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1. Introduction is formed according to the results of measuring the values
of a set of controllable parameters (features) of an object.

Let us state the general principles for solving the problem  Identification technologies provide linkage between these
of identification of the state of an object. Information base  values and the state of an object. To solve this problem, a




number of special mathematical methods are traditionally
used: multidimensional discriminant analysis, clustering,
and regression analysis. However, the application of these
techniques is significantly complicated, when the source
data for identification of objects are determined fuzzily
[1, 2]. The absence of the corresponding mathematical appa-
ratus that makes it possible to solve the problem under these
conditions, determines the relevance of the research.

2. Literature review and problem statement

The technology of multidimensional discriminant anal-
ysis is as follows [3]. Let an observation object be in one of
two states Hy and Hs. The state of an object is determined
by values p of indicators xy, x9,..., x, . The numeric values
of the controlled indicators are supposed to be normally
distributed random magnitudes. In this case, mathematical
expectations are determined by vector My=(myy, mya,..., myp),
if an object is in state Hy and by Mo=(ma1, myy,..., myp), if an
object is in state Hy. It is also assumed that the elements of
the matrix of coefficients of correlation between indicators
K=(kj),i=1,2,..,pand j=1, 2,.., p do not depend on the state
of an object. To assess the state of an object by results of
measurements of the controlled indicators, the discriminant
function

is used.
Unknown coefficients a;, i=1, 2,..., p of this function are
derived as a result of solving the system of linear equations

2 pi a; mip

Using the results of the solution of system (1), the values
are calculated:

Zamh, g, = Zamzl,

P
zkﬁai =My =My, - my,. @
i=1

C1+C2)

Now, the decisive rule is stated: an object is in state
Hy, if for_a specific set of values of controlled indicators
X11,X2,...,Xn the corresponding value of discriminant func-
tion satisfies inequality:

..
Z=Y axi<C,
=1

otherwise — in state Hy.
As shown in [4], selection of values of coefficients a;,
=1,2,..,p, values § , &, and C ensures a minimum of the
total probability of confusmg the states, equal to p(H;/H,)+
+p(Hy/Hy).

We will note the general shortcomings of the traditional
method of multidimensional discriminant analysis. First,
only double-alternative diagnosis was implemented in the
method. It is not enough when solving many practical prob-
lems [5]. Second, in the traditional method, discriminant
surface is a hyperplane. The coefficients of its equation are
found by the statistical characteristics of the two points that
represent a subspace of the phase space of observations. In

this case, the error of diagnoses confusion can be very large
[6]. The real accuracy of estimates of conditions using spe-
cific multifactor discriminant models is unpredictable and
significantly depends on the nature and characteristics of
sample data, their volume, uniformity, the sense of controlled
indicators [7]. In addition, it should be noted that in a range
of works, for example, in [8, 9], the assumption of Gaussian
character of random observation values is used, which con-
siderably limits their application areas. Another method for
solving the problem of the objects set recognition is more
reliable. Let us proceed to consideration of fuzzy clustering.

Let the results of measurements p of the indicators of
each object make up a set of points of p-dimensional phase
space. Cluster analysis technology makes it possible to split
the source sets into m subsets (by the number of possible ob-
ject types (Hi, Hy,..., Hy). In this case, the points belonging
to one subset — a cluster, in some selected (specified) sense
are “close” to each other and “far” from the points of other
subsets of clusters [10]. A lot of different methods of cluster-
ing are known. Most of them in different variants implement
the following simple procedure that is described, for exam-
ple, in [11]. The number of clusters is known a priori and the
grouping center (that is, sets of coordinates of typical points
for corresponding states of an object) is assigned for each of
them. Now, we perform an iteration procedure, at each step
of which the distances to the centers of cluster grouping are
found for the successive distributed point and the shortest
of these distances is selected for point joining. The most
important element of the clustering technology is the proce-
dure of comparison of distances. There are also other ways
of implementing this procedure [12, 13]. In all cases, it is
assumed that the coordinates of points and grouping centers
are measured precisely (or the estimation error is distributed
normally). This limits the range of application of these meth-
ods in the context of fuzzy source data.

The merit of the clustering method is the ease of imple-
mentation and unambiguous interpretation of the results.
The drawback of this method is low informative value. In
fact, the fact that a point belongs to a cluster does not con-
tain any important information about the location of this
point in the cluster, that is, whether this point is at the center
of the cluster, or near the boundary with a neighboring clus-
ter. Consider a more informative method for identification
that is based on regression analysis.

