuesux enemenmie ma excnepumenmavii 00Ci0NCeHHA.

Bcmanogaeno nasenicms 0az2amvox pe3OHAHCHUX 4ACMOM
6 pezonamopi ma noxazamo Po3nooil MaAKCUMyMie i MiHiMymie
PI6HIG 36YK08020 MUCKY 6 00°cmi pezonHamopa. Buseneno, wo
PO3n00is Pe30HAHCHUX wacmom pezoHamopa He 6ionogioac 2ap-
Moniinomy 3axony. Ile dae 3mozy poszensdamu pezonanci eéaa-
cmueoCcmi pe3oHamopa awanoitHo 00 KOJUEAHL MEeMOPAHU YU
0360ona. /Ipyea peszonancha wacmoma pezonamopa 6 6-9 pas
eumie nepuioi Pe3oHAHCHOT wacmomu, wo 6i0noeioae pe3oHaucy
Tenvmzonvya. Modentosans 36yK06020 nos 8 pe30HAMOpi noka-
3QJ10 HAABHICMb BY3NIOBUX JIiHill 6 PO3NOVINI 36YK06020 MUCKY AK 6
00’emi pesonamopa max i 2opai. Bcmanogaeno, wo Kinvkicnto 6y3-
NI06UX NiHil 0/ NEPpUUX 4aACMoOm HA OOUHUUIO MEHUWA 34 HOMeD
pe3sonanca.

Cninvhum 0ns 6cix po3nodinie € me, w0 npu HAOIUNHCEHHI
MOYUKU BUMIPIOBAHHS 00 KPAlO 20pA PE30HAMOPA PiBeHb 36YK06O-
20 mucky 3menumyemocs. Taxosc npu docniddcennax ecmanosie-
HO, MOJMCIUBICMb CMEOPEHHS PE30HAHCY uue 8 00 €Mi pe3oHamo-
pa 6e3 ACKPaso UPANCEHUX 8Y306UX JIHIIL 6 20pJIi.

Hopienanvruuil ananiz misnc excnepumenmarvHuMu 0anumu
ma 0aHuMu KoMn’lomepHozo0 MO0eJ06aHHS NOKA3A6 BUCOKUL
pieenv docmogipnocmi ompumanux pesyavmamis. Iloxudxa 6
6U3HAUEHHI Pe30HAHCHOT wacmomu cmanosuaa ve oinvue 0,8 %.
Hanuii paxm 0036075€ 68 n00ALUOMY NPU BUIHAUEHHI 36YKO-
6020 NOJIAL 8 CUCIMEMAX PE3OHAMOPIE KOPUCMYBAMUCS KOMN 10~
mepHUM MO0eJIH08AHHAM 3AMICMb Pecypco3ampamiux excne-
puMeHmanrbHux 00CaioNceHd.

Hasenicmos 6azamvox pe3onancie é pezonamopi I'eromzonvya
00360.7151€ NP060OUMU NOOYO08Y WUPOKOCMY20BUX NPUNLADIE, WO
MOIHCYMb 6A3Y6aMUC HA BUKOPUCMAHHI 0AHO20 MUNY pe3oHa-
mopie

Kntouoei cnosa: pesonamop I'enomeonvuya, pezonancui vacmo-
mu, 36yKo6e noje, Memoo KiHueeux eiemeHmie
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Research into analysis of human sound sensations began
in the mid-19th century [1]. Even though a given work be-
longs to the field of psychoacoustics, a need arose during its
execution to use and register the phenomenon of resonance.
It was shown that an elastic body (a string, a stretched mem-
brane) could resonate not only to the sound, equal in height
to its natural tone, but also to the overtones. To prove it,
sensitive devices were used, namely, glass or metal balls with
a narrow neck or tubes — the Helmholtz resonators. In terms
of electric acoustics, they represent an acoustic oscillating
system, consisting of flexibility, mass, and active resistance.
In this case, the flexibility is the air inside the container, the
mass is the air that fills the narrow resonator throat, and the

attached mass of air adjacent to the end of the throat. The
presence of active resistance is predetermined by the friction
between air and the walls of the throat and by losses in the
oscillatory energy due to the radiation of sound by an open
end of the throat [2].

The Helmholtz resonators were used to analyze the
spectra of complex sounds before the advent of computing
technology, they were also applied in temple structures for
the correction of acoustic properties of premises.

One of the areas where resonators could be employed is
the construction of focusing systems for acoustic medical
instruments or flaw detection devices with simultaneous
amplifying properties. In addition, the existence of multiple
resonance frequencies in the resonator makes it possible to
use them in broadband acoustic systems.