Regression analysis is a powerful, effective method that
describes the relationship between some of the selected indi-
cators of a control object and its directly measured charac-
teristics, indicators, and parameters. A general drawback of
this method is the lack of the grounded choice of controlled
indicators and the procedure of determining the coefficients
of the model (1).

Consider the well-posed statement of the problem on
regression analysis. Controlled indicators (2, X550,%,),
presumably affecting the resulting indicator of the quality
of functioning of object y, are selected by any well-ground-
ed method. The relationship between the explaining vari-
ables (x,,x,,..,x,) and resulting variable y is described
by Kolmogorov-Gabor polynomial, which in its simplest
form, is:

y=a,+ax, +a,x,+..+ta,x,+¢e 2)

To find the unknown coefficient of mode ay,ay;...,@, A
series of n experiments is carried out. In this case, every



experience X; =(x

1% 90 X;,) 18 put in correspondence its
result y;, j=1,2,...n, that is:

Y =ay+ax, +a,x,+..+a,x, +¢, =12, n

In a matrix form, this ratio is as follows Y =HA+E,
where:

Loy, 2 2y,

H=
1x, %, .,
al’ yl’ 81’

In the classic theory of regression analysis (a Gauss-Mar-
kov model), it is assumed that random measurement errors
y; in each experience are not correlated and normally dis-
tributed with zero mathematical expectation and known
constant dispersion. In this case, estimates of unknown coef-
ficients a,,a,,..,a, are obtained by the least squares method,
through minimizing criterion

J=(HA-Y) (HA-Y).

Vector A, minimizing this criterion is determined from
ratio: A=(HTA)'H"Y.

We will perform a brief analysis of the described meth-
ods for identification of states. The need for improvement of
ideas, methods and technologies of identification, which has
occurred in recent years, is linked to the formed understand-
ing the inadequacy of the theoretical-probabilistic models
of uncertainty for most actual problems of evaluation of the
state of an object. The main causes that these models are
unsatisfactory include a small source data sample, as well as
the change of the conditions for functioning of a control ob-
ject. Thus, in terms of a small sample of a priori source data
[14], the hypothesis of normality of observed data cannot be
either properly justified or rejected, which questions the le-
gality of using the central limit theorem. In [15], for the same
reason, the errors of statistical estimates of mathematical ex-
pectations and variances of the controlled indicators can be
unpredictably large. This circumstance will inevitably lead
to respectively large errors when solving the system of equa-
tions (1), estimates of coefficients of discriminant functions
and, consequently, as a result, the identification error will
be great. The approach that implies refusal form a priori as-
sumptions about normality of the observed values of param-
eters of an object in favor of the model of fuzzy mathematics
is natural in this situation [16]. This mathematical apparatus
is much less sensitive to the sample volume and makes it
possible to determine reliably the key structural elements of
this theory — the membership function of numeric values of
observed indicators even under conditions of a small source
data sample. In this case, the simplest variant of the solution
of the problem of diagnosing the state of an object using the
technology of multidimensional discriminant analysis is
calculation and use of theoretical-probabilistic analogues of
statistical characteristics of observed magnitudes.

As regards a regression analysis, the transition to the
description of source data in terms of fuzzy mathematics
initiated the development of new technologies. In [17, 18],
the membership function of the resulting variable, which
is compared with experimental membership function, is

determined. The fundamental drawback of this approach is
that the accuracy of estimation of the values of independent
and dependent variables in practice differ considerably. That
is why the result of solving this problem not necessarily
will provide a minimum of total fuzziness of the described
variable. This raises doubts as to the correctness of descrip-
tion of the relationship between explaining and explained
variables. The absence of analysis of result proximity to the
modal value of fuzzy explained variable, obtained by results
of statistical treatment of source data in [19], decreases the
effectiveness of the proposed method. Non-compact function
of membership of a fuzzy value of the explained variable in
[20] increased the error of the proposed solution.

3. The aim and objectives of the study

The aim of this study is to modernize traditional identi-
fication methods taking into consideration the fuzziness of
source data.

To achieve this aim, it is necessary to solve the following
problems:

— to develop a fuzzy method for discriminant analysis;

—to develop a method of fuzzy clustering;

—to develop an effective method for fuzzy regression
analysis.

4. Modernization of methods for identification of
the state of objects under conditions of fuzzy source data

Let us assume that according to the results of previous
studies for each indicator of object x;, a set of values for
this indicator (x{’x{)...,x{’) was determined for the case
when an object is in state Hy, and set (x{Px...,x(;’) for the
case when an object is in state Hy. According to these data,
we will obtain the description, for example, of the triangle

membership function of parameter x;. In this case, we have:

0, x,<b,,
x,—b,.
i 1i
— b, <x,<m,,
1i 1i
P‘(xi/H1):

ST <o
c.—-m ) 1i i — 1
1i 11i

0, X;>cp;

0, xi<bZ ,
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i 2i
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ST <o
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We will calculate the values of the main theoreti-
cal-probabilistic characteristics of fuzzy magnitudes x;
i=1,2,..., p. Let us introduce functions:

J-U(xi/Hdei
o ey M)

| u, / H,)ydx,
by;

These functions are non-negative and the integral of
them is equal to unity. That is why they can be interpreted
as the density of probability of random magnitudes and used
to calculate their mathematical expectations:

7711" = in(pi(xi / H)dx,,

by;
mai = [ x.9,(x, / H,)dx,, i=1,2,... p.
by;

To calculate the estimates of the elements of the correla-
tion matrix, we will determine:

0, x;<b,,
x.—b,.
LA p,<x,<m,
H ovH )= m, =b,
Ha(xi/ Vv 2)—
CZ! _xi <
2L o <x, < ey
CZI _mi
0, X;>Cy,
where
1 d W I
mi:l l ins +2x7’5 ) l:1y27"')pv
1+ 2 \Us=1 s=1
as well as:

H(xi/H1VH2)

¢, =(x,/H v H,)= ,i=1,2,.,p.
J'u(xi /H,vH,)dx,
by

Then theoretic-probabilistic analogue of dispersion of

indicator x; for the whole set of its observations is equal to:
Dlx,]= [ xlo(x, / H,v H,)dx,.
b“

Then

N 1 L+,

b= > (20—, ) (1),

(I, +1,)(D[x,1D[x,])* S

i=1,2,..,p,r=1,2,..,p.

The derived estimates for mathematical expectation and
correlation factors will be subsequently used for the stan-
dard scheme of calculation of set a;, i =1, 2,..., p, by solving
the system of linear equations (1) and subsequent actions
during solution of the problem of diagnosing the object state.

Let us proceed to consideration of fuzzy clustering. Let
the coordinates of the points (the results of measurement
of the controlled indicators), as well as clusters grouping
centers, be assigned in a fuzzy way by their membership
functions. Then, the membership function of fuzzy distance
for any pair (point — grouping center) can be obtained by
the known rules for performing the operations over fuzzy
numbers [21].

For example, membership function of the i-th coordinate
of the k-th grouping center and membership function of the
same coordinate of the j-th point are assigned by member-
ship functions of the (L—R) type:

X, —X, _
L(M} X, <X,
o
i

X, —X, _
ik ik .
R( ), Xy > Xy

ik

M (xik) =

By

where X, is the modal value of the i-th coordinate of the
k-th grouping center, X, is the modal value of the i-th coor-
dinate of the j-th point, o, o, are the left fuzziness coeffi-
cients, B, B, are the right fuzziness coefficients.

To calculate membership function of fuzzy distance
between the k-th grouping center and the j-th point by the
i-th coordinate, we will use the following rules of perform-
ing the operations over fuzzy numbers of the (L—R) type
[22]. Let

x =<a,o,B > x,=<a,0,,p,>

be fuzzy number of the (L—R)-type. Then parameters of
fuzzy number

C=x+x, =<0o,apB>
are found from formulas:

a=a;+a, 0=0,+0, p=p,+p,;
parameters of fuzzy number

C=x, —x, =< o,a,fB>
are found from formulas:

a=a;—a, 0=0,+0, B=0+B,;
parameters of fuzzy number

C=x, =< o,a,p>
are found from formulas:

a=a,-a,,

o =|a|o, +|a,| o, + o0,

B=|a1|[32 +|a2|B1 +B.B,;



parameters of fuzzy number C=x/xy (x1, xo — positive num-
bers) are found from formulas:

a,o,+a
, p="2 22131'

a, a,

ap,+a,o
a=a,/a, o= B, 22 1

In this case, parameters of fuzzy distance by the i-th co-
ordinate between the j-th point and the &-th grouping center
and square of this distance are determined by ratios:

o

M oM gO
1y =<agy),og) By > ay) =X, -,

ijk * ik ) Fijk
(1) — _ .
ay) =0, +B;, z]k _Bik+aij’
(2) () R2) 2) _ 1)
(”y/e) =<y, Oy s Py > Oy (a’yk) )

(2) _ (D (D) My (D) [OPC]
al]}\:‘ ayk a/kz + al]k a]kl 2(“17}3 (X’;kz

(2) _ (HRM) (1) 1) _ HRM)
ik — “ijk ]kl+ ijk jkl_ (ijkBjki)'

Now, parameters of membership function of fuzzy square
of the distance between the k-th grouping center and the j-th
point are equal to:

2 T =< 5 Oy, B>,

»
(2).
Jk 2 auk ’

i=1

1
ay = 2(“;;

P p
= zBijk)'
i=1

Further operations of clustering procedure are deter-
mined by the rule of comparison for pairs of fuzzy numbers.
The strict approach to solving this problem is proposed in
[22] and is implemented as follows. Let fuzzy numbers x
and y be assigned by their membership functions p(x) and
w(y). The degree of preference of number x to number y is
determined from formula:

n(x,y) = sup,., min{u(x),w(y)},

And degree of preference of y to x is determined from
formula:

N(y,x) = sup,., min{u(y),u(x)}.

Then number x is “larger” than y, if n(x,y)>n(y,x), and
number x is “smaller” than y otherwise. Practical implemen-
tation of this procedure is complicated. That is why different
heuristic approaches are used in practice to solve the prob-
lem of comparison of fuzzy numbers [23, 24]. One of them
is implemented as follows. Degrees of belonging of x and
y to corresponding sets on the set of levels v,,v,,...,v,.. are
found for assigned membership functions u(x) and p(x).
These values are determined through solving equations
wx)=v,, wy)=v,, r=1,2,..,s. Based on results of solving
these equations, we will obtain the set of pairs of their roots:
{22, AWy}, Now we will consider that fuzzy
number x is “larger” than y, of for all v,, =1, 2., s, the
inequality is satisfied: x(" +x® > y“) +y(2), and at least one
of them is strictly satlsfled If this condition is not satisfied,
neither of numbers x and y has any advantage over the other.

We will note the shortcomings of the above approach.
Firstly, it is not clear at how many levels it is necessary to
perform v-section. Secondly, the approach can be difficult
to implement. Thirdly, the described approach will have
a specific result only in the case of an obvious advan-
tage of one number over the other, for example, if there
is no intersection of membership functions of compared
numbers.

Owing to this, another more simple and reliable approach
with the result, which is interpreted unambiguously, is pro-
posed.

Let x and y be the fuzzy triangular numbers with mem-
bership functions:

0, x<b,
x-b, , b <x<m
mx_bx
w(x)=
cC. —X
. , m.<x<c,
c,—m,
10, xX>c;
[0, ySby,
-b
Y=% , b.<y<m,
m —b ' :
Y Yy
w(y)=
c,~Y
s mu<yScy,
y — My ‘
0, y>c,.

We will find membership function of difference z=x-y:

0, y<b,
x—-b
= h <z<m,
mZ_bZ
u(z)=
c,~z
- , m,<z<c,
CZ_mZ
0, z>c,,
where

b,=b,~b, m,=m ,—m, c,=c,—c,

Now the original problem of comparing x and y is
reduced to a simpler problem of comparison of fuzzy number
z with zero.

We will introduce the rules of interpretation of the result
of comparing fuzzy number z with zero:

a) if min{b,c,}>0, then x>y,

b) if max{b,c,} <0, then x <y,

c)if

min{b, ¢,} <0,max{b, c, ,C,}|>max{b,c,},
then x<y,
d)if
min{b, c,} <0,max{b,c,} >0, and |Inin{bzvcz}| <max{b, c,},
then x>y.
Examples of possible results of subtraction operations
are shown in Fig. 1-5. In all cases, graphic descrip-



tions of summands are shown in figures on the left, and
the results of subtraction operation are shown on the
right.

Ul n(x) 1
u(y)
bb ¢ c,

0

wz)
1

X,y 0 b (o] z
a b

Fig. 1. Result of calculation of x—y, x>y (rule a, variant 1):
a — graphic descriptions of summands;
b — result of calculation operation

wz)

1+ - 1 .
MW
by b, c, c

0 X,y 0 b ¢ z
a b

Fig. 2. Result of calculation x—y, x>y (rule a, variant 2):
a — graphic descriptions of summands; b — result of
calculation operation

nz)
1F . 1F A b
HW)
0 b, by c, ¢ X,y b, 0 c, z
a b

Fig. 3. Result of calculation x—y,c, >|bz|,x> Y (rule d):
a — graphic descriptions of summands; b — result of
calculation operation

1L 4
w(x)
n(y)
b, b, c,c,

wz)
/

0 X,y b 0 ¢ z

a b

Fig. 4. Result of calculation x -y, |bz| >C,x<Y (rule c):
a — graphic description of summands; b — result of
calculation operation

v4
L wy) | @] ]
0 b,b, c, ©C Xy c, 0 b, z
a b

Fig. 5. Result of calculation x—y, b, <|c,|, x<y (rule ¢):
a — graphic description of summands; b — result of
calculation operation

Thus, we obtain the following rules:

1) if the carrier of fuzzy result of subtracting is positive,
then the minuend is larger than subtrahend,;

2) if the carrier of the result is negative, then the minu-
end is smaller than the subtrahend;

3)if the carrier covers zero and its negative section is
larger than the positive one, then the minuend is smaller
than the subtrahend;

4)if the carrier covers zero and its negative section is
smaller than the positive one, then minuend is larger than
subtrahend.

Let us assume that the coordinates of grouping centers
of objects are assigned. Then in the clustering problem, the
shortest distance, determining the cluster, to which this
point is necessary to join, is selected by the results of com-
parison of fuzzy distances from the next point to the cluster
centers according to specified rules. Results of solving the
clustering problem for a training set of objects are used to
specify the coordinates of clusters grouping centers.

Let us proceed to solution of the third problem. The
effective way of improving the quality of the solution of the
problem of regression analysis, which ensures getting a solu-
tion satisfying two natural requirements, is proposed in [21]:

1) proximity of the result to the modal value of a fuzzy
explained variable, obtained by the results of statistical
treatment of the source data;

2) membership function of fuzzy value of the explained
variable should be maximum compact.

Let us choose Gaussian membership function to describe
fuzzy source data:

(x ji —x;? ’

)2
u(xﬁ)zexp 28; , j=42,.,n i=12,.,p.

The problem is solved in two stages [25]. At the first
stage, the system of linear algebraic equations is com-
posed relatively to the unknown values of coefficients a;,
i=1,2,...,m of regression ratio (2). The coefficients of the
composed system of linear algebraic equations (SLAE) are
assigned by modal values x§” of explaining variables:
a,+xVa, +xVa, +...+xf2)ap =y,
ay+ x50 + x50, + ..+ 1\, = y,,

3

ay+xPa +xDa,+. +xa, =y,

Solution to this system with the use of the least squares
methods (LSM) (since system (3) is redetermined) gives
set a®, i=1,2,..., p which assigns modal values of sought-for
variables a [26].

Next, a set of fuzzy numbers is introduced

P
_ - ©0) _
Z.= E ax;-y; j=12,..,n, X5 =1,

7
i=0

fuzziness of which is determined by fuzziness of explaining
variables x;,. Membership function of fuzzy value z; is de-
termined from ratio:

W(Z;)=exp {—(zj— i(aix}o)) /(25;)}



Then compactness of the solution is determined by com-

pactness of fuzzy numbers z;, estimated by the area of the
figure curve u(zj), which is equal to:

At the second stage of problem solving, the compound
criterion is stated [27]:

J(A)= J ( dz +2(a a(o)) 4)

which is minimized by q;, i=1, 2,..., p.

Thus, according to criterion (4), we estimate the set of
coefficients of regression equation a;, i=1, 2,..., p, which en-
sure minimum blurring (maximum compactness) of member-
ship function of result and minimum deviation from modal
set a”, i=1, 2,.., p. A significant drawback of this approach
is complexity of solving the system of equations, obtained in
this case.

dJ(A
LDy s
which even in the simplest case, when fuzziness of source
data is described in the Gaussian form, can be solved only
numerically. Difficulties of solution increase additionally, if
we use a general expression in the form of a function of the
(L—R)-type to describe x;:

u(x,)= (=) e if ey < (5)
i (x(o)_xy /B,]) , if xﬁgx;?)‘

We will simplify expression for criterion (4), bearing
in mind (5). Compactness of fuzzy number x; can be esti-
mated by the sum of the left and right fuzziness coefficients
c; =0 +B;, i=1,2,.p, j=1,2,..n, The measure of compact-
ness of number z; will be equal to:

(a aZ’ ya) 2]117] 127 G

In this case, minimizing compound criterion (4) of the
problem will take the form of:

J(A)= Zcha +§‘(ai—ai(°’)2 =

j=t i=t
:Zp:diai2+zp:(a a(o)) = min. (6)

Minimum (6) will be found in the assumption that:

Mws

P
o+ Ya,=1, a,=a’. )
i=1

Using the method undetermined Lagrange multipliers.
We will introduce the Lagrangian function:

L= da?+ i(ai ~a") - x(ﬁ(
i=1 i=1

i=0

W:‘_M?O))' :

Then

M=2dl.a +2(a —a)-r=0,
da : ’

0o A+2a” L1 a(o)
od +1) 2d+1 d.+

i=12..p. ®)

Substituting (8) into (7), find %, we have:

i=1 o d;+1 i
O
1—q® _§ %
A @ g‘diﬂ
PR E— ©
T d,+1

)

(1_‘10)_'2[1.1_'_1 o
a.= B i=1,2,.p
! LA a® d+1

(i—1di+1 d;+1

Thus, in the case that is important for practice when
fuzzy source data are described by general functions of the
(L—R) type, the analytic decision in the form of calculation
formulas was obtained.

6. Discussion of results obtained in the modernization of
methods for the identification of object states

Classic methods have a number of drawbacks, such as the
lack of theoretical substantiation of the selection of the iden-
tification method; rigidity of the mechanism of conversion
of the source data into the end result of identification; lack
of informative value of results, which permits ambiguity of
their interpretation.

Canonical technologies are based on the use of the
theoretic-probabilistic description of the results of direct
measurement of the controlled indicators of an object and
the resulting indicators, assessing effectiveness of its func-
tioning. The formed belief in the need to improve the ap-
proach to describing actual uncertainty of the source data
led to the use for these purposes of the models and methods
of the fuzzy sets theory and solution to the corresponding
problems.

The modernization of the classic methods for solving
the problem of identification of the state taking into consid-
eration the fuzzy nature of the reproduction of the source
data. In this case, we obtained analytical ratios describing
the procedure for getting the ultimate results in a particular
case that is important for practice when fuzzy source data
are described for the functions of the (L—R) type.

The advantage of the proposed identification methods
under conditions of uncertainty in comparison with the
classic methods is explained by the possibility of solving
this problem under actual conditions of a small sample of
fuzzy source data. In this case, the proposed methods under
uncertainty conditions can be adapted to solving the iden-
tification problems for any types of membership functions.

The identification methods proposed in research make it
possible to reduce the identification error at a small sample of



fuzzy source data. In this case, these solutions can be applied
in technologies using multidimensional discriminant analy-
sis, clustering or regression analysis.

The major limitations when using the suggested methods
include:

— the developed procedure does not ensure the adequate
solution of the identification problem in case when source
data are qualitative;

— the procedure is focused on the description of fuzzy
source data by membership functions of the (L—R) type,
while using membership functions of another type, the pro-
cedure of solving the problem gets complicated.

Further research into technology of the problems of iden-
tification of the state of objects in the context of fuzzy input
data can be performed in the following areas:

1) improvement of the method of solving fuzzy systems of
linear algebraic equations;

2) development of the methods for fuzzy optimization [28];

3) studying the results of application of the developed
method for membership functions of different types.

7. Conclusions

1. The fuzzy method for discriminant analysis, which is
the development of the corresponding classical method, was

proposed. It was established that when using it, it becomes
possible to identify objects under the actual conditions of a
small sample of fuzzy source data. Identification is possible
by increasing the adequacy of descriptions of uncertain
input data when constructing the discriminating surface. It
should be noted that under this approach, the refusal from
the theoretical-probabilistic technology of the source data
description is a principal issue.

2. It was established that when using refined procedure
of grouping with the separation of the grouping center,
clustering becomes possible even at a small sample of fuzzy
source data. This refined procedure provides for the use of
the developed method of fuzzy clustering. Unlike similar
methods, the original problem of comparison of fuzzy trian-
gular numbers is reduced to the simpler problem of compar-
ing a fuzzy number with zero.

3. It was established that when using the improved pro-
cedure for solving regression equations, it has become possi-
ble to assess regression coefficients analytically, if the source
data are represented by general membership functions of
the (L-R)-type. This improved procedure involves the use
of the developed method of fuzzy regression analysis. In this
case, under conditions of a small sample of fuzzy data, the
adequacy of regression models improves due to taking into
consideration the differences in the description of exogenous
and endogenous variables.
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